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Abstract. In previous work we showed that a loop g : S1 → SU(2) has a triangular fac-
torization if and only if the loop g has a root subgroup factorization. In this paper we
present generalizations in which the unit disk and its double, the sphere, are replaced by
a based compact Riemann surface with boundary, and its double. One ingredient is the
theory of generalized Fourier–Laurent expansions developed by Krichever and Novikov. We
show that a SU(2) valued multiloop having an analogue of a root subgroup factorization sa-
tisfies the condition that the multiloop, viewed as a transition function, defines a semistable
holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding
factorization for determinants associated to the spin Toeplitz operators defined by the mul-
tiloop.
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This paper is dedicated to Percy Deift and Craig Tracy, both of whom have contributed to
the richness and beauty of mathematics and mathematical physics in so many ways. Both have
created techniques and theories that have enhanced the understanding of fundamental problems
and questions. And both with their enthusiasm and fearlessness, have encouraged, inspired, and
motivated others to try to do the same.

The authors of this paper met in a summer meeting in 1984 in Laramie, Wyoming, where
Craig was one of the principal speakers. One of the topics discussed informally at the meeting
was determinants of Toeplitz operators, a subject where both Percy and Craig have made con-
siderable contributions, in particular with the study of singular symbols and applications to
statistical mechanics. This paper concerns some generalized Toeplitz determinant calculations
for matrix-valued symbols, a topic that is a return to a long ago summer, yet one which is still
of current interest.

1 Introduction

Suppose that Σ is a connected compact Riemann surface with nonempty boundary S (a disjoint
union of circles). Let Σ̂ denote the double,

Σ̂ = Σ∗ ◦ Σ,
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Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy.
The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html

mailto:ebasor@aimath.org
mailto:pickrell@math.arizona.edu
http://dx.doi.org/10.3842/SIGMA.2016.025
http://www.emis.de/journals/SIGMA/Deift-Tracy.html


2 E. Basor and D. Pickrell

where Σ∗ is the adjoint of Σ, i.e., the surface Σ with the orientation reversed, and the composition
is sewing along the common boundary S. Let R denote the antiholomorphic involution (or
reflection) fixing S.

The classical example is Σ = D, the closed unit disk. In this case S = S1, Σ̂ is isomorphic to
the Riemann sphere, and (in this realization) R(z) = 1/z∗, where z∗ = z, the complex conjugate.
This example has the exceptional feature that there is a large automorphism group, PSU(1, 1),
acting by linear fractional transformations.

We now choose a basepoint, denoted by (0), in the interior of Σ, and we let (∞) denote
the reflected basepoint for Σ∗. In the classical case, without loss of generality because of the
PSU(1, 1) symmetry, we can assume the basepoint is z = 0. Given the data (Σ, (0)), following
ideas of Krichever and Novikov, a reasonable function on S has a ‘linear triangular factorization’

f = f− + f0 + f+, (1.1)

where f± is holomorphic in the interior of Σ (Σ∗, respectively), with appropriate boundary
behavior, depending on the smoothness of f , f+((0)) = 0, f−((∞)) = 0, and f0 is the restriction
to S of a meromorphic function which belongs to a genus(Σ̂) + 1-dimensional complementary
subspace, which we refer to as the vector space of zero modes (see Proposition 2.3). In the
classical case f0 is the zero mode for the Fourier series of f .

A holomorphic map z : Σ̂→ D̂ is said to be strictly equivariant if it satisfies

z(R(q)) =
1

z(q)∗

and maps Σ to D (and hence Σ∗ to D∗). When we refer to the classical case (Σ = D), it will
be understood that z(z) = z. For a function f : U ⊂ Σ̂ → L

(
CN
)
, define f∗(q) = f(R(q))∗,

where (·)∗ is the Hermitian adjoint. If f ∈ H0(Σ) (i.e., a holomorphic function in some open
neighborhood of Σ), then f∗ ∈ H0(Σ∗). If q ∈ S, then f∗(q) = f(q)∗, the ordinary complex
conjugate of f(q).

Theorem 1.1. Suppose that k1 ∈ C∞(S,SU(2)). Consider the following three conditions:

(I.1) k1 is of the form

k1(z) =

(
a(z) b(z)
−b∗(z) a∗(z)

)
, z ∈ S,

where a and b are boundary values of holomorphic function in Σ with a((0)) > 0, and a
and b do not simultaneously vanish at a point in Σ.

(I.2) k1 has a “root subgroup factorization” of the form

k1(z) = lim
n→∞

a(ηn)

(
1 −ηnzn

ηnz
−n 1

)
· · ·a(η0)

(
1 −η0

η0 1

)
,

for some rapidly decreasing sequence {η0, . . . , ηn, . . . } of complex numbers, and for some
strictly equivariant function z with z((0)) = 0.

(I.3) k1 has a (multiplicative triangular) factorization of the form(
1 0

y∗(z) + y0(z) 1

)(
a1 0

0 a−1
1

)(
α1(z) β1(z)
γ1(z) δ1(z)

)
,

where a1 > 0, the third factor is a SL(2,C)-valued holomorphic function in Σ which is
unipotent upper triangular at 0, y = y+ is holomorphic in Σ, and y0 is a zero mode (as
in (1.1)).

Then (I.2) implies (I.1) and (I.3) (with y0 = 0), and (I.1) and (I.3) are equivalent.
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Similarly, consider k2 ∈ C∞(S,SU(2)) and the following statements:

(II.1) k2 is of the form

k2(z) =

(
d∗(z) −c∗(z)
c(z) d(z)

)
, z ∈ S1,

where c and d are boundary values of holomorphic functions in Σ, c((0)) = 0, and
d((0)) > 0, and c and d do not simultaneously vanish at a point in Σ.

(II.2) k2 has a “root subgroup factorization” of the form

k2(z) = lim
n→∞

a(ζn)

(
1 ζnz

−n

−ζnzn 1

)
· · ·a(ζ1)

(
1 ζ1z

−1

−ζ1z 1

)
,

for some rapidly decreasing sequence {ζ1, . . . , ζn, . . . } of complex numbers, and for some
strictly equivariant z with z((0)) = 0.

(II.3) k2 has (triangular) factorization of the form(
1 x∗(z) + x0(z)
0 1

)(
a2 0

0 a−1
2

)(
α2(z) β2(z)
γ2(z) δ2(z)

)
,

where a2 > 0, the third factor is a SL(2,C)-valued holomorphic function which is unipotent
upper triangular at (0), x = x+ is holomorphic in Σ, and x0 is a zero mode (as in (1.1)).

Then (II.2) implies (II.1) and (II.3) (with x0 = 0), and (II.1) and (II.3) are equivalent.

Remark 1.2.

(a) In the classical case, all three conditions are equivalent (with z = z), and there are no
constraints on y∗ or x∗ in (I.3) and (II.3), respectively (see [15]).

(b) In nonclassical cases there does not exist an equivariant function z for which all three
conditions are equivalent (because for example (II.2) implies x0 = 0 in (II.3)). In this
paper we will primarily work with the conditions (I.1) and (I.3), and (II.1) and (II.3).

(c) The second condition shows how to generate examples of loops with y0 = 0 and x0 = 0
in (I.3) and (II.3), respectively. We lack a method to generate transparent examples with
y0 6= 0 or x0 6= 0. At this point we do not know whether there are constraints on the set
of x∗ + x0 which occur in (II.3).

(d) Below we will explain why it is essential to generalize this theorem by allowing a and b
(c and d) to simultaneously vanish in Σ (in a controlled way) in (I.1) ((II.1), respectively),
and to allow a1 (a2) to be a function in (I.3) ((II.3), respectively). A tentative step in this
direction is discussed in Section 3.1.

In the classical case a loop g : S1 → SU(2) has a root subgroup factorization

g = k∗1 diag
(
eχ, e−χ

)
k2

if and only if g has a triangular factorization, a generic condition, and these factorizations are
unique (see [15]). In our more general context we ask similar questions: can we characterize
the set of g which have a factorization g = k∗1 diag(eχ, e−χ)k2, is the relevant condition generic,
and is the factorization unique? An immediate obstacle is that, to our knowledge, there does
not currently exist an analogue of the theory of triangular (or Birkhoff or Riemann–Hilbert)
factorization for matrix valued multiloops in the context of this paper (see [18] for a survey of
results in this direction, and [4] or [16, Chapter 8] for further background and history). Partly
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for this reason, we express what we know about these questions in terms of the holomorphic
bundle defined by viewing a loop as a transition function. For example in the classical case,
as observed by Grothendieck, a loop g : S1 → SL(2,C) has a Riemann–Hilbert factorization
g = g−g0g+, where g− ∈ H0(∆∗,SL(2,C)), g0 ∈ SL(2,C), and g+ ∈ H0(∆,SL(2,C)), if and only
if the corresponding holomorphic SL(2,C) bundle on P1 is trivial (see [7], or [16, Chapter 8]); in
the case of the sphere, such a bundle is trivial if and only if it is semistable (for the definition
and basic properties of semistability of principal bundles, see [17]; for an alternative exposition,
which inspires some of the goals of our project, see [2]).

Theorem 1.3. Suppose g ∈ C∞(S, SU(2)). If g has a factorization

g(z) = k∗1(z)

(
eχ(z) 0

0 e−χ(z)

)
k2(z),

where χ ∈ C∞(S, iR), and k1 and k2 are as in (I.1) and (II.1), respectively, of Theorem 1.1,
then E(g), the holomorphic SL(2,C) bundle on Σ̂ defined by g as a transition function, is
semistable, and the associated bundle for the defining representation has a sub-line bundle with
an antiholomorphic reflection symmetry compatible with R.

Remark 1.4.

(a) For a multiloop g as in the theorem (or more generally for a multiloop with minimal
smoothness), we explain how g defines a holomorphic bundle in Appendix A.

(b) Because of the residual symmetry condition on the sub-line bundle in the theorem, the
existence of a factorization as in the theorem is not a generic condition, except in the
classical case (this is explained further in Appendix A.4).

(c) As an example of our ignorance, suppose that g : S → SU(2) has a factorization as in the
theorem. Is the same true for the inverse, g∗? This is true in the classical case, because in
the classical case there exists a root subgroup factorization if and only if there is a triangular
factorization, and for the latter condition, g = lmau is a triangular factorization if and
only if g−1 = u∗m∗al∗ is a triangular factorization. We suspect the answer is negative in
general.

