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Abstract. We quantize abelian Yang–Mills theory on Riemannian manifolds with bounda-
ries in any dimension. The quantization proceeds in two steps. First, the classical theory is
encoded into an axiomatic form describing solution spaces associated to manifolds. Second,
the quantum theory is constructed from the classical axiomatic data in a functorial manner.
The target is general boundary quantum field theory, a TQFT-type axiomatic formulation
of quantum field theory.
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1 Introduction

The present paper represents a step in the program to formalize realistic quantum field theories in
terms of the axiomatic approach known as topological quantum field theory (TQFT) or functorial
quantum field theory. More specifically, we show how to quantize abelian Yang–Mills theory
functorially on Riemannian manifolds with boundary.

The precise framework we use is general boundary quantum field theory (GBQFT) [13]. We
choose this framework over other TQFT-type axiomatizations for two reasons. On the one
hand it is more amenable to support infinitely many degrees of freedom than the often preferred
cobordism setting originally proposed by Atiyah [2]. On the other hand it embeds into the larger
program on the foundations of quantum theory known as the general boundary formulation and
provides a direct connection to the positive formalism [18, 20]. Other TQFT-type approaches
to quantizing classical field theory (beyond dimension 2) include the program by Cattaneo,
Mnev, Reshetikhin and collaborators based on the BV-BFV formalism [5, 6] as well as work by
Kandel [11]. Works of the former group even include remarks on abelian Yang–Mills theory,
mostly on the classical level. However, as far as we are aware, a TQFT-type quantization of
abelian Yang–Mills theory in dimensions higher than 2 is achieved in the present work for the
first time.

Instead of directly attempting to quantize a classical theory in terms of its geometric and
analytic structures such as bundles, sections, spaces of solutions etc. we introduce an inter-
mediate step. This step consists of an axiomatization of the classical theory using the same
geometric structures as the quantum theory. That is, we associate data to spacetime regions
and hypersurfaces and describe its behavior under gluing. The quantization then proceeds in
two parts. The first part consists of showing that and how the classical field theory satisfies the
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classical axioms. The second part consists in constructing the quantum theory from the data of
the classical axioms.

This strategy was first proposed and carried through successfully in [16]. There, the simplest
case of linear field theory without gauge symmetries was considered. It was shown how (the
second part of) the quantization can be carried out functorially, given that additional data is
provided. This data takes the form of a complex structure for a geometric quantization with
Kähler polarization per hypersurface.

A generalization of the quantization functor to affine field theory, i.e., where spaces of so-
lutions are affine spaces, was carried out in [15]. This seems in principle a fitting setting for
abelian Yang–Mills theory since its spaces of solutions are naturally affine spaces. However, the
gauge symmetries of Yang–Mills theory provide a considerable complication. It was shown in [7]
how the gauge symmetries can be dealt with by symplectic reduction in such a way that the
theory on Riemannian manifolds can be brought into a classical axiomatic formulation similar
to the one introduced for affine field theory. In the process, an additional obstruction was disco-
vered. Namely, it turns out that the reduced spaces of solutions in manifolds are not necessarily
Lagrangian submanifolds of the reduced boundary data, but merely isotropic ones. In [8] the
first step was taken to construct a complex structure that would allow to complete the classical
data in order to proceed to (the second part of) the quantization. In the present paper we
bring all these ingredients together and show how to complete the picture in order to obtain
a quantization of abelian Yang–Mills theory on Riemannian manifolds with boundary in terms
of GBQFT.

In Section 2 the axiomatic system for affine classical field theory is introduced. This axioma-
tic data is quantized functorially in Section 3, leading to GBQFT. (This is step two in the
above description.) The construction of the classical data from abelian Yang–Mills theory is
presented in Section 4. (This is step one in the above description.) The special case of abelian
quantum Yang–Mills theory on 2-dimensional compact manifolds is worked out more explicitly
in Section 5. An outlook is provided in Section 6. Appendices on the axiomatization of spacetime
(Appendix A), the core axioms of GBQFT (Appendix B) and some basic facts on abelian Yang–
Mills theory (Appendix C) are also included.

2 Semiclassical axioms

For the quantization of abelian Yang–Mills theory on Riemannian manifolds as a general boun-
dary quantum field theory (GBQFT) we can make use of the machinery already developed for
linear [16] and affine field theory [15] in this context. Indeed, in those works a quantization
functor was exhibited that sends a classical field theory to a general boundary quantum field
theory (up to a certain integrability condition). For this purpose the classical field theory is
encoded not in terms of fields and differential equations, but rather through algebraic data in
axiomatic form. These data involve local solution spaces on a spacetime system. It turns out
that abelian Yang–Mills can be brought into a form that “almost” satisfies the axioms of affine
field theory as given in [15].

In this section we present a suitably generalized axiomatic system for affine field theory. In
Section 4 we then show how abelian Yang–Mills theory gives rise to data that satisfy this system.
At that point the motivation and physical meaning of this data will be clarified, see also [15].
For the moment we restrict attention to the axiomatic system itself to subsequently consider its
quantization in Section 3. Given a spacetime system (reviewed in Appendix A), we say that the
following axioms determine a semiclassical affine field theory.

(C1) Associated to each hypersurface Σ is a complex separable Hilbert space LΣ and an affine
space AΣ over LΣ with the induced topology. The latter means that there is a transitive



Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary 3

and free abelian group action LΣ × AΣ → AΣ which we denote by (φ, η) 7→ φ + η. The
inner product in LΣ is denoted by {·, ·}Σ. We also define gΣ(·, ·) := <{·, ·}Σ and ωΣ(·, ·) :=
1
2={·, ·}Σ and denote by JΣ : LΣ → LΣ the scalar multiplication with i in LΣ. Moreover
we suppose there are continuous maps θΣ : AΣ × LΣ → R and [·, ·]Σ : LΣ × LΣ → R such
that θΣ is real linear in the second argument, [·, ·]Σ is real bilinear, and both structures
are compatible via

[φ, φ′]Σ + θΣ(η, φ′) = θΣ(φ+ η, φ′), ∀ η ∈ AΣ, ∀φ, φ′ ∈ LΣ.

Finally we require

ωΣ(φ, φ′) = 1
2 [φ, φ′]Σ − 1

2 [φ′, φ]Σ, ∀φ, φ′ ∈ LΣ.

(C2) Associated to each hypersurface Σ there is a homeomorphic involution AΣ → AΣ and
a compatible conjugate linear involution LΣ → LΣ under which the inner product is
complex conjugated. We will not write these maps explicitly, but rather think of AΣ as
identified with AΣ and LΣ as identified with LΣ. Then, {φ′, φ}Σ = {φ′, φ}Σ and we also
require θΣ(η, φ) = −θΣ(η, φ) and [φ, φ′]Σ = −[φ, φ′]Σ for all φ, φ′ ∈ LΣ and η ∈ AΣ.

(C3) Suppose the hypersurface Σ decomposes into a union of hypersurfaces Σ = Σ1 ∪ · · · ∪ Σn.
Then, there is a homeomorphism AΣ1 × · · · × AΣn → AΣ and a compatible isometric
isomorphism of complex Hilbert spaces LΣ1 ⊕ · · · ⊕ LΣn → LΣ. Moreover, these maps
satisfy obvious associativity conditions. We will not write these maps explicitly, but rather
think of them as identifications. Also, θΣ = θΣ1 +· · ·+θΣn and [·, ·]Σ = [·, ·]Σ1 +· · ·+[·, ·]Σn .

(C4) Associated to each region M is a real topological vector space LM and an affine space AM
over LM with the induced topology. Also, there is a map SM : AM → R.

(C5) Associated to each region M there is a closed Hilbert subspace LM,∂M ⊆ L∂M and an
affine subspace AM,∂M ⊆ A∂M over it.

(C6) Associated to each region M there is a continuous map aM : AM → A∂M and a compatible
continuous linear map of real vector spaces rM : LM → L∂M . We denote by AM̃ the image
of AM under aM and by LM̃ the image of LM under rM . Then, AM̃ ⊆ AM,∂M . Also, LM̃
is a closed Lagrangian subspace of the space LM,∂M as a real symplectic vector space with
respect to the symplectic form ω∂M . We also require

SM (η) = SM (η′)− 1
2θ∂M (aM (η), rM (η − η′))

− 1
2θ∂M (aM (η′), rM (η − η′)), ∀ η, η′ ∈ AM . (2.1)

(C7) Given a hypersurface Σ we have for the associated slice region Σ̂ the equalities AΣ̂,∂Σ̂ = A∂Σ̂
and LΣ̂,∂Σ̂ = L∂Σ̂. Also, AΣ̂ can be identified with AΣ as a topological affine space
and LΣ̂ with LΣ as a real topological vector space. Moreover, using these identifications,
aΣ̂(η) = (η, η) and rΣ̂(φ) = (φ, φ) with the decompositions of (C3) understood.

