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Aims This paper deals with solving of a century-old paradox of linear stability for 

the Hagen-Poiseuille flow. A new mechanism of dissipative hydrodynamic 

instability has been established herein, and  a basis for the forming of 

helical structural organization of bloodstream and respective energy 

effectiveness of the cardiovascular system functioning has been defined by 

the authors. 

 

 
Materials and 

methods 

Theory of hydrodynamic instability, Galerkin’s approximation.  
 

 
Results A new condition Re > Rethmin

≈  124 of linear (exponential) instability of the 

Hagen-Poisseuille (HP) flow with respect to extremely small by magnitude 

axially-symmetric disturbances of the tangential component of the velocity 

field is obtained. The disturbances necessarily shall have quasi-periodic 

longitudinal variability along the pipe axis that corresponds to the 

observed data.  

 

 
Conclusion We show that the obtained estimate of value of Rethmin

 corresponds to the 

condition of independence of the main result (on the linear instability of 

the HP flow when Re > Rethmin
) from the procedure of averaging used in the 

Galerkin approximation. Thus, we obtain the possible natural mechanism 

for the blood swirling flows formations observed in the aorta and the large 

blood vessels. 
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Introduction 

The problem of defining mechanisms of hydrodynamic instability for the Hagen-Poiseuille (HP) 

flow is of great fundamental and application significance, starting from the famous Hagen’s 

researching of blood flows in the pipe
1
. 

So, currently, it is decided [1-4] that the HP flow is exponentially stable with respect to 

extremely small by magnitude disturbances for any large Reynolds number 
ν

RVmaxRe = , where 

maxV  - maximal (near axis) velocity of the HP flow in the pipe of radius R , and ν - coefficient 

of kinematic viscosity. Such a conclusion of the linear theory of hydrodynamic stability is based 

on the traditional consideration of pure periodic spatial variability of disturbances along the 

pipe axis and contradicts to real experimental data and observations  in different technical and 

biology systems.  

In [5], it is shown that the conclusion on linear stability of the HP flow needs clarification 

since if instead of periodic to consider conditionally-periodic (quasi-periodic) disturbances, then 

already for finite Re it might happen linear (exponential, not algebraic [6, 7]) instability of the 

HP flow. 

In the present paper, we further develop the representation [5] within the framework of the 

new theory of linear instability of the HP flow. Meanwhile, contrary to [5] in particular we show 

a possibility of getting a threshold by Re  condition of linear instability of the HP flow which 

does not depend on the procedure of averaging when using Galerkin approximation (necessary 

because of consideration of longitudinal quasi-periodicity of disturbances).  

 

Materials and methods 

Let’s consider evolution in time of axially symmetric extremely small by magnitude 

hydrodynamic disturbances of the tangential component of the velocity field ϕV in the 

cylindrical system of coordinates ),,( ϕrz : 
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1
    HP flow – laminar static flow of uniform viscous non-compressible fluid along static straight and infinite by 

length pipe with circular cross section. 
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Where: )1()(
2

2

max0 R

r
VrV z −= , 000 == ϕVV r - main (undisturbed) HP flow along the pipe of 

radius R  having in it a constant longitudinal pressure gradient const
z

p =
∂
∂

, when 

z

pR
V

∂
∂⋅= 0

2

max 4ρν
 with constant density ρ of the uniform fluid. In (1) ∆  is Laplace operator. 

Due to assumed axial symmetry of the extremely small disturbances ϕV ( i.e. since 0=
∂
∂

ϕ
ϕV

, 

there is no derivative 
ϕ∂

∂p
for small disturbance of the pressure field p in the right-hand side of 

(1)). Meanwhile, (1) allows closed description of evolution of pure tangential disturbances of 

the HP flow. 

Let’s find solution of equation (1) in the following form 

∑
=

=
N

n
nn R

r
JtzAVV

1
,11max )(),( γϕ  (2) 

which automatically meets boundary conditions of finiteness of ϕV for 0=r and non-slipping 

0=ϕV for Rr = on the hard pipe boundary since 1J is the Bessel function of the first order, and   

n,1γ  are zeroes of that function ( ,..2,1=n ). 

Using the feature of orthonormality of Bessel functions and a standard averaging procedure 

in the Galerkin approximation (see [2]), one gets in the dimensionless from (1), (2) the 

following closed system of equations for the functions ),( tzAn : 
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In (3), 
R

z
x = , 

2R

tντ = , Nm ,..,2,1= , and coefficients nmp  are as follows: 

∫−=
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,11,11
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where 2J  is a Bessel function of the second order, , nmδ  is Kronekker’s symbol ( 1=nmδ for 

mn = and 0=nmδ if mn ≠ ). Obviously that 2112 pp ≠ in (4) due to the presence of a factor 

before the integral in (4) (since )()( 2,121,12 γγ JJ ≠ ). 
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Let’s limit ourselves by the case of 2=N . For amplitudes 1A  and 2A ,corresponding to 

different modes of radial variability ϕV in  (2), we consider to have different periods of 

variability along the pipe axis when the next presentation takes place: 

xieAtxA παλτ 2
101 ),( += , 

xieAtxA πβλτ 2
202 ),( +=  (5) 

where βα ≠ contrary to the usual (see [2]) consideration of the problem of stability of the 

HP flow in the linear approximation by amplitudes of disturbances. Meanwhile, the value of 

21 λλλ i+=  in (5) assumes and defines the same (synchronous) character of dependency of 

functions 1A and 2A on time. Substituting (5) in (3) (for 2=N ) leads to the following system 

02Re)2Re4( 2
2021

2
1011

222
1,1 =+⋅+++ xixi eApieApi πβπα πβπααπγλ  (6) 

0)2Re4(2Re 2
2022

222
2,1

2
1012 =⋅++++ xixi eApieApi πβπα πββπγλπα  (7) 

System (6), (7) admits exact solution for constant coefficients 10A and 20A only in the case 

when βα = and in (5) functions 1A and 2A have the same pure periodic character of variability 

along the pipe axis. It is not difficult to check that from the condition of solvability of uniform 

system (6), (7) there may be obtained the well-known conclusion [1-4] on linear stability of 

the HP flow since in that case it is found that for any Re , 01 <λ . 