A basic open question is whether a generic g : S → SU(2) can be factored as a product of
SU(2)-valued multiloops

g(z) =

(
a∗(z) −b(z)
b∗(z) a(z)

)(
eχ(z) 0

0 e−χ(z)

)(
d∗(z) −c∗(z)
c(z) d(z)

)
, (1.2)

where a, b, c, d are appropriate boundary values (depending on the smoothness of g) of holo-
morphic functions in Σ. Note that in Theorem 1.3, a and b (c and d) are not allowed to
simultaneously vanish in Σ; the point is that this condition has to be relaxed. We will discuss
some results along these lines in Sections 3.1, 4.2 and 4.3.

1.1 Spin Toeplitz operators

Assume that Σ has a spin structure. There is an induced spin structure for Σ̂ which has an
antiholomorphic reflection symmetry compatible with R (see [20, Chapter 7]). For simplicity
we additionally assume that the ∂ operator for spinors on Σ̂ is invertible. In this case there is
a (pre-)Hilbert space polarization for the space of (C2 valued) spinors along S,

Ω1/2(S)⊗ C2 = H1/2(Σ)⊗ C2 ⊕H1/2(Σ∗)⊗ C2,
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where H1/2(Σ) denotes the space of holomorphic spinors on Σ. Given a (measurable) loop
g : S → SU(2), there is an associated unitary multiplication operator Mg on Ω1/2(S)⊗ C2, and
relative to the polarization

Mg =

(
A(g) B(g)
C(g) D(g)

)
.

In the classical case A(g) (B(g)) is the classical block Toeplitz operator (Hankel operator, re-
spectively), associated to the symbol g. In general the ‘spin Toeplitz (Hankel) operators’ A(g)
(B(g), respectively) have many of the same qualitative properties as in the classical case, because
the projection Ω1/2 → H1/2 differs from the classical projection by a smoothing operator.

Theorem 1.5. Suppose that g : S → SU(2) (is smooth and) has a factorization as in Theo-
rem 1.3. Then for any choice of spin structure for which ∂ is invertible,

det
(
A(g)A

(
g−1
))

= det
(
A(k1)A

(
k−1

1

))
det
(
Ȧ(eχ)Ȧ(e−χ)

)2
det
(
A(k2)A

(
k−1

2

))
,

where in the middle factor Ȧ(eχ) is the compression to H1/2(Σ) of eχ as a (scalar) multiplication
operator on Ω1/2(S) (which accounts for the square of this factor).

Even in the classical case, our proof of this is far more illuminating than the one in [14]. For
example we will prove the following much stronger statement, at the level of operators:

Theorem 1.6. Suppose that k1, k2 are measurable multiloops S → SU(2)) of the form

k1 =

(
a(z) b(z)
−b∗(z) a∗(z)

)
and k2 =

(
d∗(z) −c∗(z)
c(z) d(z)

)
,

where a, b, c and d are boundary values of holomorphic function in Σ. Then

A(k∗1k2) = A(k∗1)A(k2).

There are other senses in which the factors k1, exp(χ) and k2 are expected to be “indepen-
dent”. For example in the classical case we have previously conjectured that these factors are
independent random variables with respect to the large temperature limit for Wiener measure
on the loop group, and that they Poisson commute with respect to the Evens–Lu homogeneous
Poisson structure on LSU(2) (see [14]). To properly formulate nonclassical analogues of these
conjectures, we need to prove the existence of a factorization for a generic loop, as we discussed
at the end of the previous subsection.

Remark 1.7.

(a) One can replace the defining representation C2 by any representation of SU(2) and there
is a corresponding factorization.

(b) A(g) is a Fredholm operator. As elegantly explained by Quillen and Segal, det(A(g)) can
be defined as a section of a determinant line bundle, or alternatively as a function on
a central extension of maps S → SU(2) (see [16]). In the classical case Theorem 1.5 can
be refined to yield a factorization for det(A(g)), but this is open in general.

(c) det(A(g)) is essentially the state corresponding to Σ for the SU(2) WZW model at level one.
It is interesting to ask whether there might be some factorization for the corresponding
state at higher level. This is true in the classical case, but for a trivial reason: the state at
level l is the lth power of the state at level one, i.e., one replaces the defining representation
by (C2)⊗l.
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1.2 Plan of the paper

In Section 2 we use ideas of Krichever and Novikov to obtain a linear triangular factorization,
as in (1.1), for a reasonable function f : S → C (in fact for any hyperfunction). In Section 3 we
prove Theorem 1.1 and a technical refinement for Holder continuous loops. In Section 3.1 we
will present a generalization of Theorem 1.1 in which we relax the simultaneously nonvanishing
hypotheses in (I.1) and (II.1). In Sections 4 and 5, we prove Theorems 1.3 and 1.5, respectively.
In Section 4.3 we further discuss factorization and semistable bundles. In Section 5.2 we present
some calculations of determinants for spin Toeplitz operators in the scalar case (the middle factor
in Theorem 1.5); one suspects this can be substantially improved. Finally there is Appendix A
on hyperfunctions, which we use sporadically in the text.

In part II of this paper [1], we will present a number of explicit calculations, especially for
elliptic and hyperelliptic surfaces. A motivating question is whether it is possible to view spin
Toeplitz operators in this paper as deformations of classical Toeplitz operators by allowing the
surface to degenerate.

2 Linear triangular factorization

In the remainder of the paper, Σ denotes a connected compact Riemann surface with nonempty
boundary S. Let Σ̂ denote the double, i.e.,

Σ̂ = Σ∗ ◦ Σ,

where Σ∗ is the adjoint of Σ, the surface Σ with the orientation reversed, and the composition
is sewing along the common boundary S. Let R denote the antiholomorphic involution (or
reflection) fixing S.

The singular cohomology group H1(Σ̂,R) is a real symplectic vector space with respect to
wedge product. There is a positive polarization of the complexification

H1
(
Σ̂,C

)
= H1,0 ⊕H0,1,

where we concretely identify H1,0 with the complex genus(Σ̂)-dimensional vector space of holo-
morphic differentials on Σ̂, and H0,1 is the conjugate vector space of antiholomorphic differen-
tials. In this way we can think of H1,0 as the dual of H0,1 and vice versa. There is also
a Dolbeault isomorphism

H1
(
O
(
Σ̂
))
→ H0,1

(
Σ̂
)
,

where O(Σ̂) denotes the sheaf of holomorphic functions (see [6, p. 45], but we will spell out what
we need in (2.1)).

Let H0(S) denotes the space of analytic functions on S (hence each such function can be
extended to a holomorphic function in an open neighborhood of S in Σ̂). Using Mayer–Vietoris
for the sheaf of holomorphic functions, corresponding to a slight thickening of the covering of Σ̂
by Σ and Σ∗, there is an exact sequence of vector spaces

0→ H0
(
Σ̂
)
→ H0(Σ)⊕H0(Σ∗)→ H0(S)→ H0,1

(
Σ̂
)
→ 0.

In terms of the Dolbeault isomorphism, the connecting map H0(S) → H0,1(Σ̂) is realized con-
cretely as a map

H0(S)→ H0,1
(
Σ̂
)

: f →

{
∂f1 in Σ,

∂f2 in Σ∗,
(2.1)
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where in the C∞ category, f = f1− f2, f1 is smooth in (a slight open enlargement of) Σ, and f2

is smooth in (a slight open enlargement of) Σ∗.
In reference to the following statements, recall that the space of complex hyperfunctions on

an oriented analytic one-manifold is the dual of the space of complex analytic one forms on the
one-manifold, and is denoted by Hyp(S); see Appendix A (and [19] for the original reference).
The introduction of hyperfunctions is possibly a distraction at this point of the paper. The
point is that eventually we will want to consider ‘transition functions’ with minimal regularity;
all such functions can be viewed as hyperfunctions, and the natural domain for connecting maps,
such as (2.1), is a space of hyperfunctions.

Lemma 2.1. The connecting map (2.1) is dual to the injective map

CωΩ1(S,C)← H1,0
(
Σ̂
)
≡ H1

(
Σ̂,R

)
← 0

given by restriction of a holomorphic differential to S. Consequently the connecting map extends
continuously to a surjective map

Hyp(S)→ H0,1
(
Σ̂
)
≡ H1

(
Σ̂,R

)
→ 0.

Proof. We first show that the connecting map is dual to the restriction map. Suppose that
f ∈ H0(S) (i.e., functions which are holomorphic in a neighborhood of S) and write f = f1− f2

as in the realization of the connecting map (2.1), f → ∂fj . Suppose also that ω ∈ H1,0(Σ̂). To
prove the formula for the transpose, we must show that

(∂fj , ω) = (f, ω|S).

The left-hand side equals (using dω = 0 and Stokes’s theorem)∫
Σ
∂f1 ∧ ω +

∫
Σ∗
∂f2 ∧ ω =

∫
S
f1 ∧ ω −

∫
S
f2 ∧ ω =

∫
S
f ∧ ω

and this equals the right-hand side.
The fact that the connecting map has a continuous extension to hyperfunctions follows from

the fact that it is the dual of the restriction map, which is continuous. The extension is described
more explicitly in Appendix A. The basic idea (due to Sato) is that a hyperfunction f on S can
be represented as a pair, which we heuristically write as f = f ′+ f ′′, where f ′ is holomorphic in
an annular region just outside S and f ′′ is holomorphic in an annular region just inside S. We
then compute the connecting map using three open sets, the interior of Σ, a sufficiently small
annular region containing S, and the interior of Σ∗. One must check that this is independent of
the choice of representation for the hyperfunction: we can also represent f = (f ′+ g) + (f ′′− g),
where g is holomorphic in a small annular region containing S. �

Fix a basepoint (0) ∈ Σ0 := interior(Σ), and let (∞) ∈ Σ∗ denote the reflected basepoint.
The starting point for a series by papers by Krichever and Novikov (see for example [11], which
summarizes several of their papers) is the following

Lemma 2.2. There exists a unique meromorphic differential dk on Σ̂ which is holomorphic in
Σ̂\{(0), (∞)}, has simple poles at (0), (∞) with residues ±1, respectively, and satisfies Re(

∫
γ dk)

= 0, for all closed loops in Σ̂\{(0), (∞)}.