(C8) Let M1 and M2 be regions and M := M1 tM2 be their disjoint union. Then, there is
a homeomorphism AM1 × AM2 → AM and a compatible isomorphism of real topological
vector spaces LM1 ⊕ LM2 → LM such that aM = aM1 × aM2 and rM = rM1 × rM2 .
Moreover, these maps satisfy obvious associativity conditions. Hence, we can think of
them as identifications and omit their explicit mention in the following. We also require
SM = SM1 + SM2 . Moreover, writing identifications as equalities we require AM,∂M =
AM1,∂M1 ×AM2,∂M2 and LM,∂M = LM1,∂M1 ⊕ LM2,∂M2 .
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(C9) Let M be a region with its boundary decomposing as a union ∂M = Σ1∪Σ∪Σ′, where Σ′

is a copy of Σ. Let M1 denote the gluing of M to itself along Σ, Σ′ and suppose that M1

is a region. Note ∂M1 = Σ1. Then, there is an injective map aM ;Σ,Σ′ : AM1 ↪→ AM and
a compatible injective linear map rM ;Σ,Σ′ : LM1 ↪→ LM such that

AM1 ↪→ AM ⇒ AΣ, LM1 ↪→ LM ⇒ LΣ

are exact sequences. Here, for the first sequence, the arrows on the right hand side are
compositions of the map aM with the projections of A∂M to AΣ and AΣ′ respectively (the
latter identified with AΣ). For the second sequence the arrows on the right hand side are
compositions of the map rM with the projections of L∂M to LΣ and LΣ′ respectively (the
latter identified with LΣ). We also require SM1 = SM ◦ aM ;Σ,Σ′ .

Consider the projection map α1 : A∂M → A∂M1 and the associated linear projection map
λ1 : L∂M → L∂M1 . Then, α1(AM,∂M ) ⊆ AM1,∂M1 and λ1(LM,∂M ) ⊆ LM1,∂M1 and the
following diagrams commute

AM1

a
M ;ΣΣ′ //

%%
aM1

��

AM

zz
aM

��

AM1,∂M1
lL

y

AM,∂M� r

$

α1oo

A∂M1 A∂Moo

and

LM1

r
M ;ΣΣ′ //

%%
rM1

��

LM

zz
rM

��

LM1,∂M1
lL

y

LM,∂M� r

$

λ1oo

L∂M1 L∂M .oo

We comment on the difference to the axiomatic system presented in [15]. In the latter it is
required that for any region M the space LM̃ is a Lagrangian subspace of L∂M . This amounts
to requiring LM,∂M = L∂M and AM,∂M = A∂M , resulting in a considerable simplification of the
axioms. The more general version of the axioms presented here is motivated precisely by the
discovery in [7] that for abelian Yang–Mills theory the stricter Lagrangian subspace condition is
not satisfied in general. We shall demonstrate in Section 4, however, that the present generalized
axioms are satisfied. Before that, we show in Section 3 that the quantization functor of [15] can be
generalized correspondingly. This gives us abelian quantum Yang–Mills theory on Riemannian
manifolds as a GBQFT.

We recall the following elementary lemmas, adapted to the present setting.

Lemma 2.1 ([16]). For a region M the space LM,∂M decomposes as a real orthogonal direct
sum over R as LM,∂M = LM̃ ⊕ J∂MLM̃ .

Lemma 2.2 ([15]). For a region M the space AM,∂M decomposes as a generalized direct sum
over R as AM,∂M = AM̃ ⊕ J∂MLM̃ .
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We denote in the following the (complex) orthogonal complement of LM,∂M in L∂M by L⊥M,∂M .

Corollary 2.3. For a region M the space L∂M decomposes as a direct sum over R as

L∂M = LM̃ ⊕ J∂MLM̃ ⊕ L
⊥
M,∂M . (2.2)

Corollary 2.4. For a region M the space A∂M decomposes as a generalized direct sum over R
as

A∂M = AM̃ ⊕ J∂MLM̃ ⊕ L
⊥
M,∂M .

3 Quantization

In the present section we exhibit the quantization functor that assigns to a semiclassical affine
field theory in terms of the axioms of Section 2 a corresponding GBQFT in terms of the axioms
of Appendix B in a constructive manner.1 This functor is a generalization of the one given
in [15]. Correspondingly, we shall rely heavily on the results presented in [15]. These in turn
were obtained by recurrence to the linear theory and the functor presented in [16]. As we will
also make use of this recurrence here, we start by considering the linear theory. We shall use
superscripts L to distinguish the output of the quantization functor for the linear theory from
that of the affine theory, to be considered subsequently.

3.1 Linear theory

In this subsection we consider the special case of linear field theory. In terms of the axiomatic
system of Section 2 this means that the spaces AΣ and AM of local solutions on hypersurfaces
and in regions are linear spaces, i.e., have distinguished base points ϕΣ and ϕM that fit together
under hypersurface decompositions and gluings of regions. The spaces AΣ and AM can then
be identified with their vector space counterparts LΣ and LM , simplifying considerably the
axiomatic system. The resulting system is then a generalization of the axiomatic system for
linear field theory presented in [16, Section 4.1]. The latter is recovered completely by always
setting LM,∂M = LM and eliminating mention of the action from the axioms. In case that the
spacetime system arises in terms of submanifolds of a global manifold the choice of base points is
essentially equivalent to a choice of global solution ϕ of which ϕΣ and ϕM are local restrictions.

The following is largely a review of [16, Section 4]. We shall indicate where new results
are presented. We recall that for a hypersurface Σ the real inner product 1

2gΣ on the complex

Hilbert space LΣ defines a Gaussian measure νΣ on the space L̂Σ which is an extension of LΣ.
More precisely, L̂Σ can be identified with the algebraic dual of the topological dual of LΣ so
that there is a natural inclusion LΣ ↪→ L̂Σ. Recall also that the square-integrable holomorphic
functions on L̂Σ form a separable complex Hilbert space H2

(
L̂Σ, νΣ

)
, whose elements are uniquely

determined by their values on the subspace LΣ. This is declared to be the state space HL
Σ

of the quantized theory. This construction is also called the holomorphic representation and
the elements of HL

Σ viewed as functions on LΣ or L̂Σ are referred to as (holomorphic) wave
functions. The conjugate linear isometry ιLΣ : HL

Σ → HL
Σ

associated to orientation change of the
hypersurface Σ is given by complex conjugation of the wave function. For the decomposition
of a hypersurface Σ = Σ1 ∪ Σ2 it is clear that we have HL

Σ = HL
Σ1
⊗̂HL

Σ2
where ⊗̂ denotes

the completed tensor product, since LΣ = LΣ1 ⊕ LΣ2 . Thus, the quantized theory satisfies
Axioms (T1), (T1b), (T2), (T2b).

1Strictly speaking, the exhibited quantization prescription is not quite a functor since the quantum theory
might have restrictions on allowable gluings not present in the classical theory. These come from an integrability
condition.
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A particularly important set of states are the coherent states. These are the usual coherent
states in linear field theory that can be obtained as exponentials of creation operators. They are
parametrized by elements of LΣ. The coherent state Kξ ∈ HL

Σ associated to the local solution
ξ ∈ LΣ is given by the wave function

Kξ(φ) = exp
(

1
2{ξ, φ}Σ

)
, ∀φ ∈ LΣ. (3.1)

Key properties of these states are the reproducing property and the completeness property,

〈Kξ, ψ〉LΣ = ψ(ξ), ∀ ξ ∈ LΣ, ∀ψ ∈ HL
Σ,

〈ψ′, ψ〉LΣ =

∫
L̂Σ

〈ψ′,Kξ〉LΣ〈Kξ, ψ〉LΣ dνΣ(ξ), ∀ψ,ψ′ ∈ HL
Σ.

Further properties of coherent states are

〈Kξ′ ,Kξ〉LΣ = exp
(

1
2{ξ, ξ

′}Σ
)
, ∀ ξ, ξ′ ∈ LΣ,

ιLΣ(KΣ,ξ) = KΣ,ξ, ∀ ξ ∈ LΣ,

KΣ1∪Σ2,(ξ1,ξ2) = KΣ1,ξ1 ⊗KΣ2,ξ2 , ∀ ξ1 ∈ LΣ1 , ξ2 ∈ LΣ2 .

We denote the normalized version of the coherent state Kξ by K̃ξ.
Given a spacetime region M the inner product 1

4g∂M restricted to LM̃ defines a Gaussian

measure on the space L̂M̃ that we denote by νM . Here, L̂M̃ can be identified with the algebraic
dual of the topological dual of LM̃ . Note that the measure νM (denoted νM̃ in [15, 16]) is distinct
from the measure ν∂M restricted to the same space. The amplitude map ρL

M : HL◦
∂M → C is given

by the integral (the map rM being implicit in our notation)

ρL
M (ψ) =

∫
L̂M̃

ψ(φ) dνM (φ). (3.2)

Note that ψ is square integrable with respect to ν∂M . This does not mean that it is integrable
with respect to νM . Indeed, we shall say that ρL

M is defined for ψ precisely if this is the case. We
denote the subspace of HL

∂M with this property by HL◦
∂M . As we shall see this includes at least

all coherent states and their linear combinations. As these form a dense subspace of HL
∂M , HL◦

∂M

is dense. It was shown in [19] that the prescription (3.2) is equivalent to Feynman path integral
quantization.