 

Results 

Considering the quasi-periodic variability of ϕV along the pipe axis for βα ≠ in (5), we use 

Galerkin approximation to solve the system (6), (7). Meanwhile, let’s average (6) multiplying 

(6) by the function 
xie 12πγ−
and integrating over x in the limits from 0 to 1/1 γ (i.e. applying to 

(6) an operation of ∫
||/1

0

1

1

||
γ

γ dx , where || 1γ is the modulus of 1γ ). The equation (7) is averaged 

applying to (7) the same as in (6) operation of averaging but with replaced in it 1γ  by 2γ   , 

where in the general case 21 γγ ≠ .  

The solvability condition of the system of the equations obtained from (6), (7) after the 

specified above averaging is the following dispersion equation for λ : 

0)(2 =++++ gcabbaλλ  (8) 
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where complex value 21 λλλ i+=  is uniquely defined by the following coefficients: 

2111
222

1,1 2Re4 iaapia +≡++= πααπγ , 2122
222

2,1 2Re4 ibbpib +≡++= πββπγ , 

2112
22 Re4 ppc αβπ=  and 

αβ

βα

12

12

II

II
g = . 

Here, in g, we have values of elementary integrals: ∫
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β γ , where .2,1=m From (8), one can obtain (see[5]) the condition of the 

linear instability of the HP flow when in (8) 01 >λ  for some thReRe > . A result in that case is 

significantly depending on the value of g , defined by the way of averaging of the system (6), 

(7) on the base of Galerkin approximation. 

So, if we change the averaging procedure (applying operation 
χπγ

γ

χγ 1

1

2
||/1

0

1 || ied −
∫ already to the 

equation (7), not to (6), as it was done above; and vice versa, we apply to (6) the operation of 

averaging applied above for averaging of the equation (7)), then, in the dispersion equation, 

value of g is replaced by g/1 . 

We require that the conclusion on the stability of the HP flow should not depend on the 

pointed difference in the averaging procedure conducting that is possible only when 12 =g . 

This equation for g has two roots 1=g  and 1−=g . For 1=g  the conclusion on the stability of 

HP the flow exactly coincides with the case of the pure periodic disturbances when βα = .  

Let’s consider the second case of 1−=g , and show that meanwhile the linear instability of 

the HP flow is possible already for finite value of the threshold Reynolds number thRe . 

Actually, for 1−=g from (8) it follows that 01 >λ when  

D

F
th π2

ReRe =>  (9) 

where 1111 )( babaF += , 
2

2211112112
2

11 )()( βααβ ppbappbaD −−+= . 

Obviously, for realization of the linear exponential instability of the HP flow 0>D  is 

necessary, that is trivially to be met when 2112
2

2211 4)( pppp αββα <− .  
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If to introduce a parameter 
β
α=p , defining the ratio of periods in (5), then from the 

pointed inequality providing positiveness of D in (9), it follows that the following holds  

+− << xpx  (10) 

where 
2
11

12212211211221122211 )(22

p

pppppppppp
x

+±+
=± , i.e. according to (4), 

..588.0..,739.1 == −+ xx . 

On the other hand, from the condition 1−=g  it follows that the following inequality holds 
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In particular, equation (11) is satisfied when n|| 1γαβ +=  and m|| 2γαβ += , where nm, - 

are any integers having the same sign since with necessity then holds 0
||

||

2

1 >=
m

n

γ
γ

. 

Meanwhile from (11), it follows that the following relations defining the value 
β
α=p depending 

on the values of nm, and signs of 21 ,γγ hold: 
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BB ++±−+== ± γ
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Obviously, p from (12) shall meet inequality (10). In particular, for 1== nm value of 

p (when −= BB and 0,0 21 >> γγ ) is ..58.1≈p . Since thRe in (9) is a function of β and p , for 

the pointed value of p , meeting inequality (10), from (9), we can get that minimal value 

124Re min ≈th is reached in the proximity of 5.0≈β . 

 

Discussion and conclusions 

Thus, it has been found the possibility of the linear (exponential) instability of the HP flow 

already for 124ReRe min ≈> th , that does not contradict to the well-known estimates of the 

guaranteed stability of the HP flow obtained from the energy considerations (see [1]) for Re < 

81. Obviously, an exponential growth of ϕV  after reaching of some finite values shall be 

replaced by a new non-linear mode of evolution in which all components of velocity and 
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pressure are already mutually cross-linked. This growth also produces the spiral type of the 

resulting flow. Indeed, for the flow of blood, the arising of spiral structure is observed in the 

aorta in a wide range of Re number and not only for very high values of the latter [8, 9]. The 

results of this paper are also published in [10].  
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