Proof. Let κ denote the canonical line bundle, and L the line bundle corresponding to the
divisor (0)+(∞). The holomorphic sections of the line bundle κ⊗L are meromorphic differentials
with at most simple poles at (0), (∞). The Riemann–Roch theorem implies that

dim
(
H0(κ⊗ L)

)
− dim

(
H1(κ⊗ L)

)
= deg(κ⊗ L)− (g − 1),
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where g = genus(Σ̂). But

dim
(
H1(κ⊗ L)

)
= dim

(
H0
(
κ⊗ (κ⊗ L)−1

))
= dim

(
H0
(
L−1

))
= 0.

Hence the dimension of the space of meromorphic differentials with at most simple poles
at (0), (∞) is g + 1. A differential cannot have a single pole. So any meromorphic differential
in this space, which is not globally holomorphic, will have simple poles at (0) and (∞) with
the sum of the residues necessarily equal to zero. The normalizations in the statement of the
theorem uniquely determine dk. �

In the classical case dk = dz/z. Following Krichever and Novikov, set τ = Re(k), which is
a single valued harmonic function on Σ̂\{(0), (∞)}, which limits to −∞ at (0) and +∞ at (∞);
this is thought of as a distinguished time parameter.

The following summarizes a “linear triangular decomposition” for functions which follows
immediately from the existence of dk. The point is that the existence of dk, which induces
a metric on S, enables us to find a complement to the sum of the two subspaces, holomorphic
functions in the interior of Σ, and holomorphic functions in the interior of Σ∗.

Proposition 2.3. A hyperfunction χ : Σ̂→ C can be written uniquely

χ = χ− + χ0 + χ+,

where χ− ∈ H0(Σ0∗, (∞);C, 0), χ+ ∈ H0(Σ0, (0);C, 0), and χ0dk is in the span of H1,0(Σ̂)
and dk.

Remark 2.4.

(a) The zeros of dk are the critical points for the time parameter τ . For dk the number of
zeros is 2genus(Σ̂), because there are two poles, and the degree of κ is 2genus(Σ̂)− 2. The
zeros, are located at the singular points for the time slices of the surface.

(b) From (a) it follows that the set of χ0 can be characterized in the following way: χ0 can
have at most simple poles at the simple zeros of dk, and χ0(0) = χ0((∞)). (To explain the
last condition, note that χ0dk = c0dk + holomorphic differential, and hence χ0 − c0 must
vanish at (0), (∞).)

(c) Since the complementary functions χ0 can have poles at points other than the base-
points (0) and (∞), they do not necessarily belong to the algebra M0 of meromorphic
functions which are holomorphic in Σ̂\{(0), (∞)}. Consequently our choice of complemen-
tary subspace is not the same as the implicit choice made by Krichiver and Novikov (this
refers to the exceptional cases (1.5) after Lemma 1 in [11]). For emphasis, note our choice
does not depend on the general position hypothesis for (0) in [11].

(d) Suppose that Σ has genus zero. In this case there is an alternative splitting, where χ0 is
locally constant on S. This has the advantage that there is no dependence on the choice
of basepoint. We will consider this elsewhere.

For smooth functions denote the decomposition in Proposition 2.3 by

Ω0(S) = H+ ⊕H0 ⊕H−.

Lemma 2.5. The action of multiplication by F ∈ H0(Σ) maps H0 ⊕H+ into itself.
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Proof. First note it is obvious that multiplication by F maps H+ into itself.

Suppose that χ0 ∈ H0. Let χ
(j)
0 denote a set of functions in H0 such that ωj := χ

(j)
0 dk is

a basis for the space of holomorphic differentials on Σ̂. We must show that there exist constants
c1, . . . , cgenus(Σ̂)

such that (we write these as functions of a parameter z, to clarify the notation)

F (z)χ0(z)−
genus(Σ̂)∑
j=1

cjχ
(j)
0 (z) ∈ H0(Σ),

i.e., this function does not have any poles in Σ. Since the set of poles of Fχ0 (which are all
simple) is a subset of the set of zeros of dk, this is equivalent to showing the following. Let
{z0

1 , . . . , z
0
genus(Σ̂)

} denote the set of zeros of dk in Σ (see (b) of Remark 2.4). Then there exist

unique constants c1, . . . , cgenus(Σ̂)
such that

F (z)χ0(z)−
genus(Σ̂)∑
j=1

cjχ
(j)
0 (z)

does not have any poles at the points z0
1 , . . . , z

0
genus(Σ̂)

.

To turn this into a system of scalar equations, for each 1 ≤ i ≤ genus(Σ̂) choose a local
coordinate zi with zi(z

0
i ) = 0. Relative to this choice of coordinates, we can then speak of

residues. Our claim is then equivalent to the claim that the genus(Σ̂)× genus(Σ̂) matrix resji :=

Res
(
χ

(j)
0 , z0

i

)
is nonsingular.

In the vicinity of z0
i ,

χ
(j)
0 =

resji
zi

+ holomorphic(zi), dk =
(
f

(i)
1 zi +O

(
z2
i

))
dzi,

where the first coefficient f
(i)
1 is not zero, and

χ
(j)
0 dk =

(
resji f

(i)
1 +O(zi)

)
dzi.

We can just as well show that the matrix resji f
(i)
1 is nonsingular. In invariant terms we must

show that the evaluation map

H1,0(Σ̂)→
genus(Σ̂)⊕
i=1

T ∗zi

is an isomorphism of vector spaces. A holomorphic differential in the kernel of this map
would then have 2genus(Σ̂) zeros and no poles, which is impossible since the degree of κ is
2genus(Σ̂)− 2. �

In the classical case it is a (difficult to prove but) well-known fact that if χ is Holder con-
tinuous of order s > 0, and s is nonintegral, then χ± are Holder continuous of order s. This is
equivalent to the fact that the Hilbert transform H := iP+ − iP− : χ → iχ+ − iχ−, which can
be expressed as a principal value integral relative to the Cauchy kernel

χ(z)→ 1

π
p.v.

∫
S1

χ(ζ)

ζ − z
dζ (2.2)

is a bounded operator on Cs(S1), the Banach space of Holder continuous functions of order s
(the original reference in the classical case is [5, Chapter III, Section 3]; this is cited for example
in [4, p. 60]).
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Theorem 2.6. Suppose that s > 0 and nonintegral. In reference to Proposition 2.3, if χ ∈ Cs(S)
(i.e., Holder continuous of order s), then χ± ∈ Cs(S).

This is equivalent to proving the continuity of an analogue of the Hilbert transform on Cs(S).
The kernel is essentially the Szego kernel, which in general is the classical Cauchy integral
operator plus a smooth perturbation (see [8], and [1] for examples). Thus Theorem 2.6 follows
from the classical case.

3 Proof of Theorem 1.1

In Theorem 1.1 it is obvious that (ii) implies (iii). This actually follows from the classical
example, because we can use z to pull results from the sphere back to Σ̂. It is also clear that (iii)
implies (i): This follows immediately by just multiplying the factors together. In the course of
completing the proof of Theorem 1.1, we will also prove the following

Theorem 3.1. Suppose that k1 ∈ Cs(S, SU(2)), where s > 0 and nonintegral. The following
are equivalent:

(I.1) k1 is of the form

k1(z) =

(
a(z) b(z)
−b∗(z) a∗(z)

)
, z ∈ S,

where a, b ∈ H0(Σ) have Cs boundary values, a((0)) > 0, and a and b do not simultaneously
vanish at a point in Σ.

(I.3) k1 has a factorization of the form(
1 0

y∗(z) + y0(z) 1

)(
a1 0

0 a−1
1

)(
α1(z) β1(z)
γ1(z) δ1(z)

)
,

where y ∈ H0(Σ0), y0 is a zero mode, a1 > 0, the last factor is in H0(Σ0,SL(2,C)) and is
unipotent upper triangular at the basepoint (0), and the factors have Cs boundary values.

Similarly, the following are equivalent:

(II.1) k2 is of the form

k2(z) =

(
d∗(z) −c∗(z)
c(z) d(z)

)
, z ∈ S1,

where c, d ∈ H0(Σ) have Cs boundary values, c((0)) = 0, d((0)) > 0, and c and d do not
simultaneously vanish at a point in Σ.

(II.3) k2 has a factorization of the form(
1 x∗(z) + x0(z)
0 1

)(
a2 0

0 a−1
2

)(
α2(z) β2(z)
γ2(z) δ2(z)

)
,

where x ∈ H0(Σ0, (0);C, 0), x0 is a zero mode, x0((0)) = 0 a2 > 0, the last factor is in
H0(Σ0, SL(2,C)) and is upper triangular unipotent at the basepoint (0), and the factors
have Cs boundary values.

The triangular factorizations in (I.3) and (II.3) are uniquely determined.
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Remark 3.2. When k2 is the restriction to S of a function with entries inM0, the determinant
condition c∗c + d∗d = 1 can be interpreted as an equality of functions in M0. Together with
d((0)) > 0, this implies that c and d do not simultaneously vanish. Thus the simultaneous
vanishing hypotheses in (I.1) and (II.1) of Theorem 3.1 are superfluous in that case.

Proof. The two sets of conditions are proven in the same way. It is obvious that (II.3) im-
plies (II.1). The difficult task is to show that (II.1) implies (II.3).

Consider the polarization

Ω0
(
S,C2

)
= H+ ⊗ C2 ⊕H− ⊗ C2,

where H+ = H+ + C (functions which are holomorphic in Σ), and H− is the sum of H− and
the subspace of zero modes x0 ∈ H0 such that x0dk is a global holomorphic differential (i.e.,
x0((0)) = 0, as in the statement of (II.3)). We write P± for the corresponding projections. We
will view Ω0(S,C2) as a preHilbert space, by using the measure induced by the restriction of
(2πi)−1dk to S. (Note that for a differential ω, if ω∗ := R∗ω, then (dk)∗ = −dk, as follows by
checking the asymptotics at (0) and (∞). Thus along S, (2πi)−1dk is real. It is also nonvanishing;
see (a) of Remark 2.4. The polarization is an orthogonal direct sum.)

Relative to this polarization, we write the unitary multiplication operator corresponding to
a multiloop g : S → SU(2) as

Mg =

(
A B
C D

)
.