The following result gives the value of the amplitude map on a coherent state. This generalizes
Proposition 4.2 of [16].

Proposition 3.1. Let M be a region and ξ ∈ L∂M . Write ξ = ξR + J∂Mξ
I + ξ0 in terms of the

decomposition (2.2). Then, Kξ ∈ HL◦
∂M and

ρLM (Kξ) = exp
(

1
4g∂M

(
ξR, ξR

)
− 1

4g∂M
(
ξI, ξI

)
− i

2g∂M
(
ξR, ξI

))
.

Proof. Observe that ξ0 is complex orthogonal to LM̃ . That is, given φ ∈ LM̃ we have Kξ(φ) =
Kξ−ξ0(φ). By inspection of (3.2) we see that we must have ρL

M (Kξ) = ρL
M (Kξ−ξ0) if the amplitude

is defined. The statement reduces then to that of Proposition 4.2 of [16]. �

With this we satisfy Axiom (T4). Also, Axiom (T3x) is satisfied. The proof reduces to that
given in [16] due to the fact that L∂Σ̂ = LΣ̂,∂Σ̂ for slice regions Σ̂, see Axiom (C7). Axiom (T5a)
is also immediate.

Corollary 3.2. For the corresponding normalized coherent state K̃ξ we get

ρLM (K̃ξ) = exp
(
− i

2g∂M
(
ξR, ξI

)
− 1

2g∂M
(
ξI, ξI

)
− 1

4g∂M
(
ξ0, ξ0

))
. (3.3)
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Recall that a simple, but compelling physical interpretation of the amplitude formula (3.3)
was put forward in [16], valid here in the special case LM,∂M = L∂M . Essentially this same
interpretation extends to the present more general setting. If we think in classical terms, the
component ξR of the boundary solution ξ can be continued consistently to the interior and is
hence classically allowed. The components J∂Mξ

I and ξ0 do not possess such a continuation and
are hence classically forbidden. This is reflected precisely in equation (3.3). If the classically
forbidden components are not present, the amplitude has unit value. On the other hand, the
presence of a classically forbidden component leads to an exponential suppression, governed
precisely by the “magnitude” of this component (measured in terms of the metric g∂M ). It is
interesting to note that the suppression factor is not the same for J∂Mξ

I and ξ0. However, it is
not clear whether this difference can be given a simple physical interpretation.

It remains to show that the quantized theory satisfies the gluing Axiom (T5b). Consider
a region M with boundary decomposition ∂M = ∂M1 ∪Σ∪Σ′ gluable to itself along Σ with Σ′

resulting in the region M1. Using the completeness relation of the coherent states the gluing
identity (B.1) can be rewritten as

ρL
M1

(ψ) · c
(
M ; Σ,Σ′

)
=

∫
L̂Σ

ρL
M (ψ ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ), (3.4)

for any ψ ∈ HL◦
∂M1

. Recall that for Axiom (T5b) to hold we must require an additional integra-
bility condition. We say that the gluing data satisfies the integrability condition if the function
LΣ → C given by

ξ 7→ ρL
M (K0 ⊗Kξ ⊗ ιΣ(Kξ)) (3.5)

extends to an integrable function on L̂Σ with respect to the measure νΣ. The validity of
Axiom (T5b) is then the subject of the following result, generalizing Theorem 4.5 of [16].

Theorem 3.3. If the integrability condition is satisfied, then Axiom (T5b) holds. Moreover, the
gluing anomaly factor is given by

c(M ; Σ,Σ′) =

∫
L̂Σ

ρLM (K0 ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ). (3.6)

Proof. It is sufficient to show the validity of the gluing identity (3.4) for coherent states. That
is, we need to show, for any φ ∈ L∂M1 ,

ρL
M1

(Kφ) · c
(
M ; Σ,Σ′

)
=

∫
L̂Σ

ρL
M (Kφ ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ). (3.7)

We decompose φ = φX + φ0 with φX ∈ LM1,∂M1 and φ0 ∈ L⊥M1,∂M1
. From Proposition 3.1 we

have on the left-hand side ρL
M1

(Kφ) = ρL
M1

(KφX). On the other hand, the integrand on the
right-hand side can be rewritten as

ρL
M (Kφ ⊗Kξ ⊗ ιΣ(Kξ)) =

∫
L̂M̃

Kφ(η1)Kξ(ηΣ)Kξ(ηΣ′) dνM (η).

Here, (η1, ηΣ, ηΣ′) = rM (η). However, since λ1(LM,∂M ) ⊆ LM1,∂M1 with Axiom (C9) we have
η1 ∈ LM1,∂M1 and thus {φ, η1}L∂M1

= {φX, η1}L∂M1
. From the explicit form of the wave func-

tion (3.1) of the coherent states this implies Kφ(η1) = KφX(η1). Thus on the right-hand side

of (3.7) we can also replace φ by φX. The proof then reduces to the proof of Theorem 4.5 of [16]
by replacing L∂M and L∂M1 there with LM,∂M and LM1,∂M1 respectively. �
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3.2 Affine theory

We proceed in the present subsection to describe the functor that constructs from an affine field
theory in terms of the axioms of Section 2 a GBQFT in terms of the axioms of Appendix B. As
this functor is an adaption of the one presented in [15], large parts of this subsection consist of
a review of Section 4 of that paper.

Given a hypersurface Σ we denote the algebra of complex valued continuous functions on AΣ

by CΣ. We define the Hilbert space HΣ associated to the hypersurface Σ as a certain subspace
of CΣ as follows. Fix a base point η ∈ AΣ and consider the following element of CΣ

αηΣ(ϕ) = exp
(

i
2θΣ(η, ϕ− η) + i

2θΣ(ϕ,ϕ− η)− 1
4gΣ(ϕ− η, ϕ− η)

)
.

Define HΣ as the subspace of CΣ of elements ψ that take the form

ψ(ϕ) = χη(ϕ− η)αηΣ(ϕ), (3.8)

where χη ∈ HL
Σ. Equip HΣ with the inner product

〈ψ′, ψ〉Σ =

∫
L̂Σ

χηχ′ηdνΣ.

HΣ becomes a complex separable Hilbert space in this way, naturally isomorphic to HL
Σ. Cru-

cially, the definition is independent of the choice of base point as shown by Lemma 4.1 of [15].
As for the elements of HL

Σ we shall refer to the elements of HΣ also as wave functions.

Note that αη
Σ

= αηΣ. Thus, complex conjugation of wave functions yields a conjugate linear
isomorphism ιΣ : HΣ → HΣ. For a hypersurface decomposition Σ = Σ1 ∪ Σ2 and η1 ∈ AΣ1 ,

η2 ∈ AΣ2 we have α
(η1,η2)
Σ1∪Σ2

= αη1

Σ1
αη2

Σ2
and therefore naturally get HΣ1∪Σ2 = HΣ1⊗̂HΣ2 , where the

tensor product is the completed tensor product of Hilbert spaces. Thus, we satisfy Axioms (T1),
(T1b), (T2), (T2b).

It turns out that in affine field theory there is a natural notion of affine coherent states,
somewhat, but not completely analogous to the coherent states for linear field theory. For a
hypersurface Σ the affine coherent states are parametrized by AΣ. Given ζ ∈ AΣ the associated
coherent state K̂ζ ∈ HΣ is determined by the wave function

K̂ζ(ϕ) := exp
(

i
2θΣ(ζ, ϕ− ζ) + i

2θΣ(ϕ,ϕ− ζ)− 1
4gΣ(ϕ− ζ, ϕ− ζ)

)
.

The affine coherent states satisfy the reproducing property and a completeness relation

〈K̂ζ , ψ〉Σ = ψ(ζ),

〈ψ′, ψ〉Σ =

∫
L̂Σ

〈ψ′, K̂η+ξ〉Σ〈K̂η+ξ, ψ〉Σ exp
(

1
2gΣ(ξ, ξ)

)
dνΣ(ξ). (3.9)

Note that in the completeness relation we use a base point η ∈ AΣ as we have a measure on L̂Σ,
rather than on ÂΣ. However, the choice of base point is arbitrary. We also exhibit the inner
product

〈K̂ζ′ , K̂ζ〉Σ = exp
(

i
2θΣ(ζ, ζ ′ − ζ) + i

2θΣ(ζ ′, ζ ′ − ζ)− 1
4gΣ(ζ ′ − ζ, ζ ′ − ζ)

)
.

Note in particular, that the affine coherent states are already normalized. The behavior of
the affine coherent states with respect to orientation change and hypersurface decomposition is
straightforward

K̂Σ,ζ = ιΣ
(
K̂Σ,ζ

)
, K̂Σ∪Σ′,(ζ,ζ′) = K̂Σ,ζ ⊗ K̂Σ′,ζ′ .
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It is also useful to explicitly relate the affine coherent states to the coherent states of the
linear theory. Given a base point η ∈ AΣ and an element ξ ∈ LΣ we consider the state Kη

ξ ∈ HΣ

given by the wave function

Kη
ξ (ϕ) := Kξ(ϕ− η)αηΣ(ϕ), ∀ϕ ∈ AΣ. (3.10)

We observe that this state is related to the affine coherent state K̂η+ξ by a constant factor

K̂η+ξ = Kη
ξ exp

(
−iθΣ(η, ξ)− i

2 [ξ, ξ]Σ − 1
4gΣ(ξ, ξ)

)
. (3.11)

Let M be a region. The amplitude map ρM : H◦∂M → C in M is defined with the help of
a choice of base point η ∈ AM as follows. We decompose the wave function of a state ψ ∈ H∂M as
in equation (3.8). This specifies an element χη in H∂M . In particular, χη determines a complex
function on L̂∂M . If this function is integrable with respect to the measure νM on L̂M̃ , then we
declare ψ ∈ H◦∂M and the amplitude of ψ to be given by (with rM implicit)

ρM (ψ) = exp (iSM (η))

∫
L̂M̃

χη(φ) dνM (φ). (3.12)

By Lemma 4.2 of [15] this definition is independent of the base point. It was shown in [19]
that this definition precisely implements Feynman path integral quantization. As we shall see in
a moment the subspace H◦∂M of H∂M of wave functions which are integrable contains at least all
coherent states. Thus, H◦∂M is dense in H∂M and Axiom (T4) is satisfied. Also, Proposition 4.4
of [15] shows that Axiom (T3x) is satisfied. The proposition is applicable since L∂Σ̂ = LΣ̂,∂Σ̂
and A∂Σ̂ = AΣ̂,∂Σ̂ by Axiom (C7). Axiom (T5a) is straightforward using the additivity of S as
exhibited in Axiom (C8).

The following result yields an explicit formula for the amplitude of an affine coherent state.
This generalizes Proposition 4.3 of [15].

Proposition 3.4. Let ζ ∈ A∂M and ζ = ζR + J∂Mζ
I + ζ0 be its decomposition with respect to

the generalized direct sum A∂M = AM̃ ⊕ J∂MLM̃ ⊕ L
⊥
M,∂M according to Corollary 2.4. Then

ρM
(
K̂ζ

)
= exp

(
iSM

(
ζR
)
− iθ∂M

(
ζR, J∂Mζ

I + ζ0
)

− i
2 [J∂Mζ

I + ζ0, J∂Mζ
I + ζ0]∂M − 1

2g∂M
(
ζI, ζI

)
− 1

4g∂M
(
ζ0, ζ0

))
. (3.13)

Proof. Taking ζR as base point and defining ζX := ζ − ζ0 we decompose the coherent state
wave function as in (3.8)

K̂ζ(ϕ) = χζ
R

(ϕ− η)αζ
R

∂M (ϕ).

Combining (3.11) and (3.10) then yields

χζ
R

= KJ∂M ζI+ζ0 exp
(
−iθ∂M

(
ζR, J∂Mζ

I + ζ0
)

− i
2

[
J∂Mζ

I + ζ0, J∂Mζ
I + ζ0

]
∂M
− 1

4g∂M
(
J∂Mζ

I + ζ0, J∂Mζ
I + ζ0

))
.

The relevant integral in (3.12) is∫
L̂M̃

KJ∂M ζI+ζ0(φ) dνM (φ) =

∫
L̂M̃

KJ∂M ζI(φ) dνM (φ) = exp
(
−1

4g∂M
(
ζI, ζI

))
.

The first equality comes from the fact that ζ0 is complex orthogonal to LM̃ and thus does not
contribute to the coherent state wave function (3.1) evaluated on φ. The second equality follows
from Proposition 4.2 of [16]. Combining, formula (3.12) yields equation (3.13). �
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It remains to demonstrate the validity of the gluing Axiom (T5b). Thus, consider a region M
with its boundary decomposing as ∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. M1 denotes
the gluing of M to itself along Σ, Σ′ and we suppose that M1 is an admissible region. Fixing
a base point η ∈ AΣ the gluing identity (B.1) of Axiom (T5b) in terms of the affine coherent
state completeness relation (3.9) takes the form

ρM1(ψ) · c
(
M ; Σ,Σ′

)
=

∫
L̂Σ

ρM (ψ ⊗ K̂η+ξ ⊗ ιΣ(K̂η+ξ)) exp
(

1
2gΣ(ξ, ξ)

)
dνΣ(ξ), (3.14)

for all ψ ∈ H◦Σ1
.

As in the linear case, we require an integrability condition for the axiom to hold. Here, this
condition is that for some, hence any, η ∈ AM1 , the extension of the function LΣ → C defined
by

ξ 7→ ρM
(
K̂η1 ⊗ K̂ηΣ+ξ ⊗ ιΣ

(
K̂ηΣ+ξ

))
exp

(
1
2gΣ(ξ, ξ)

)
(3.15)

to a function on L̂Σ is νΣ-integrable and its integral is different from zero. Here (η1, ηΣ, ηΣ′) =
aM ◦ aM ;Σ,Σ′(η), compare Axioms (C6) and (C9).

Theorem 3.5. If the integrability condition is satisfied, then Axiom (T5b) holds. Moreover,
given a base point η ∈ AM1

c
(
M ; Σ,Σ′

)
= exp(−iSM1(η)t)

×
∫
L̂Σ

ρM
(
K̂η1 ⊗ K̂ηΣ+ξ ⊗ ιΣ

(
K̂ηΣ+ξ

))
exp

(
1
2gΣ(ξ, ξ)

)
dνΣ(ξ), (3.16)

and this expression is independent of the choice of base point.

Proof. We perform the proof by reducing it to the corresponding Theorem 3.3 of the linear
theory. We first relate the amplitude maps of the affine setting explicitly with those of the linear
setting. Decomposing the wave function of a state ψ ∈ H∂N on the boundary of a region N
with respect to a base point η ∈ AN as in (3.8) we have

ρN (ψ) = exp (iSN (η)) ρL
N (χη),

as seen by inspection of equations (3.2) and (3.12). In particular, for coherent states of the type
exhibited in (3.10) we obtain with ξ ∈ L∂N

ρN
(
Kη
ξ

)
= exp (iSN (η)) ρL

N (Kξ).

In the context of the gluing data, upon choosing a base point η ∈ AM1 and using equation (3.11)
we can rewrite the integrand of (3.16) in terms of the linear amplitude map

exp
(
−iSM (η) + 1

2gΣ(ξ, ξ)
)
ρM
(
K̂η1 ⊗ K̂ηΣ+ξ ⊗ ιΣ

(
K̂ηΣ+ξ

))
= ρL

M (K0 ⊗Kξ ⊗ ιΣ(Kξ)).

This shows that the claimed anomaly factor (3.16) is in fact precisely the anomaly factor (3.6)
of the linear theory. This also shows that the integrability condition (3.15) for the affine theory
is equivalent to the one (3.5) of the linear theory.

We proceed to reduce the gluing identity (3.14) to that of the linear theory (3.4). It will be
convenient to use coherent states of the form (3.10). We use a base point ζ ∈ AM1 , but φ ∈ L∂M1

arbitrary. With Theorem 3.3 we obtain, as desired,

ρM1

(
Kζ1
φ

)
· c(M ; Σ,Σ′) = exp(iSM1(ζ))ρL

M1
(Kφ) · c

(
M ; Σ,Σ′

)
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= exp (iSM1(ζ))

∫
L̂Σ

ρL
M (Kφ ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ)

=

∫
L̂Σ

ρM
(
Kζ1
φ ⊗K

ζΣ
ξ ⊗ ιΣ

(
KζΣ
ξ

))
dνΣ(ξ)

=

∫
L̂Σ

ρM
(
Kζ1
φ ⊗ K̂ζΣ+ξ ⊗ ιΣ

(
K̂ζΣ+ξ

))
exp

(
1
2gΣ(ξ, ξ)

)
dνΣ(ξ). �

4 Semiclassical abelian Yang–Mills fields

In the present section we show in a constructive manner how abelian Yang–Mills theory gives
rise to the data of semiclassical affine field theory in terms of the axiomatic system of Section 2.
Together with the quantization functor of Section 3 this provides quantized abelian Yang–Mills
theory as a GBQFT. We work on smooth manifolds equipped with a Riemannian metric. For
the reader’s convenience we review some of the geometric facts for YM fields in Appendix C,
see also [7]. We rely on the results obtained in [8]. We start with an overview and motivation
of the construction in the more general context of affine field theory.

For the Yang–Mills model, manifolds carry additional structure arising from the metric and
from the principal bundle over it. Hypersurfaces should be considered with their metric germs in
the ambient manifold. During the gluing procedure we need to provide additional data that en-
codes the topology of the final principal bundle, see Appendix A. In our case a cohomology class
c(E) ∈ H2

dR(M,Z) associated to the final principal bundle carries this additional information.