For a smooth loop the off diagonals (Hankel type operators) will be small and A and D will be
Fredholm.

We must show that the multiloop k2 has a unique factorization as in (II.3), i.e., we must
solve for a2, x∗, and so on, in(

d∗ −c∗
c d

)
=

(
1 x∗ + x0

0 1

)(
a2 0

0 a−1
2

)(
α2 β2

γ2 δ2

)
.

The second row implies

(c, d) = a−1
2 (γ2, δ2).

This determines a−1
2 γ2 and a−1

2 δ2, and (using the unipotence of the third factor in (II.3)),
a−1

2 = d((0)).
The first row implies

d∗ = a2α2 + (x∗ + x0)c, −c∗ = a2β2 + (x∗ + x0)d. (3.1)

The first term on the right-hand side of both of these equations belongs to H+. To solve
for x∗ + x0, we will apply a projection to get rid of these H+ terms.

Consider the operator

T : H− → H− ⊕H− : x0 + x∗ → ((c(x0 + x∗))−, (d(x0 + x∗))−),

where (·)− is the projection to H−. To show that we can uniquely solve for x∗ + x0, we will
show T is injective and that ((d∗)−, (−c∗)−) is in the range of T .

The operator T is the restriction of the Fredholm operator D(k2)∗ = D(k∗2) to the subspace
{(x0 + x∗, 0)}, consequently the image of T is closed. T is also injective. For suppose that both
((c(x0 + x∗))− and (d(x0 + x∗))− vanish. Then

c(x0 + x∗) = g and d(x0 + x∗) = h,
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where g, h ∈ H+. Since c, d do not simultaneously vanish in Σ, this implies that x0 + x∗ ∈ H+.
But this means that x0 + x∗ must vanish. Thus T is injective and has a closed image.

The adjoint of T is given by

T ∗ : H− ⊕H− → H− : (f0 + f∗, g0 + g∗)→ (c∗(f0 + f∗) + d∗(g0 + g∗))−.

If (f0 + f∗, g0 + g∗) ∈ ker(T ∗), then

c∗f∗ + d∗g∗ + (c∗f0 + d∗g0)− = 0.

By Lemma 2.5

(c∗f0 + d∗g0)− = c∗f0 + d∗g0.

Thus

c∗(f0 + f∗) + d∗(g0 + g∗) = 0

viewed as a meromorphic function in Σ∗, vanishes in the closure of Σ∗. Because |c|2 + |d|2 = 1
around S,

(f0 + f∗, g0 + g∗) = λ∗(d∗,−c∗), (3.2)

where λ∗ is meromorphic in Σ∗ and vanishes at (∞) because d∗((∞)) = d((0)) > 0. Thus λ is
meromorphic in Σ and vanishes at (0).

We now claim that ((d∗)−,−c∗) ∈ ker(T ∗)⊥. To prove this, suppose that (f0 + f∗, g0 + g∗) ∈
ker(T ∗), as in the previous paragraph. Then∫

S
((d∗)−(f∗0 + f) + (−c∗)(g∗0 + g))dk =

∫
S
λ(d∗d+ c∗c)dk =

∫
S
λdk.

(Note that constants are orthogonal to H−, and hence we could replace (d∗)− by d∗.) We claim
this integral vanishes. Since λdk is a meromorphic differential in Σ (by the previous paragraph),
this equals the sum of residues of λdk in Σ. Because f∗0dk and g∗0dk are holomorphic differentials
(the defining characteristic for zero modes), and c and d do not simultaneously vanish, the only
point we need to worry about is (0) (see (3.2)). Finally the residue at (0) is zero, because
λ((0)) = 0 (by the previous paragraph).

Because T has closed image, there exists x0 + x∗ ∈ H− such that

(d∗)− = ((x0 + x∗)c)− and − c∗ = ((x0 + x∗)d)−.

We can now solve for a2α2 and a2β2 in (3.1). We previously noted that a−1
2 = d((0)). Now that

we have solved for the factors, the form of the factorization immediately implies α2δ2−γ2β2 = 1
on S; by holomorphicity of the terms, this also holds in Σ.

Theorem 2.6 implies that the projections P± are continuous on Cs(S). Consequently the
operator T will be continuous and have the same properties on the Cs completions. Hence when
k2 ∈ Cs, the factors are Cs. This completes the proofs of Theorems 1.1 and 3.1. �

3.1 A generalization of Theorem 1.1

In the preceding proof a key step is to show that λdk is a holomorphic differential in Σ. The
proof is not sharp, in the sense that λ itself is holomorphic, whereas for the proof to go through,
we can allow λ to have simple poles at the zeros of dk. By considering (3.2), this suggests that
there ought to be a generalization in which c and d are allowed to have simultaneous zeros to
first order, within the zero set of dk. This in turn forces a2 to be a function. It turns out to be
natural for a1 and a2 to be functions, for other reasons, as we will explain in Section 4.3.
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Theorem 3.3. Suppose that k1 ∈ Cs(S, SU(2)), where s > 0 and nonintegral. The following
are equivalent:

(I.1) k1 is of the form

k1(z) =

(
a(z) b(z)
−b∗(z) a∗(z)

)
, z ∈ S,

where a, b ∈ H0(Σ) have Cs boundary values, a((0)) > 0, and a and b can simultaneously
vanish only to first order, and this set of common zeros is the set of poles in Σ of a zero
mode.

(I.3) k1 has a factorization of the form(
1 0

y∗(z) + y0(z) 1

)(
a1(z) 0

0 a1(z)−1

)(
α1(z) β1(z)
γ1(z) δ1(z)

)
,

where a−1
1 is a nonvanishing sum of a zero mode and a holomorphic function in Σ,

a1((0)) > 0, y ∈ H0(Σ0), the last factor is in H0(Σ0, SL(2,C)) and is unipotent upper
triangular at the basepoint (0), and the factors have Cs boundary values.

Similarly, the following are equivalent:

(II.1) k2 is of the form

k2(z) =

(
d∗(z) −c∗(z)
c(z) d(z)

)
, z ∈ S1,

where c, d ∈ H0(Σ) have Cs boundary values, c((0)) = 0, d((0)) > 0, and c and d can
simultaneously vanish only to first order, and this set of common zeros is the set of poles
in Σ of a zero mode.

(II.3) k2 has a factorization of the form(
1 x∗(z) + x0(z)
0 1

)(
a2(z) 0

0 a2(z)−1

)(
α2(z) β2(z)
γ2(z) δ2(z)

)
,

where a2 is a nonvanishing sum of a zero mode and a holomorphic function in Σ, a2((0))>0,
x ∈ H0(Σ0, (0);C, 0), x0 is a zero mode, the last factor is in H0(Σ0,SL(2,C)) and is upper
triangular unipotent at the basepoint (0), and the factors have Cs boundary values.

Remark 3.4.

(a) In contrast to Theorem 1.1, we are not asserting that the triangular factorizations in (I.3)
and (II.3) are uniquely determined. In particular, as the theorem is stated, a1 and a2 can
be multiplied by nonvanishing holomorphic functions in Σ.

(b) In the preceding theorem a−1
1 and a2 are not generally zero modes. Nonconstant zero

modes always vanish at some point in Σ, and this would mean that for example c or d
would have a pole. We want to avoid poles, because for example the results in Section 5
are dependent on the assumption that a, b, c, d are holomorphic in Σ.

Proof. The two sets of conditions are proven in the same way. It is obvious that (II.3) im-
plies (II.1). As before, the difficult task is to show that (II.1) implies (II.3).

Assuming (II.1), we must show that the multiloop k2 has a factorization as in (II.3), i.e., we
must prove existence of a2, x∗, and so on, in(

d∗ −c∗
c d

)
=

(
1 x∗ + x0

0 1

)(
a2 0

0 a−1
2

)(
α2 β2

γ2 δ2

)
.
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The second row implies

(c, d) = a−1
2 (γ2, δ2).

This determines a−1
2 γ2 and a−1

2 δ2. In the context of the previous subsection, i.e., when c and d
do not simultaneously vanish, a2 is a constant, determined by the unipotence of the third factor
in (II.3), which (in general) implies a−1

2 ((0)) = d((0)). In general, towards determining a2, note
that a2 must have simple poles at the common zeros for c and d, and cannot have zeros in Σ,
so that γ2 and δ2 are holomorphic and do not simultaneously vanish in Σ. The hypotheses
of (II.1) guarantee that there is a zero mode with the appropriate (necessarily simple) poles
in Σ. Fix a slight open enlargement of Σ. Since this surface is open, we can find a nonvanishing
meromorphic function in this enlargement with the same singular behavior as this zero mode;
the difference between this meromorphic function, which is our choice for a2, and the given zero
mode is holomorphic in Σ. As we remarked above, this choice is far from uniquely determined,
and it is not clear how to pin down a preferred choice.

The first row implies

d∗ = a2α2 + (x∗ + x0)c, −c∗ = a2β2 + (x∗ + x0)d.

The basic complication, compared to the proof of Theorem 1.1, is that a2α2 and a2β2 are no
longer necessarily holomorphic in Σ, because a2 has poles. We will first solve (not necessarily
uniquely) for x∗, by using the same strategy as in the proof of Theorem 1.1, but using a different
polarization.

Consider the polarization

Ω0
(
S,C2

)
= H+ ⊗ C2 ⊕H− ⊗ C2,

where H+ is now the sum of functions which are holomorphic in Σ and zero modes, and
H− = H−. We write P+, and P− for the projections onto the subspaces H+⊗C2 and H−⊗C2,
respectively.

Relative to this polarization, we write the multiplication operator defined by a multiloop as

Mg =

(
A B
C D

)
.

For a smooth loop the off diagonals (Hankel type operators) will be small and A and D will be
Fredholm.

Consider the operator

T : H− → H− ⊕H− : x∗ → (((cx∗)−, (dx
∗)−),

where (·)− is shorthand for the projection to H−. The operator T is the restriction of the
Fredholm operator D(k2)∗ = D(k∗2) to the subspace {(x∗, 0)}, consequently the image of T is
closed. Unfortunately in general T is not injective. For suppose that both ((cx∗)− and (dx∗)−
vanish. Then

cx∗ = g and dx∗ = h,

where g, h ∈ H+. At a common simple zero for c and d, it could happen that g, h also have
a common pole, so x∗ does not necessarily have simple poles.