4.1 Overview

Our starting point is affine classical field theory for an action SM on a spacetime region mo-
deled as a smooth oriented n-manifold M with smooth boundary ∂M 6= ∅. We consider the
compact abelian structure Lie group U(1). Moreover, for simplicity we fix a principal bundle E ,
with fiber U(1). Each smooth connection η ∈ Conn(E) has a closed curvature 2-form on M ,
F η ∈ Ω2(M). For any other smooth connection η′, η − η′ is in correspondence with certain
ϕ ∈ Ω1(M), hence F η = F η

′
+ dϕ, and the cohomology class

c(E) :=
[

1
2πF

η
]
∈ H2

dR(M,Z)

does not depend on η ∈ Conn(E). For other (non-compact) abelian Lie groups without compact
factor, there is no need to consider c(E). Thus the choice of U(1) forces considerations of the
topology of the region M and the bundle E in our calculations (expectation values).

We consider the Yang–Mills action

SM (η) = 1
2

∫
M
F η ∧ ?F η, ∀ η ∈ Conn(E), (4.1)

where ? stands for the Hodge star operator in M .

We suppose that the Euler–Lagrange equations yield an affine space of solutions, AM . For
first-order Lagrangian densities, the space of first order boundary data, A∂M , is also an affine
space describing both Dirichlet as well as Neumann boundary conditions. Among boundary data,
those that can be extended as fields in the bulk describe an affine subspace AM,∂M ⊆ A∂M , while
we denote those that can be extended as Euler–Lagrange solutions in the bulk as AM̃ ⊆ AM,∂M .
Since the general boundary value problem is uniquely solved, A∂M may be regarded as the space
of solutions on a small cylinder ∂M × [0, ε), while the particular topological restrictions imposed
by the inclusion ∂M ⊆M may manifest as a proper inclusion AM,∂M ( A∂M . The linear spaces
associated to the previous affine ones are denoted as LM , L∂M , LM̃ and LM,∂M , respectively.
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Geometric quantization requires the presence of a linear presymplectic structure ω̃Σ defined
in the Lagrangian setting, see [27]. According to Appendix A for a spacetime system we consider
n-dimensional spacetime regions M as well as thickened (n − 1)-dimensional hypersurfaces Σ.
Thick in this situation means a suitable normal structure attached to Σ when we regard it as
a Riemannian submanifold. To the pair (M,∂M) we will associate another pair (AM̃ , AM,∂M )
which would define a Lagrangian relation. We avoid regarding AM̃ ⊆ AM,∂M as morphisms, i.e.,
canonical transformations in a “would be category” of symplectic linear vector spaces, see [25].
We rather postulate how gluing rules for two spacetime regions lead to reconstruction of solutions
in a new region obtained by gluing old regions along a boundary hypersurface.

Gauge symmetries in the boundary may be encoded in this context as the degeneracy linear
subspace ker ω̃∂M of the presymplectic structure. This follows from the horizontal exactness of
the multisymplectic current contracted with gauge variations. See [12, 28], although the roots
of this argument may be traced back to Dirac. Hence, in this particular case gauge reduction
takes the simple form of a linear space quotient. Throughout this work we consider that all our
linear and affine spaces are the final result of gauge reduction. We regard L∂M , A∂M as linear
and affine symplectic spaces.

A suitable polarization requires a tame complex structure J∂M on L∂M . This is the main
ingredient determining the resulting quantum theory apart from the purely classical data de-
scribed so far. J∂M can be constructed using the Dirichlet–Neumann operator. For the abelian
Yang–Mills case the latter was obtained in [8].

In this section we proceed to the definition of the main objects of the theory and validate the
axiomatic framework of Section 2.

4.2 Hypersurfaces

We proceed in this subsection to prove semiclassical Axioms (C1), (C2), (C3). For each (n− 1)-
dimensional hypersurface Σ we define the space LΣ as well as bilinear maps, ωΣ(·, ·), [·, ·]Σ,
gΣ(·, ·), {·, ·}Σ, and a complex structure JΣ mentioned in Axioms (C1), (C2), (C3). The complete
validation concerning affine spaces AΣ and an affine 1-form θΣ will be given subsequently.

Take the bilinear map

[φ1, φ2]Σ :=

∫
Σ
φD2 ∧ ?Σφ

N
1 , (4.2)

where ?Σ is the Hodge star operator in Σ and where each φ1, φ2 is a couple φi =
(
φDi , φ

N
i

)
∈(

Ω1(Σ)
)⊕2

. Ω1(Σ) denotes the 1-forms in Σ. At this stage indices D, N are just labels. When
applied to hypersurfaces Σ embedded into a region M with embedding iΣ : Σ ⊆ M and to 1-
forms ϕ ∈ Ω1(M), then ϕD means the Dirichlet boundary data i∗Σϕ of ϕ, while ϕN = ?Σi

∗
Σ(?dϕ)

refers to the Neumann boundary data of ϕ. Thus ϕ 7→ φ =
(
ϕD, ϕN

)
defines a linear map

rM (ϕ) = φ, rM : Ω1(M)→
(
Ω1(Σ)

)⊕2
.

The presymplectic linear form ω̃Σ is described by the antisymmetric part of the bilinear
form [·, ·]

ω̃Σ(φ1, φ2) = 1
2

(
[φ1, φ2]Σ − [φ2, φ1]Σ

)
.

Define the complex structure JΣ : Ω1(Σ)⊕2 → Ω1(Σ)⊕2 as

JΣ

(
φD, φN

)
=
(
φN ,−φD

)
. (4.3)

We can also define a symmetric bilinear part gΣ(·, ·) = 2ω̃Σ(·, JΣ·). More explicitly

gΣ(φ1, φ2) =

∫
Σ
φD1 ∧ ?Σφ

D
2 + φN1 ∧ ?Σφ

N
2 .
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Lemma 4.1. The degeneracy space of the bilinear antisymmetric form ω̃Σ is

ker ω̃Σ =
{

df ⊕ dg : f, g ∈
(
Ω0(Σ)

)}
.

Proof. For the proof consider the gΣ-orthogonal Hodge decomposition

Ωk(Σ) = dΩk−1(Σ)⊕ Hk(Σ)⊕ d?ΣΩk+1(Σ),

where Hk(Σ) :=
{
λ ∈ Ωk(Σ): dλ = 0 = d?λ

}
stands for harmonic k-forms. Thus

ker d?Σ =
{
φ ∈ Ω1(Σ): d?Σφ = 0

}
= Hk(Σ)⊕ d?ΣΩk+1(Σ) ' Ωk(Σ)/dΩk−1(Σ).

Hence ω̃Σ(φ,df1 ⊕ df2) = 0 for every φ = φD ⊕ φN ∈ (ker d?Σ)⊕2 and exact 1-forms df1, df2 ∈
Ω1(Σ). On the other hand, the equality ω̃Σ(φ, df1⊕df2) = 0 for every f1⊕f2 ∈ Ω0(Σ)⊕2 implies∫

Σ
df1 ∧ ?Σφ

N − φD ∧ ?Σdf2 =

∫
Σ
f1d?ΣφN − f2d?ΣφD, ∀ f1, f2 ∈ Ω0(Σ),

hence, d?ΣφN = 0 = d?ΣφD. �

The complex structure defines the scalar multiplication by i, hence we may define a Her-
mitian product {·, ·}Σ = gΣ + 2iωΣ which in the complex linear vector space (ker d?Σ)⊕2 is
non-degenerate.

Since in our proposed axiomatic framework we need Hilbert spaces, we rather complete the
spaces of boundary data, i.e., we consider the Hilbert space L2Ω1(Σ) obtained as the gΣ-closure
of Ω1(Σ). In order to see that the closure space of the Dirichlet boundary data φD on Σ is in
fact in L2Ω1(Σ) take the closure ker d?Σ in the Sobolev space W 1,2Ω1(Σ). Then the quotient
norm of the gauge quotient for Dirichlet conditions ker d?Σ/ker d?Σ ∩ dW 2,2Ω0(Σ) is isomorphic
to the gΣ-norm in L2Ω1(Σ). On the other hand, the Neumann datum φN is contained in
ker d?Σ ⊆ L2Ω1(Σ). Thus we consider the Hilbert space obtained by the gΣ-completion of the
first-order boundary data on Σ as the space of pairs of 1-forms

LΣ :=
(
ker d?Σ/ker d?Σ ∩ dW 2,2Ω0(Σ)

)
⊕ ker d?Σ ⊆ L2Ω1(Σ)⊕ L2Ω1(Σ). (4.4)

In (4.4) we have used the fact that in Σ the differential has the following domains and rank

d: W 1,2Ω1(Σε)→ L2Ω1(Σε).

This follows from Gaffney’s inequality, see [22],

‖ω‖2W 1,2 ≤ C
(
‖dω‖2L2 + ‖d?ω‖2L2 + ‖ω‖2L2

)
, ∀ω ∈W s,pΩ1(M). (4.5)

Whenever we consider an abstract hypersurface Σ we consider it as an (n − 1)-manifold
together with an n-dimensional Riemannian metric defined in a cylinder

Σε
∼= Σ× [0, ε].