The adjoint of T is given by

T ∗ : H− ⊕H− → H− : (f∗, g∗)→ (c∗f∗ + d∗g∗)− .
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If (f∗, g∗) ∈ ker(T ∗), then

c∗f∗ + d∗g∗ = 0

viewed as a meromorphic function in Σ∗. Because |c|2 + |d|2 = 1 around S,

(f∗, g∗) = λ∗(d∗,−c∗),

where λ∗ is meromorphic in Σ∗ and vanishes at (∞) because d∗((∞)) = d((0)) > 0. Thus λ is
meromorphic in Σ and vanishes at (0).

We now claim that ((d∗)−,−c∗) ∈ ker(T ∗)⊥. To prove this, suppose that (f∗, g∗) ∈ ker(T ∗),
as in the previous paragraph. Then∫

S
((d∗)−(f) + (−c∗)(g))dk =

∫
S
λ(d∗d+ c∗c)dk =

∫
S
λdk.

We claim this integral vanishes. Since λdk is a meromorphic differential in Σ (by the previous
paragraph), this equals the sum of residues of λdk in Σ. Because the poles of λ occur at common
zeros of c, d, and hence only at zeros of dk, and because λ((0)) = 0, λdk is holomorphic in Σ
(by the previous paragraph). Thus the integral vanishes.

Because T has closed image, there exists x∗ ∈ H− such that

(d∗)− = (x∗c)− and − c∗ = (x∗d)−.

(Here and below we are using the fact that a2 ∈ H0 +H+, α2 ∈ H+, and Lemma 2.5, to conclude
that a2α2 ∈ H0 +H+, so that it is killed by (·)−.)

Now consider the operator

T : (H+ + C)⊕H0 ⊕H+ → (H+ +H0)⊕ (H+ +H0) :

(α2, x0, β2)→ (a2α2 + x0c, a2β2 + x0d).

This is well-defined by Lemma 2.5.
We must show that (d∗−x0c,−c∗−x0d) (which is in the target of T by the previous paragraph)

is in the image of T . The operator T has a closed image. The (Hilbert space) adjoint of T is
given by

(H+ +H0)⊕ (H+ +H0)→ (H+ + C)⊕H0 ⊕H+ :

(f, g)→ ((a∗2f)0+, (a
∗
2g)0+, (c

∗f + d∗g)0). (3.3)

We need to show that (d∗ − x0c,−c∗ − x0d) is orthogonal to the kernel of T ∗. Suppose that
(f, g) ∈ ker(T ∗) (so the three terms in (3.3) vanish). Then

(d∗ − x0c, f) + (−c∗ − x0d, g) = const ·
∫
S

(df∗ − cg∗ − x∗0(c∗f + d∗g))dk.

The last two terms immediately drop out. Thus, up to a constant, this equals∫
S

(df∗ − cg∗)dk =

∫
S

((
da−1

2

)
a2f

∗ −
(
ca−1

2

)
a2g
∗)dk.

The vanishing of the first two terms in (3.3) imply that a2f
∗, a2g

∗ ∈ H+. Thus the integral
vanishes since the integrand is holomorphic in Σ.

Once we have solved for the factors, the form of the factorization immediately implies α2δ2−
γ2β2 = 1 on S; by holomorphicity of the terms, this also holds in Σ. This completes the
proof. �
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4 Factorization and semistability

4.1 Proof of Theorem 1.3

We recall the statement of the theorem:

Theorem 4.1. Suppose g ∈ C∞(S, SU(2)). If g has a factorization

g(z) = k∗1(z)

(
eχ(z) 0

0 e−χ(z)

)
k2(z),

where χ ∈ C∞(S, iR), and k1 and k2 are as in (I.1) and (II.1), respectively, of Theorem 1.1,
then E(g), the holomorphic G bundle on Σ̂ defined by g as a transition function, is semistable,
and the associated bundle for the defining representation has a sub-line bundle with an antiholo-
morphic reflection symmetry compatible with R.

Remark 4.2. In the following proof, a1 is a positive constant and hence a∗1 = a1. We will
write a∗1 at various points in the proof because in the next subsection we will want to note that
the calculations are valid more generally when a1 is a function.

Proof. In the proof we will use the fact that, using a multiloop as a transition function, there
is a bijective correspondence between the double coset space

H0
(
Σ0∗, G

)
\Hyp(S,G)/H0

(
Σ0, G

)
and the set of isomorphism classes of holomorphic G bundles on Σ̂, and that a smooth function
defines a hyperfunction; see Appendix A.3.

By assumption k1 and k2 have ‘triangular factorizations’ of the following forms:

k1 =

(
1 0

y∗ + y0 1

)(
a1 0

0 a−1
1

)(
α1 β1

γ1 δ1

)
,

and

k2 =

(
1 x∗ + x0

0 1

)(
a2 0

0 a−1
2

)(
α2 β2

γ2 δ2

)
.

Given these ‘triangular factorizations’ for k1 and k2, we can derive a ‘triangular factorization’
for g. (Note: we have not developed a general theory of triangular factorization in the context
of this paper, so we are using this term somewhat loosely.) To simplify notation, let X =
a−2

2 (x+ x∗0), Y = a2
1(y + y∗0), and a = a∗1a2. Then

g =

(
α1 β1

γ1 δ1

)∗(
1 Y
0 1

)(
aeχ−+χ0+χ+ 0

0 (aeχ−+χ0+χ+)−1

)(
1 X∗

0 1

)(
α2 β2

γ2 δ2

)
=

(
α∗1 γ∗1
β∗1 δ∗1

)(
eχ− 0
0 e−χ−

)(
1 e−2χ−Y
0 1

)(
aeχ0 0

0 (aeχ0)−1

)(
1 e2χ+X∗

0 1

)
×
(
eχ+ 0
0 e−χ+

)(
α2 β2

γ2 δ2

)
.

The bundle E(g) defined by g as a transition function depends only on the product of the middle
three factors, because of the remark at the beginning of the proof. The product of the middle
three factors equals(

aeχ0 B
0 (aeχ0)−1

)
,
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where

B = a−1e−χ0−2χ−Y + aeχ0+2χ+X∗.

We claim that the rank two bundle defined by this transition function is semistable. Suppose
otherwise. Then there exists a sub-line bundle which has positive degree. The degree of this
sub-line bundle is the negative of the degree of a transition function S → GL(1,C) (see our
conventions for transition functions in Remark A.1). This means that there exists a factorization
of the form(

aeχ0 B
0 (aeχ0)−1

)
= g−

(
λ β
0 λ−1

)
g−1

+ ,

where g± =

(
α± β±
γ± δ±

)
are holomorphic SL(2,C)-valued functions in Σ (Σ∗, respectively), and

the degree of λ : S → GL(1,C) is negative. This factorization implies

aeχ0γ− = λ−1γ+

and hence the line bundle defined by the transition function (ae−χ0λ)−1 has a global holomorphic
section. But this is impossible, because the degree of this transition function is positive (i.e.,
the degree of the corresponding line bundle is negative). This implies that E(g) is semistable.
(Note that in general, a principal bundle is semistable if and only if the corresponding adjoint
bundle is semistable; however for SL(2,C) it suffices to consider the defining representation,
see [17].)

Because χ0 = −χ∗0, and because a is a positive constant, the line bundle defined by the
transition function aeχ0 has antiholomorphic symmetry with respect to R. This completes the
proof. �

4.2 A generalization of Theorem 1.3

Theorem 4.3. Suppose g ∈ C∞(S, SU(2)). If g has a factorization

g(z) = k∗1(z)

(
eχ(z) 0

0 e−χ(z)

)
k2(z),

where χ ∈ C∞(S, iR), and k1 and k2 are as in (I.1) and (II.1), respectively, of Theorem 3.3,
then E(g), the holomorphic G bundle on Σ̂ defined by g as a transition function, is semistable.

Proof. For a1 and a2 as in Theorem 3.3 (viewed as transition functions)

deg(a∗1a2) = deg
(
a−1

1

)
+ deg(a2).

Since a−1
1 and a2 do not vanish in Σ, this degree is the negative of the sum of the number of

common zeros of (a, b) in Σ and the number of common zeros of (c, d) in Σ. In particular the
degree of a = a∗1a2 is negative. With the exception of the last paragraph, we can now repeat the
preceding proof verbatim; the key point is that the degree of the transition function (ae−χ0λ)−1,
calculated in the penultimate paragraph, remains positive. �

The main point of this theorem is that the antiholomorphic symmetry has been broken.
Consequently there is now a chance that the factorization of g, as in the theorem, is generic.
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4.3 Do there exist converses?

As of this writing, the questions of whether there are converses to Theorems 1.3 and 4.3 are
open. We briefly discuss the issues involved. In this subsection, for simplicity, we assume that S
has one connected component. We first consider Theorem 1.3.

Suppose that g ∈ Cω(S; SU(2,C)) and E(g) is semistable. Any holomorphic vector bundle
on a Riemann surface has a flag of holomorphic subbundles. In particular for E(g), there exists
a holomorphic sub-line bundle in the associated vector bundle for the defining representation.
This implies the existence of a factorization of the form

g =

(
l11 l12

l21 l22

)(
λ B′

0 λ−1

)(
u11 u12

u21 u22

)
, (4.1)

where l ∈ H0(Σ∗, SL(2,C)), u ∈ H0(Σ,SL(2,C)), λ : S → GL(1,C) has degree zero (by semista-
bility), and B′ : S → C. To proceed rigorously, we would need to know more about this kind of
factorization, but in this heuristic discussion, we will put this aside. If we assume that the line
bundle has an antiholomorphic symmetry compatible with R, then the degree of the line bundle
is zero, and because we are assuming S is connected, we can assume that λ = a′ exp(χ0), where
χ0 = −χ∗0 and a′ is a positive constant (we eventually want a′ = a1a2). By comparing with the
factorization of g in the previous subsection, we see that (putting questions about uniqueness
aside)

l11 = α∗1 exp(χ−), l21 = β∗1 exp(χ−), u21 = γ2 exp(−χ+), u22 = δ2 exp(−χ+).

Given this, one can possibly mimic the calculations in [15, Section 3] to reconstruct the factori-
zation. A key point here is that we need to know there does exist a unitary transition function;
this is discussed in Appendix A.4.

Theorem 4.3 asserts the existence of a diagram of the form,

{g = k∗1 diag(eχ, e−χ)k2} ⊂ Cω(S; SU(2)) ⊂ Hyp(S; SL(2))
↓ ↓ ↓{

semistable
SL(2)-bundles

}
⊂

{
holomorphic

SL (2)-bundles

}
≡

{
holomorphic

SL(2)-bundles

}
where k1 and k2 satisfy the conditions in Theorem 3.3, and isomorphic bundles are identified.
The question is whether the first down arrow is onto (for the second down arrow, see Ap-
pendix A.4). To understand what is needed, suppose that E(g) is semistable and there is
a factorization as in (4.1). To get started, we need a factorization of the form λ′ = a∗1a2 (for
some λ′ equivalent to λ, as a transition function), where a1 and a2 are functions as in Section 3.1
and Theorem 4.3.

Remark 4.4. To develop some intuition, we need to be able to solve the following problem:
Consider a decomposable bundle defined by a transition function diag(a, a−1) where a is positive
function along S (e.g., a = exp(χ1), where χ1 is a zero mode with χ1 = χ∗1). Find a multiloop
g : S → SU(2,C) which maps to this bundle.

5 Spin Toeplitz operators

A spin structure for a Riemann surface is the same thing as a choice of square root for the cano-
nical bundle, κ (by way of explanation, holomorphic sections of κ are holomorphic differentials).
We let κ1/2 (→ Σ, Σ̂,Σ∗, depending on the surface) denote the choice of square root (see [20,
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Chapter 7] for other points of view). There is a natural (pre-) Hilbert space structure on
Ω0
(
S, κ1/2

)
⊗ C2 (C2 valued spinors along S) given by

〈ψ, φ〉 =

∫
S

(
ψ, φ

)
C2 ,

where (v, w)C2 denotes the standard Hermitian inner product on C2, so that the integrand is
a one density on S.

For the sheaf of holomorphic sections of κ1/2, and (a slight open thickening of) the covering
of Σ̂ by Σ and Σ∗, there is a Mayer–Vietoris long exact sequence,

0→ H0
(
Σ̂, κ1/2

)
→ H0

(
Σ, κ1/2

)
⊕H0

(
Σ∗, κ1/2

)
→ Ω0

(
S, κ1/2

)
→ H1

(
Σ̂, κ1/2

)
→ 0.

In terms of the ∂ operator, H0
(
Σ̂, κ1/2

)
= ker(∂) and H1

(
Σ̂, κ1/2

)
= coker(∂). The index of ∂

is zero.
When ∂ is invertible, a generic condition, by taking Hilbert space completions, we obtain

a Hilbert space polarization

L2Ω1/2(S)⊗ C2 = H+ ⊕H−,

where L2Ω1/2(S), H+, and H− denote the completions of Ω0
(
S, κ1/2

)
, H0

(
Σ, κ1/2

)
⊗ C2, and

H0
(
Σ∗, κ1/2

)
⊗ C2, respectively. When ∂ is not invertible, there are two distinct reasonable

polarizations. The first possibility is that H+ is the completion of Ω0
(
S, κ1/2

)
⊗C2, and H− is the

orthogonal complement. The second possibility is that H− is the completion of H0
(
Σ∗, κ1/2

)
⊗C2

and H+ is the orthogonal complement.
Given an essentially bounded matrix valued function g : S → L(C2), there is an associated

bounded multiplication operator Mg on Ω1/2(S) ⊗ C2, and relative to a polarization as in the
preceding paragraphs

Mg =

(
A(g) B(g)
C(g) D(g)

)
.

If Σ = D, the unit disk, then A(g) and B(g) are the classical (block) Toeplitz and Hankel
operators associated to the symbol g (see [3] and [12, Chapter 3]). In general the basic qualitative
properties of the operators A(g) and B(g) (which we refer to as ‘spin Toeplitz and Hankel
operators’, respectively) are the same as in the classical case, because the projection to H+

differs from the classical projection by a smoothing operator. For example (of most importance
for our purposes), exactly as in [16, Chapter 5], the map g → Mg defines an embedding of
loops into the Hilbert–Schmidt general linear group; the precise statement is that there is an
embedding

L∞ ∩W 1/2(S; SL(2,C))→ GL(H+ ⊕H−)(2). (5.1)

The relevant Lie structure is described in [16, Chapters 6 and 7].

Remark 5.1. The Krichever–Novikov theory, at least in principle, provides an explicit means to
calculate spin Hankel and Toeplitz operators. According to Krichever and Novikov (following the
notation in [11]), for certain spin structures and for generic basepoints, there is an (orthonormal)
basis forM1/2 (meromorphic spinors which are regular in the complement of the basepoints) of
the form

. . . , φ3/2, φ1/2, φ−1/2φ−3/2, . . .
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(which in the classical case reduces to the usual basis

. . . , z2(dz)1/2, z(dz)1/2, z0(dz)1/2, z−1(dz)1/2, . . . )

a basis for M0, {fk : k ∈ g
2 + Z} (which in the classical case reduces to the usual basis), and

constants Q such that

fnφm =
∑
|k|≤g/2

Qkn,mφn+m−k.

Thus for each n, the matrices for the multiplication operator, and the spin Toeplitz operator,
defined by fn will have band width (the number of nonzero diagonals that appear) equal to
g + 1, g = genus(Σ̂) (in the classical case fn is a shift operator, and the bandwidth is one). We
will pursue this in part II of this paper [1].

5.1 Determinants: proof of Theorem 1.5

Theorem 5.2. Suppose that g has a factorization as in Theorem 1.3. Then for any choice of
spin structure and polarization as in the preceding subsection,

det
(
A(g)A

(
g−1
))

= det
(
A(k1)A

(
k−1

1

))
det
(
A(eχ)A(e−χ)

)
det
(
A(k2)A

(
k−1

2

))
.

This theorem will follow from Theorem 5.3 and the lemmas below. To place the calculations
in some context, recall (see [16, pp. 88–89]) that for the universal central extension (for the
Hilbert–Schmidt general linear group)

0→ C∗ → G̃L(H+ ⊕H−)(2) → GL(H+ ⊕H−)(2)

and the local cross-section (defined on the open dense set of g such that A(g) is invertible)

g → [g,A(g)]

the multiplication is given by

g̃1g̃2 = c(g1, g2)g̃3,

where the cocycle is given by

c(g, h)−1 = det
(
A(gh)A(h)−1A(g)−1

)
= det

(
A(g)−1A(gh)A(h)−1

)
= det

(
1 +A(g)−1B(g)C(h)A(h)−1

)
. (5.2)

The corresponding Lie algebra cocycle is given by

ω : gl(H+ ⊕H−)(2) × gl(H+ ⊕H−)(2) → C,
ω(X,Y ) = tr([A(X), A(Y )]−A([X,Y ])) = tr(B(Y )C(X)−B(X)C(Y )). (5.3)

We are interested in the restriction of the cocycle to Ω0(S,SL(2,C)) via the injection (5.1).
The basic fact about this cocycle, which we will use repeatedly, is that if g− ∈ H0(Σ∗,SL(2,C))
and g+ ∈ H0(Σ, SL(2,C)), then

c(g−g, hg+) = c(g, h). (5.4)

This follows from A(g−g) = A(g−)A(g) and A(hg+) = A(h)A(g+), which in turn follow from
B(g−) = 0 and C(g+) = 0, respectively. To see this, suppose that H+ is the completion of
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Ω0
(
Σ, κ1/2

)
⊗ C2. Given a spinor φ+ ∈ H+, the product g+φ+ is holomorphic in Σ, hence

g+φ+ ∈ H+. This implies C(g+) = 0. Now consider a spinor φ ∈ H−, i.e., φ is orthogonal
to H+. We claim that g−φ is also orthogonal to H+. If ψ+ ∈ H+, then the pointwise inner
product (along S)(

ψ, g−φ
)
C2 =

(
g∗−ψ+, φ

)
C2 .

Since g∗− ∈ H0(Σ, SL(2,C)), it follows that 〈ψ+, g−φ〉 = 〈g∗−ψ+, φ〉 = 0. It follows that
B(g−) = 0. A similar argument applies if H+ is the orthogonal complement of Ω0(Σ∗, κ1/2)⊗C2.

To prove the theorem we need to show that c(g, h) = 1 when (g, h) = (k∗1, k2) and so on. In
fact in some cases we can prove much stronger statements.

Theorem 5.3. A(k∗1k2) = A(k∗1)A(k2). In particular c(k∗1, k2) = 1.

In the process of proving the first statement, we will prove Theorem 1.6, i.e., we will only
assume that k1 and k2 are measureable maps S → SU(2) of the appropriate form. We need to
assume the loops are W 1/2 for the second statement to be valid.

Proof. Because

A(k∗1k2) = A(k∗1)A(k2) +B(k∗1)C(k2)

this equivalent to showing that B(k∗1)C(k2) = 0. We will prove this by direct calculation.

Suppose that f :=

(
f1

f2

)
∈ H+ = H1/2(∆). Then

B(k∗1)C(k2)f = P+ (k∗1P−(k2f)) = P+

(
k∗1

(
P−(d∗f1 − c∗f2)

0

))
= P+

((
a∗P−(d∗f1 − c∗f2)

0

))
= 0.

Thus B(k∗1)C(k2) = 0. By relation (5.2) (for sufficiently smooth loops) this implies that
c(k∗1, k2) = 1. �

Lemma 5.4. c(k∗1, diag(exp(χ), exp(−χ))) = c(diag(exp(χ), exp(−χ)), k2) = 1.

Proof. There exists a generalized triangular factorization(
a∗ −b
b∗ a

)
=

(
α∗1 γ∗1
β∗1 δ∗1

)(
a1 0

0 a−1
1

)(
1 y + y0

0 1

)
.

Consequently, using (5.4),

c

((
a∗ −b
b∗ a

)
,

(
exp(χ) 0

0 exp(−χ)

))
= c

((
1 y + y0

0 1

)
,

(
eχ 0
0 e−χ

))
= c

(
exp

((
0 y + y0

0 0

))
, exp

((
χ 0
0 −χ

)))
.