We recall some definitions of Sobolev spaces. First recall Hodge–Morrey–Friedrichs (HMF)
decompositions for any Riemannian manifold Σε, with boundary ∂Σε = Σ t Σ′ with inclusion
of the bottom component iΣ : Σ→ Σε, see [22],

Ωk(Σε) = dΩk−1
D (Σε)⊕ HkN (Σε)⊕

(
Hk(Σε) ∩ dΩk−1Σε

)
⊕ d?Ωk+1

N (Σε),

Ωk(Σε) = dΩk−1
D (Σε)⊕ HkD(Σε)⊕

(
Hk(Σε) ∩ d?Ωk−1Σε

)
⊕ d?Ωk+1

N (Σε), (4.6)
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where

Ωk
D(Σε) :=

{
α : α ∈ Ωk(Σε) : i∗∂Σεα = 0

}
,

Ωk
N (Σε) :=

{
β : β ∈ Ωk(Σε) : i∗∂Σε(?β) = 0

}
,

HkD(Σε) := Hk(Σε) ∩ Ωk
D(Σε), HkN (Σε) := Hk(Σε) ∩ Ωk

N (Σε).

? is the Hodge operator on Σε.

Recall also that the differential d acts on the chain complex Ωk
D(Σε), meanwhile the codif-

ferential d? acts on the complex Ωk
N (Σε). The space of harmonic forms, Hk(Σε), is infinite-

dimensional. Nevertheless its boundary conditioned subspaces, HkN (Σε),H
k
D(Σε) ⊂ Hk(Σε) are

finite-dimensional. For Sobolev spaces in decomposition (4.6) we substitute the orthogonal
summands of W s−1,pΩk(Σε) by

dW s,pΩk−1
D (Σε) =

{
α ∈ dom d ⊆W s,pΩk−1(Σε) : i∗∂Σεα = 0

}
,

W s−1,pHkN (Σε) = W s−1,pHk(Σε) ∩W s−1,pΩk
N (Σε),

W s−1,pHk(Σε) =
{
λ ∈ dom d ∩ dom d? ⊆W s−1,pΩk(Σε) : dλ = 0 = d?λ

}
,

d?W s,pΩk+1
N (Σε) =

{
β ∈ dom d? ⊆W s,pΩk+1(Σε) : i∗∂Σε(?β) = 0

}
.

Notice that by finite-dimensionality W s−1,pHkN (Σε) = HkN (Σε).

Consider a principal bundle E(ε) = i∗ΣE where E is a principal bundle over Σε. We fix base
points ηE(ε) for the affine spaces Conn(E) of connections AΣε modulo gauge, as follows.

Definition 4.2. We say that a fixed base point ηE(ε) ∈ Conn(E) of the affine space of connections
of E , Conn(E) is a local minimum if it satisfies the following conditions:

1. ηE(ε) is a solution of d?F ηE(ε) = 0. The (affine) space of solutions with Lorentz gauge fixing
can be defined as{

η ∈ Conn(E(ε)) : d?F η = 0, d?ϕ = 0, ϕ ∈W 3/2,2Ω1(Σε)
}
,

where we consider the decomposition η = ηE(ε) + dϕ. We consider this space as the space
of representatives of gauge classes with the gauge defined by exact 1-forms translations.
The gauge quotient will be

AΣε := [ηE(ε)] + LΣε ,

which is an affine space modeled over the corresponding linear space LΣε obtained as the
topological quotient of{

ϕ ∈ Ω1(Σε) : d?ϕ = 0, ϕ ∈W 3/2,2Ω1(Σε)
}
,

by the exact translations dW 5/2,2Ω0(Σε). For the choice of the Sobolev ratios 3/2, 5/2,
see (4.10) and the explanation below for the domains and range of Dirichlet and Neumann
maps.

2. ηE(ε) satisfies∫
Σε

F ηE(ε) ∧ ?dξ = 0

for every coexact 1-form ξ ∈ Ω1(Σε), d?ξ = 0.
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This induces a base point

ηΣ,E(ε) :=
([
ηDE(ε)

]
, ηNE(ε)

)
∈ AΣ (4.7)

in the space of boundary conditions modulo gauge AΣ :=
(

Conn(E(ε))/dW 2,2Ω0(Σ)
)
× ker d?Σ .

Define

θΣ(η, φ) :=

∫
Σ
φD ∧ i∗Σ(?F η). (4.8)

Then the following lemma holds.

Lemma 4.3. Let ηE(ε) be a local minimum. Then the following assertions hold.

1. θΣ(ηE(ε), ϕ) =
∫

Σ ϕ
D ∧ i∗Σ(?F ηE(ε)) vanishes for every ϕ ∈ ker d?.

2. For the variation along the boundary θΣ(η, ϕ) with η = ηE(ε) + ϕ, for ϕ ∈ ker d?, we have

θΣ(η, ϕ′) =

∫
Σ
ϕN ∧ ?Σ(ϕ′)D.

3. θΣ is gauge invariant, where the gauge action in AΣε is by exact translations df ∈
dW 5/2,2Ω2(Σ), η̃ = η + df = (ηE(ε) + ϕ) + df

θΣ(η̃, ϕ′) =

∫
Σ
ϕN ∧ ?Σ(ϕ′)D, ∀ϕ′ ∈ ker d?.

Therefore θΣ induces a symplectic potential θΣ for the translation invariant symplectic
structure ωΣ in AΣ.

4. For any other local minimum base point η′E(ε), the assertions given above also hold.

Proof. Let us consider condition 1. Recall that ∂Σε = Σ t Σ′ with Σ′ ∼= Σ. Take ϕ ∈ ker d?.
By Lemma C.2 there exists a ϕ1 ∈ Ω1(Σε) such that

d ? dϕ1 = 0, d?ϕ1 = 0, i∗Σϕ1 = i∗Σϕ, i∗Σ′ϕ1 = 0.

Then ∫
Σ
i∗Σ(ϕ ∧ ?F ηE(ε)) =

∫
∂Σε

i∗Σ
(
ϕ1 ∧ ?F ηE(ε)

)
=

∫
Σε

i∗Σ
(
dϕ1 ∧ ?F ηE(ε) + ϕ1 ∧ d ? F ηE(ε)

)
=

∫
Σ×[0,ε]

F ηE(ε) ∧ ?dϕ1 = 0.

The last equality follows from the very definition of local minimum. Condition 2 follows from
F η = F ηE(ε) + dϕ for η = ηE(ε) + ϕ, d?ϕ = 0, and condition 1 so that∫

Σ
i∗Σ
(
ϕ′ ∧ ?F η

)
=

∫
Σ
i∗Σ
(
ϕ′ ∧ ?(F ηE(ε) + dϕ)

)
=

∫
Σ
i∗Σ(ϕ′ ∧ ?dϕ)

=

∫
Σ
i∗Σϕ

′ ∧ i∗Σ(?dϕ) =

∫
Σ

(ϕ′)D ∧ ?Σϕ
N .

Condition 3 follows from the triviality of the gauge action in the Neumann component, η̃N = ηN .
To verify condition 4 take two local minima ηE , η

′
E , with η′E(ε) = ηE(ε) + ϕ, d?ϕ = 0. Then∫

M

(
F ηE(ε) − F η

′
E(ε)
)
∧ ?
(
F ηE(ε) − F η

′
E(ε)
)

=

∫
M

(
F ηE(ε) − F η

′
E(ε)
)
∧ ?dϕ = 0,
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by condition 2 of local minimum. Therefore F
η′E(ε) = F ηE(ε) . Hence

θΣ

(
η′E(ε) − ηE(ε), ξ

)
= 0

for every coclosed ξ and

θΣ

(
η′E(ε), ξ

)
= θΣ

(
ηE(ε), ξ

)
. �

Relation (4.2) implies the following translation invariance condition

[φ1, φ2]Σ + θΣ

(
η′, φ2

)
= θΣ

(
φ1 + η′, φ2

)
, ∀φ1, φ2 ∈ LΣ, η′ ∈ AΣ. (4.9)

Notice that here the notation η′ refers to gauge classes [η] of boundary conditions η =(
ηD, ηN

)
in Σ. This provides the definition of the affine spaces AΣ as well as the definition of θΣ

and completes the proof of Axioms (C1), (C3). A change on orientation Σ in Σ proves (C2).
Axiom (C7) is just the formal definition of an infinitesimal cylinder with slice region.

4.3 Regions and hypersurfaces

In this subsection we prove the validity of semiclassical Axioms (C4), (C5), (C6). Axiom (C8)
follows from the very definition of YM action (4.1).