In the last line we are considering the cocycle pairing of an element of Ω0(S,N+), where N+

is the group of unipotent upper triangular matrices in SL(2,C), and an element of Ω0(S,H),
where H is the diagonal subgroup of SL(2,C). We claim that the corresponding Lie algebra

cocycle pairing for Ω0(S, n+) and Ω0(S, h) is zero. To check this suppose that X :=

(
0 β
0 0

)
∈



22 E. Basor and D. Pickrell

Ω0(S, n+) and Y := diag(χ,−χ) ∈ Ω0(S, h). We must calculate (5.3) for these two multiloops.
Then

B(X)C(Y )

((
f1

f2

))
=

(
−(Y (χf2)−)+

0

)
.

From this it is clear that tr(B(X)C(Y )) = 0. Similarly tr(B(Y )C(X)) = 0. Thus the cocycle
pairing for Ω0(S, n+) and Ω0(S, h) is zero. It follows that the cocycle pairing for Ω0(S,N+) and
Ω0(S,H)0 (the identity component) is trivial. This implies that

c(k∗1,diag(exp(χ), exp(−χ))) = 1.

By the same argument c(diag(exp(χ), exp(−χ)), k2) = 1. �

Lemma 5.5. c(k∗1 diag(exp(χ), exp(−χ)), k2) = c(k∗1,diag(exp(χ), exp(−χ))k2) = 1.

Proof. Using (5.4)

c(k∗1 diag(exp(χ), exp(−χ)), k2) = c

((
eχ y + y0

0 e−χ

)
,

(
1 x∗ + x0

0 1

))
.

As in the proof of the preceding lemma, this is a cocycle pairing between elements from two
(connected) groups. The corresponding pairing of Lie algebra elements is trivial. So this cocycle
pairing is trivial. �

These lemmas imply Theorem 5.2.

5.2 Calculating the determinant: scalar case

Our goal is to calculate the second determinant appearing on the right-hand side of the statement
in Theorem 5.2. Recall that in that statement we think of eχ as a multiplication operator on
scalar valued functions. We first consider the simplest possibility, which can be handled in the
same way as done by Widom in the classical case (see [21]).

Proposition 5.6. Suppose that χ = χ+ + χ−, where χ+ is holomorphic in Σ and χ− is holo-
morphic in Σ∗. Then

(a) det(A(eχ)A(e−χ)) = exp(tr(B(χ+)C(χ−))),

(b) if χ is iR valued, then this equals

exp(− tr(B(χ+)B(χ+)∗)) = exp
(
−|B(χ+)|2L2

)
.

In the classical case Σ = D,

tr(B(χ+)B(χ+)∗) =

∞∑
n=1

n|χn|2.

Proof. Because A(eχ) = A(eχ−)A(eχ+), det(A(eχ)A(e−χ)) equals

det
(
A(eχ−)A(eχ+)A(e−χ−)A(e−χ+)

)
= det

(
eA(χ−)eA(χ+)eA(−χ−)eA(−χ+)

)
.

The Helton–Howe formula (see [10]) implies that this equals exp(tr([A(χ−), A(χ+)])). Now
observe that

[A(χ−), A(χ+)] = A(χ−)A(χ+)−A(χ+)A(χ−)

= A(χ−)A(χ+)− (A(χ+χ−)−B(χ+)C(χ−)) = B(χ+)C(χ−).

This implies part (a).
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For part (b) the only thing we need to comment on is the last equality. This follows from
writing out the matrix for B, relative to the standard basis. Up to a multiple, it also follows
abstractly by the SU(1, 1) symmetry of D and Schur’s lemma. �

Remark 5.7. It is obvious that the formula in (a) depends on the complex structure of Σ. Does
it depend on the spin structure?

The shortcoming of the preceding proposition is that when genus(Σ̂) > 0, we have not
accounted for zero modes.

Proposition 5.8.

det
(
A(eχ)A(e−χ)

)
= c(eχ− , eχ0)c(eχ0 , eχ+) det

({
e−A(χ+), eA(χ−)

})
det
(
A(eχ0)A(e−χ0)

)
.

In the case that χ has values in iR, this equals

det
(∣∣{A(e−χ0), e−A(χ+)

}∣∣2) det
(
A(eχ0)A(eχ0)∗

)
exp

(
− tr(B(χ+)B(χ+)∗)

)
,

where {A,B} = ABA−1B−1 denotes the group commutator.

Proof.

A(eχ)A(e−χ) = eA(χ−)A(eχ0)eA(χ+)e−A(χ−)A(e−χ0)e−A(χ+).

The right-hand side is of the form xyzx−1Y z−1. The conjugate of this by z−1 equals

z−1xyzx−1Y =
{
z−1x, y

}
y
{
z−1, x

}
y−1yY,

where we have temporarily assumed that y is invertible. This implies

det
(
A(eχ)A(e−χ)

)
= det

({
e−A(χ+)eA(χ−), A(eχ0)

})
× det

({
e−A(χ+), eA(χ−)

})
det
(
A(eχ0)A(e−χ0)

)
(each of these determinants is the determinant of an operator of the form identity + trace class).
Using the Helton–Howe formula, this equals

det
({
e−A(χ+)eA(χ−), A(eχ0)

})
exp

(
− tr(B(χ+)C(χ−))

)
det
(
A(eχ0)A(e−χ0)

)
.

Now we use the identity{
z−1x, y

}
= z−1xyx−1y−1zz−1yzy−1.

This implies that the first determinant in the expression above satisfies

det
({
e−A(χ+)eA(χ−), A(eχ0)

})
= det

({
eA(χ−), A(eχ0)

})
det
({
eA(χ+), A(eχ0)

})
.

In terms of the group cocycle notation, this equals

c(eχ− , eχ0)c(eχ0 , eχ+).

This completes the proof. �

Remark 5.9. In the classical case this determinant is nonvanishing. It would seem unlikely
that this is true in general. But the expression we have produced does not seem to help in
deciding this question. It should be possible to calculate the determinant for exp(χ0) exactly.
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A Hyperfunctions and holomorphic bundles

A.1 Hyperfunctions on a circle

Suppose that X is an oriented analytic compact d-manifold. Let CωΩd(X) denote the vector
space of real analytic forms of order d on X. There is a standard topology on this space.
By definition the space of (real) hyperfunctions on X, denoted Hyp(X;R), is the dual of this
topological vector space; the space of complex hyperfunctions is the complexification, denoted
Hyp(X;C), or more simply Hyp(X) (see [9, p. 35]). In the case of X = S1, any complex
hyperfunction has a unique representation of the form

f = f− + f0 + f+,

where f− ∈ H0(∆∗, (∞);C, 0), f0 ∈ C, and f+ ∈ H0(∆, 0;C, 0) (this is how hyperfunctions were
first introduced, see [19]). The corresponding functional is given by

CωΩ1
(
S1
)
→ C : ω →

∫
|z|=1−ε

(f0 + f+)ω +

∫
|z|=1+ε

f−ω,

where ω = gdz and g is complex analytic in a collar of S1, for sufficiently small ε.
An integrable function f : S1 → C naturally defines a hyperfunction by integrating an analytic

form against f around S1. Note that for the linear triangular decomposition for the Fourier series
of f , where f± =

∑
±n>0

fnz
n, f± are not necessarily integrable on the circle, but they do define

holomorphic functions in ∆ (∆∗, respectively).

A.2 Nonabelian hyperfunctions on a circle

Suppose that G is a simply connected complex Lie group, e.g., G = SL(2,C).
In [16] it is observed that the group of analytic loops, Cω(S1;G), is a complex Lie group.

A neighborhood of the identity consists of those loops which have a unique Riemann–Hilbert
factorization

g = g− · g0 · g+, (A.1)

where g− ∈ H0(D∗, (∞);G, 1), g0 ∈ G, g+ ∈ H0(D, 0;G, 1). A model for this neighborhood is

H1(D∗, g)×G×H1(D, g),

where the linear coordinates are determined by θ+ = g−1
+ (∂g+), θ− = (∂g−)g−1

− . The (left or
right) translates of this neighborhood by elements of LfinK cover H0(S1, G); a key point is that
the transition functions are functions of a finite number of variables, in an appropriate sense
(see [13, Chapter 2, Part III]).

The hyperfunction completion, Hyp(S1, G), is modeled on the space

H1(∆∗, g)×G×H1(∆, g)

and the transition functions are obtained by continuously extending the transition functions for
the analytic loop space of the preceding paragraph. The global definition is

Hyp
(
S1, G

)
= lim

r↓1
H0
(
{1 < |z| < r}, G

)
×H0(S1,G) lim

r↑1
H0
(
{r < |z| < 1}, G

)
. (A.2)

From this point of view, a hyperfunction is an equivalence class [g, h], where g (h) is a G-valued
holomorphic map in an annulus to the left (right, respectively) of S1). The correct way to
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topologize this space does not seem clear from this point of view, and we will put this aside.
From the global definition it is clear that the group H0(S1, G) acts naturally from both the
left and right of Hyp(S1, G), e.g., for the left action, gl : [g, h]→ [glg, h]. There is a generalized
Birkhoff decomposition

Hyp
(
S1, G

)
=

⊔
λ∈Hom(S1,T )

Σhyp
λ , Σhyp

λ = H0(∆∗, G) · λ ·H0(∆, G).

The top stratum (the piece with λ = 1 above) is open and dense, and for each point g in the top
stratum, there is a unique factorization as in (A.1), where g± are G-valued holomorphic functions
in the open disks ∆ and ∆∗, respectively. We will refer to g−, g0, g+ (θ−, g0, θ+, respectively)
as the Riemann–Hilbert coordinates (linear Riemann–Hilbert coordinates, respectively) of g
(see [13, Chapter 2, Part III]).

Given a continuous function g : S1 → G there exists a generalized Riemann–Hilbert factoriza-
tion, where the factors g± are not necessarily continuous (see [4, Theorem 1.1 of Chapter VIII]
for a precise statement). In this way any reasonable loop in G can be regarded as an element of
Hyp(S1, G).

The space Hyp(S1, G) depends only on the orientation and real analytic structure of S1, i.e.,
there is a natural action of real analytic homeomorphisms on hyperfunctions: in terms of the
global definition (A.2)

σ : [g, h]→
[
σ−∗g, σ−∗h

]
.

Consequently if S is an oriented real analytic one-manifold, then Hyp(S,G) is well-defined.