For a space-time region M with boundary ∂M , the space of boundary conditions in the
boundary cylinder, L∂M is defined as in the hypersurface case as (4.4). We now consider the
subspace LM,∂M ⊆ L∂M of topologically admissible boundary conditions, as the image of the
continuous linear map rM of Dirichlet–Neumann boundary conditions. This verifies Axiom (C5).
In principle, rM should have domain in W 3/2,2Ω1(M) ∩ ker d?/W . Nevertheless, the normal
vanishing components in the first HMF decomposition (4.6) yield the gauge fixing subspace

ker d? = H1
N (M)⊕ d?W 5/2,2Ω2

N (M) ⊆W 3/2,2Ω1
N (M),

that is orthogonal to exact forms and that has the same image LM,∂M . Hence we take

rM : H1
N (M)⊕ d?W 5/2,2Ω2

N (M)→ L∂M (4.10)

as the linear map of boundary conditions. Since we consider the (topological) gauge quotient
of the W 3/2,2-closure of the gauge fixing space on the bulk (4.11) modulo translations by exact
forms, dW 5/2,2Ω0(M), then in the preimage we consider the quotient W 1/2,2-topology (coarser
than the W 3/2,2-topology). Meanwhile on the codomain of rM we consider the L2-topology
defined in (4.4). Thus we verify Axiom (C5).

More precisely, the Dirichlet and Neumann condition maps ϕ 7→
(
ϕD, ϕN

)
for any hypersur-

face Σ ⊆ ∂M , are defined by the inclusion iΣ : Σ→M for linear spaces

W 3/2,2Ω1(M)→W 1,2Ω1(Σ),

ϕ 7→ ϕD = i∗Σϕ,

W 3/2,2Ω1(M)→ L2Ω1(Σ),

ϕ 7→ ϕN = ?∂M i
∗
Σ(?dϕ),

restricted to H1
N (M)⊕ d?W 5/2,2Ω2

N (M). For the justification of the power 3/2 in the Dirichlet
map see [22, Lemma 3.3.2]. For the rank L2-space in the Neumann condition map, we use
a condition generalizing Gaffney’s inequality (4.5), see [22, Lemma 2.4.10(iii)], namely

‖ω‖W s,p ≤ C
(
‖dω‖W s−1,p + ‖d?ω‖W s−1,p

)
, ∀ω ∈W s,pΩ1(M).
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Hence when we take the gauge classes in Σ we get rM
([
ϕD
]
, ϕN

)
∈ L2Ω1(Σ)⊕2 such that the

following diagram of continuous linear maps commutes

H1
N (M)⊕ d?W 5/2,2Ω2

N (M)

(
ϕD,ϕN

)
//

OO

·/dW 2,2Ω0(M)
��

rM

**

W 1,2Ω1(Σ)⊕ L2Ω1(Σ)

·/dW 2,2Ω0(Σ)
����

W 1/2,2Ω1(M) // LΣ = L2Ω1(Σ)⊕2,

where the downwards projections mean gauge quotients in the bulk and the boundary respec-
tively.

On the other hand, the affine space AM consisting of solutions modulo gauge, is modeled
over a linear space LM obtained as the Lorentz gauge fixing on the bulk{

ϕ ∈W 3/2,2Ω1(M) : d?dϕ = 0, d?ϕ = 0
}
, (4.11)

quotiented by exact 1-forms acting by exact translations df ∈ dW 5/2,2Ω0(M).

For every first variation, ξ ∈ W 3/2,2Ω1(M) (not necessarily a variation of solutions), for
Lorentz gauge fixing on the bulk, d?ξ = 0, take η = ηE + tξ, t ∈ (−ε, ε). Then

SM (η) = SM (ηE) + t

∫
M
F ηE ∧ ?dξ +

t2

2

∫
M

dξ ∧ ?dξ.

Condition 1 of Definition 4.2, integration by parts and Stokes’ theorem together imply that the
variation of the action in the boundary is

dS[η](ξ) =
d

dt

∣∣∣∣
t=0

SM (η) =

∫
M
F ηE ∧ ?dξ =

∫
M

d?F ηE ∧ ?ξ +

∫
∂M

i∗∂Mξ ∧ i∗∂M
(
? F ηE

)
=

∫
∂M

i∗∂Mξ ∧ i∗∂M
(
? F ηE

)
,

where i∂M : ∂M →M is the inclusion. Define

θ∂M [ηE ](ξ) :=

∫
∂M

i∗∂M
(
ξ ∧ ?F ηE

)
.

See [27] to recall the definition of the boundary variation θ∂M for arbitrary field theories. If we
consider Lemma 4.3 with Σ = ∂M then condition 2 of Definition 4.2 implies

θ∂M [ηE ] (ξ) = 0, ∀ ξ ∈ ker d? ⊆W 3/2,2Ω1(M).

Notice that this coincides with (4.8) with Σ = ∂M and that it actually depends on the ima-
ges aM (ηE), rM (ξ). Thus we have

θ∂M (aM (ηE), rM (ξ)) = θ∂M [ηE ](ξ).

Furthermore, F η = F ηE + dϕ is the orthogonal decomposition, where F ηE is orthogonal to
every exact 2-form dϕ, with d?ϕ = 0 for every [η] = [ηE ] + [ϕ] ∈ AM . That is why [ηE ] is
a local minimum. The local minimum representative ηE does not have to be unique in general.
If [η′E ] ∈ AM solves F η

′
E = F ηE then η′E is also a local minimum representative.

Recall that when we consider boundary conditions consisting of pairs of 1-forms
(
φD, φN

)
,

we take the gauge quotient of the axial gauge fixing space on the boundary ∂M . This topological
quotient yields the linear space L∂M obtained as the closure of the pairs of coclosed 1-forms,
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φD
]
, φN

)
∈ L2Ω1(∂M)⊕L2Ω1(∂M) just as in (4.4). If we consider the closure for the W 1/2,2-

topology (coarser than the W 3/2,2-topology) of the Lorentz gauge-fixing for solutions intersected
with suitable summands in the second HMF decomposition (4.6)

{d?dϕ = 0} ∩
(
H1
N (M)⊕ d?Ω2

N (M)
)
, (4.12)

then (4.12) is isomorphic to the space LM of solutions modulo gauge. Therefore to obtain
the boundary conditions LM̃ = rM (LM ) ⊆ LM,∂M , we can take just the rM -image of (4.12).
For the linear map rM : LM → L∂M , rM (ϕ) =

([
ϕD
]
, ϕN

)
, where ϕD and ϕN are the Dirich-

let and Neumann boundary conditions respectively, we consider the corresponding affine map
aM : AM → A∂M , with image AM̃ .

We summarize the results we have obtained so far. The space L∂M depends just on ∂M and
the Riemannian metric of the cylinder ∂M × [0, ε] and does not depend on the topology of M .
The subspace LM,∂M depends on the germ of the metric on the boundary, and on the relative
topology of M and ∂M . For YM fields the inclusion AM,∂M ⊆ A∂M is proper in general. More
explicitly, LM̃ ⊆ LM,∂M is the Lagrangian subspace obtained by the closure of{([

ϕD
]
, ϕN

)
∈ LM,∂M : ϕ ∈

(
H1
N (M)⊕ d?W 5/2,2Ω2

N (M)
)
∩ {d?dϕ}

}
.

Recall that the harmonic components of ϕD for all solutions ϕ define a finite codimension space
of H1(∂M) ' H1

dR(∂M).
Let E∂M = i∗∂ME be the induced principal bundle on ∂M ⊆M . Take the fixed base point

ηM,E :=
(
ηDE , η

N
E
)
∈ Conn(E∂M )× ker d?∂M . (4.13)

Its gauge class aM (ηE) =
([
ηDE
]
, ηNE

)
is also well defined in

A∂M :=
(

Conn(E∂M )/dW 2,2Ω0(∂M)
)
× ker d?∂M .

The Dirichlet condition, ηDE ∈ Conn(E∂M ) is given by the connection in the induced bundle on
Conn(E∂M ) defined by ηE ∈ Conn(E). Here ?∂M denotes the Hodge star for the induced metric
on ∂M . On the other hand, the Neumann condition ηNE ∈ ker d?∂M ⊆ L2Ω1(∂M) is defined as
the derivative η̇τ (0) of a one parameter family

ητ = ηDE + ϕτ ∈ Conn(E∂M ), η0 = ηDE .

That is,

ηNE :=
d

dτ

∣∣∣∣
τ=0

ϕτ ∈ ker d?∂M ⊆ L2Ω1(∂M).

See Lemma C.1 for further details.
For Σ = ∂M and φi = rM (ϕi), i = 1, 2, we have (4.2) and the translation invariance

condition (4.9). Notice that we have two base points for A∂M . On the one hand, a base point is
defined for ∂M as boundary component of a cylinder ∂Mε, η∂M,E(ε), as in (4.7). On the other
hand one is defined on the boundary of M , ηM,E , as in (4.13). Then

ηE(ε) − ηE = ϕ, F ηE(ε) − F ηE = dϕ, d?ϕ = 0,∫
(∂M)ε

(
F ηE(ε) − F ηE

)
∧ ?
(
F ηE(ε) − F ηE

)
=

∫
(∂M)ε

(
F ηE(ε) − F ηE

)
∧ ?dϕ = 0.