A.3 Hyperfunctions and holomorphic G bundles

Suppose that Σ̂ is a closed Riemann surface. In this subsection it is not necessary to assume
that Σ̂ is a double. We also suppose that c : S1 → Σ̂ is a real analytic embedding, i.e., a simple
analytic loop. We could more generally suppose that c is an embedding of several disjoint
analytic loops, but we will focus on one to simplify notation. A basic (nongeneric) example
is the case when Σ̂ is a double and c is a parameterization of S, the fixed point set of the
involution R.

Let O denote the structure sheaf of Σ̂. There is an associated mapping

E = Ec,O : Hyp
(
S1, G

)
→ H1(OG) : [g, h]→ Ec([g, h]),

where H1(OG) denotes the set of isomorphism classes of holomorphic G-bundles on Σ̂. For
an ordinary analytic G-valued loop g, E maps the loop to the isomorphism class of the holo-
morphic G-bundle defined by using the loop as a holomorphic transition function in a tubular
neighborhood of the image of c.

Remark A.1. Our convention for transition functions is the following. A (holomorphic) section
of E(g) (which one should think of as a frame) is a (holomorphic) function s : Σ̂\c → G such
that s+g

−1 = s−, where s+(s−) is the restriction of s to a sufficiently small annulus to the
left (respectively, the right) of the oriented loop c. Consequently for an associated bundle
E(g)×G V a (holomorphic) section is represented by a (holomorphic) function v : Σ̂\c→ V such
that gv+ = v−.

With this convention, for scalar transition functions, the degree of a line bundle is the negative
of the degree of a corresponding transition function, e.g., for differentials on P1, dw = dz(−z−2)
(s− = (dw) and s+ = (dz)); the degree of the canonical bundle is 2, and the degree of the
transition function −z2 is −2.
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The point is that E can be extended naturally to hyperfunctions in the following way. The
map c extends uniquely to a holomorphic embedding c : {1 − ε < |z| < 1 + ε} → Σ̂ for some
ε > 0. Given the pair (g, h), we obtain a holomorphic bundle on Σ̂ by using g as a transition
function on an ε′-collar to the left of c and h as a transition function on an ε′-collar to the right
of c, for some ε′ < ε, depending upon the pair (g, h). The isomorphism class of this bundle is
independent of the choice of ε′, and depends only upon [g, h] ∈ Hyp(S1, G).

The basic properties of the mapping Ec are summarized as follows.

Proposition A.2.

(a) If φ ∈ Cω Hom(S1), then the induced map

Hyp
(
S1, G

) φ→ Hyp
(
S1, G

) Ec→ H1(OG)

equals Ec◦φ−1.

(b) There is a holomorphic action

H0
(
Σ̂\c

(
S1
))
×Hyp

(
S1, G

)
→ Hyp

(
S1, G

)
: f, [g, h]→

[
f |S1

−
g, hf |−1

S1
+

]
.

(c) Inclusion and the mapping Ec induce isomorphisms of sets

H0
(
S1, G

)
/H0

(
Σ̂\c,G

)
→ Hyp

(
S1, G

)
/H0

(
Σ̂\c

)
→ H1(OG),

where Σ̂\c denotes the closed Riemann surface obtained by cutting along c and adding two
boundary components (see [16, Section 8.11]).

An alternate way to think about the projection Ec,O is as follows. Suppose that (g, h)
represents [g, h] ∈ Hyp(S1, G). In the C∞ category the principal bundle defined using the
transition functions (g, h) is trivial. Therefore we can find smooth functions

s : Σ̂\c
(
S1
)
→ G and s0 : S1ε → G

(where S1ε is an ε-collar neighborhood of S1 in Σ̂, and the ε-collar will depend upon (g, h)) such
that

s− = gs0 and s0 = hs+

on an ε collar to the left (respectively, the right) of S1. If s is replaced by s′, then there exists
f ∈ C∞(Σ̂, G) such that s′ = sf , i.e., s′− = s−f and so on with + and 0 in place of −.

Define a = s−1∂s. Then the gauge equivalence class of a depends only upon [g, h]. For if we
change g, h to g−gg0, g−1

0 hg+, where g± is holomorphic in Σ̂±, and g0 is holomorphic in S1ε, then
the choice of s is modified in an obvious way, and this does not change a, and when s→ s′ = sf ,
then a→ f−1af + f−1∂f (a gauge transformation). Thus we obtain a well-defined map

Hyp
(
S1, G

)
→ Ω0,1

(
Σ̂, g

)
/C∞(Σ̂, G) = H1(OG).

A.4 The image of LK

Given a simple loop c on a closed Riemann surface Σ̂, H0(S1, G) maps onto the set of all
isomorphism classes of holomorphic G bundles on Σ̂. The main point of this subsection is to
show that, assuming K is simply connected, the subgroup of K valued loops also maps onto the
set of all isomorphism classes of holomorphic bundles.

We first explain why this is true generically, but with critical exceptions, for non-simply
connected K.
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Proposition A.3. Suppose K = T. The map from circle valued loops (of degree zero) to
isomorphism classes of holomorphic line bundles (of degree zero),

Ec : (LT)0 → Jac
(
Σ̂
)

(A.3)

is not surjective if and only if c is a straight line with respect to the flat geometry defined by
some holomorphic differential.

Proof. We must determine when the connecting map, as in (2.1),

Cω(Im(c);R)→ H0,1
(
Σ̂
)

: f → ∂̄F

is surjective, where in the C∞ category, f = F+−F−, F is a smooth function on the complement
of c, with limits F± from the left (right, respectively) of c. This map fails to be surjective if and
only if there exists a nonzero holomorphic differential ω such that Re(

∫
Σ̂ ∂̄F ∧ ω) = 0 for all f ,

i.e., there is a nonzero real harmonic one form η = ω+ω such that
∫
c fη = 0 for all real functions

on c, which is equivalent to saying that the pullback of η to c vanishes. Locally ω = wdz and the
corresponding flat metric (with conical singularities at the zeros of ω) is |dW |2 = |w|2|dz|2. The
vanishing of the pullback of Re(dW ) along c is equivalent to saying that c is a straight line. �

Suppose that Σ̂ is a double of Σ, a compact Riemann surface with boundary, as in the text,
and Im(c) = S. The Jacobian of Σ̂ fits into a short exact sequence

0→ H1
(
Σ̂, 2πZ

)
→ H1

(
Σ̂,R

)
→ Jac

(
Σ̂
)
→ 0.

R acts equivariantly on this sequence, using pullback. R also acts equivariantly on the projection
(LT )0 → Jac(Σ̂), where the action on transition functions along S is given by

g → g∗ := (R∗g)−1.

In this case the image consists of line bundles having an antiholomorphic reflection symmetry
compatible with R, and these correspond to cohomology classes which are fixed by R. This is
precisely the kind of (sub-line bundle) degeneracy that we encountered in Theorem 1.3.

Suppose now that K is simply connected. Given R and the involution τ defining K as
a real form of G, there is an involution of Ω0(S,G) which fixes Ω0(S,K) : g → τ(g ◦ R). This
does not have an extension to Hyp(S,G) (in sharp contrast to the abelian case). For in the
nonabelian case this involution is not compatible with the action in part (b) of Proposition A.2.
Consequently there does not exist a real form for isomorphism classes of G bundles on Σ̂ which
would confine the image of Ω0(S,K), as in the abelian case.

In the nonabelian case we conjecture that the ordered product map

H0(Σ∗, G)× Ω0(S,K)×H0(Σ, G)→ Ω0(S,G)

is surjective. Our objective is to explain why this is plausible.
For a group H use left translation to identify H × h with TH. With this convention at the

point (g−, k, g+), the derivative of the ordered product mapping is given by the formula

H0(Σ∗, g)× Ω0(S, k)×H0(Σ, g)→ Ω0(S, g),

(X−, x,X+)→ d

dt

∣∣∣
t=0

(
g−1

+ k−1g−1
− g−e

tX−ketxg+e
tX+
)

= g−1
+ k−1X−kg+ + g−1

+ xg+ +X+.

Lemma A.4. The derivative of the ordered product map at (g−, k, g+) is critical (i.e., not
surjective) if k is degenerate in the sense that

∩z∈S1 ker(Ad(k(z)) 6= {0}.
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Remark A.5.

(a) Conjecturally the converse to the lemma holds.

(b) In a heuristic way, this is telling us when the map

Ω0(S,K)→ H0(Σ∗, G)\Ω0(S,G)/H0(Σ, G)

is regular, i.e., has a surjective derivative.

Proof. The derivative of the ordered product map at (g−, k, g+) is surjective if and only if the
the map

H0(Σ∗, g)× Ω0(S, k)×H0(Σ, g)→ Ω0(S, g),

(X−, x,X+)→ X− + x+ kX+k
−1

is surjective if and only if the dual map is one to one. To compute the dual map, we identify
the dual of Ω0(S, g) with itself using the invariant form. The dual map is then given by

Ω0(S, g)→ H0(Σ∗, g)× Ω0(S, k)×H0(Σ, g),

φ→
(
φ−, φLk,

(
k−1φk

)
+

)
.

This map is one to one if and only if the map (with finite-dimensional domain)

{φ0 : φ∗0 = φ0} → H0(Σ, g) : φ0 →
(
k−1(φ0 + φ∗0)k

)
+

(A.4)

is one to one (here {φ0} is the vector space of zero modes with values in g). If k is degenerate as
in the statement of the lemma, then given X ∈ ker(Ad(k(z)) for all z ∈ S1, and any zero scalar
zero mode χ0 satisfying χ0 = χ∗0, φ0 = χ0X is in the kernel of (A.4).

Conversely suppose φ0 is in the kernel of (A.4). Then

ψ := k−1φ0k = ψ0 + ψ− = ψ∗ = ψ∗0 + ψ+.

Consequently k−1φ0k is another zero mode satisfying ψ0 = ψ∗0. This would seem to force k to
be degenerate, but this is not entirely clear. �

At the point (1, 1, 1), the derivative is the sum mapping

H0(Σ∗, g)× Ω0(S, k)×H0(Σ, g)→ Ω0(S, g).

The image of this sum is proper and equal to

Ω0(S, k) +H0(Σ, g).

However at a generic point, (g−, k, g+), because of noncommutativity, the derivative is surjective.
At these points the map is locally open.

This derivative calculation strongly supports the conjecture, but it is not clear how to parlay
this into a proof.
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