Thus F ηE |(∂M)ε = F ηE(ε) . Hence both ηE(ε) as well as ηE are local minima for the YM action for
the cylinder (∂M)ε. The translation invariance condition (4.9) holds for Σ = ∂M .



Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary 19

We verify Axiom (C6). Notice that∫
M

d?ϕ ∧ ?d?ϕ =

∫
M

dd?ϕ ∧ ?ϕ+

∫
∂M

d? ∧ ?(νyϕ|∂M )

=

∫
M
ϕ ∧ ?dd?ϕ−

∫
∂M

ϕD ∧ ?(νydϕ|∂M ) = −
∫
∂M

ϕD ∧ ?∂MϕN ,

where ν is the normal vector to ∂M , and νydϕ|∂M = (−1) ?∂M i∗∂M (?dϕ).
Let ηE be a fixed point so that for every connection η, its curvature is F η = F ηE + dϕ with

ϕ ∈ Ω1(M) and dϕ orthogonal to F ηE .
Let η − ηE = ϕ, η′ − ηE = ϕ′, then for the YM action

SM (η)− SM (η′) =
1

2

∫
M

dϕ ∧ ?dϕ− 1

2

∫
M

dϕ′ ∧ ?dϕ′

= −1

2

∫
∂M

ϕD ∧ ?∂MϕN + (ϕ′)D ∧ ?∂M (ϕ′)N .

On the other hand

θ∂M (aM (η), rM (η − η′)) + θ∂M (aM (η′), rM (η − η′))

=

∫
∂M

ϕD ∧ ?∂M (ϕ− ϕ′)N +

∫
∂M

(ϕ′)D ∧ ?∂M (ϕ− ϕ′)N .

Since ϕ, ϕ′ are tangent to a Lagrangian subspace,

−
∫
∂M

ϕD ∧ ?∂M (ϕ′)N +

∫
∂M

(ϕ′)D ∧ ?∂MϕN = 0.

Therefore,

SM (η)− SM (η′) = −1
2θ∂M (aM (η), rM (η − η′))− 1

2θ∂M (aM (η′), rM (η − η′))

holds ∀ η, η′ ∈ AM . This proves (2.1) and completes the verification of Axiom (C6).

4.4 Gluing

For the process described in the semiclassical Axiom (C9), suppose that a region M1 is obtained
from a region M by gluing along Σ,Σ′ ⊂ ∂M . We also suppose that the principal bundle
E = p∗MM1

E1 on M is obtained from the principal bundle E1 on M1. From the projection map
pMM1 : M →M1 we get the inclusion p∗MM1

: Ω1(M1)→ Ω1(M). We obtain maps

rM ;ΣΣ′ = p∗MM1
|LM1

: LM1 → LM .

For the affine spaces AM = [ηE ] + LM and AM1 = [ηE1 ] + LM1 , with local minima base
points ηE , ηE1 respectively. The corresponding affine linear map aM ;ΣΣ′ : AM1 → AM , yields
aM ;ΣΣ′([ηE1 ]) = [ηE ].

From the decomposition

L∂M = LΣ1 ⊕ LΣ ⊕ LΣ′ ,

we get projections from L∂M onto LΣ, LΣ′ . From the gluing isometry fΣ : Σ → Σ′, there is
a commuting diagram

LM1

� �
r
M ;ΣΣ′ // LM

rM ;Σ //

r
M ;Σ′ ""

LΣ

LΣ′ .

f∗Σ

OO
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Here

f∗Σ ◦ rM ;Σ′([ϕ1]) =
(
f∗Σϕ

D
1 ,−f∗ΣϕN1

)
= rM ;Σ([ϕ1]),

for [ϕ1] ∈ LM1 . Then by the uniqueness of boundary conditions rM1;Σ1([ϕ1]), associated to
solutions [ϕ1] ∈ LM1 we have that

rM ;Σ ◦ rM ;ΣΣ′([ϕ1]) = rM ;Σ([ϕ1]), rM ;Σ′ ◦ rM ;ΣΣ′(ϕ1) = rM ;Σ′([ϕ1]).

Consider the map, ϕ 7→ i∗∂M1
ϕ, i∂M1 : ∂M1 → ∂M , arising from the inclusion ∂M1 ⊂ ∂M . It

induces a linear map λ1 : LM,∂M → LM1,∂M1 ,

λ1

([
ϕD
]
⊕ ϕN

)
=
(
i∗∂M1

[
ϕD
]
⊕ i∗∂M1

ϕN
)
,

and a commuting diagram of linear maps

LM1

r
M ;ΣΣ′ //

%%
rM1

��

LM

zz
rM

��

LM1,∂M1
lL

y

LM,∂M� r

$

λ1

oooo

L∂M1 L∂M ,_?i∗∂M1

oo

while for the corresponding affine spaces AM,∂M =
([
ηDE
]
, ηNE

)
+ LM,∂M , A∂M =

([
ηDE
]
, ηNE

)
+

L∂M we have

AM1

a
M ;ΣΣ′ //

%%
rM1

��

AM

zz
rM

��

AM1,∂M1
lL

y

AM,∂M� r

$

α1

oooo

A∂M1 A∂M ._?i∗∂M1

oo

Recall that [ηE ] is a local minimum base point in AM while ηDE , and ηNE are its Dirichlet and
Neumann boundary data respectively. This yields a fixed point

([
ηDE
]
, ηNE

)
for AM,∂M .

Recall that J∂M is densely defined in L∂M = L2Ω1(∂M). By taking the L2-closure we have
a continuous linear map J∂M : L∂M → L∂M . As observed in [8] there is a densely J∂M linear
subspace consisting of smooth topological admissible boundary conditions. By taking the L2-
closure we induce a continuous linear map J∂M : LM,∂M → LM,∂M . Thus, LM,∂M is a complex
subspace of (L∂M , J∂M ), hence symplectic. Notice that the general Dirichlet–Neumann map
(D-N) for classical Hodge Laplacian BVP on functions is a map with domain W s,2(∂M) and
rank W s−1,2(∂M). Nevertheless, we used the D-N operator for 1-forms modulo gauge actions.
This yields an operator continuous with respect to L2-topologies both in the domain and the
rank. This gauge freedom is an important difference between the treatment of BVP for 1-forms
with respect to the BVP for functions.

5 Special cases

In this section we specialize to the case where regions are 2-manifolds. Then, hypersurfaces are
disjoint unions of circles. What is more, the data LΣ for a circle Σ consists of just a pair of
real numbers φ =

(
φDΣ , φ

N
Σ

)
. Recall that Yang–Mills solutions on a region M satisfy that their

curvature F η is f · dµM where f is a constant and dµM the area form on M , see [3].
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5.1 The disc

Take a Riemannian 2-dimensional region B which is the injective image of a ball of radius δ > 0
under the exponential map with center P ∈ B. We call this region the disc B of center P and
geodesic radius δ > 0.

We now describe the space AB of YM solutions in a disc B of radius δ > 0 and with
boundary component ∂B = Σ. For any YM solution, η ∈ AB may be explicitly described in

polar coordinates (r, θ), r ∈ [0, δ], θ ∈ [0, 2π), as η(θ, r) =
ηDΣ
δ2 r

2dθ. Along Σ the Dirichlet

condition is η(θ, δ) = ηDΣ dθ. For the Neumann condition notice that ∂
∂rη(ε, θ) =

2ηDΣ
δ dθ implies

ηNΣ = 2ηDΣ /δ and dη = 2ηD/δ2rdrdθ is proportional to the usual area form dµB = rdrdθ.

For the general Riemannian case we consider a disc B of geodesic radius δ > 0 and center of
the exponential map P , see for instance [10]. Take the coordinates (x, τ) of B − {P} obtained
from the collar along Σ = ∂B, XΣ : Σ × [0, δ) → B. With these coordinates the center is
P = lim

τ→δ
XΣ(x, τ) while Στ = XΣ(Σ, τ) is the image under the exponential map of the circle of

radius δ−τ > 0. The area form in the disc can be then written as dµB = length (Στ ) dτ∧dx. Here
x ∈ [0, 1] is a coordinate in Στ proportional to the arc-length coordinate, with proportionality
constant

length
(
Στ
)

= 2π(δ − τ)

(
1− K(P )

6
(δ − τ)2 + o

(
(δ − τ)2

))
,

where K(P ) means curvature. Hence, we have the explicit solution

η(x, τ)|B = ηDΣ

(∫ τ
δ length(Στ )dτ∫ 0
δ length(Στ )dτ

)
dx,

d

dτ
η(x, τ) = ηDΣ

length(Στ )∫ 0
δ length(Στ )dτ

dx,

such that dη = ηD∫ 0
δ length(Στ )dτ

dµB, and the boundary conditions

η(x, 0)|B = ηDΣ dx,
d

dτ
η(x, 0)|B = ηNΣ dx

satisfy ηNΣ = ηDΣ
length(Σ)∫ 0

δ length(Στ )dτ
. Therefore, the condition required for every YM solution holds,

namely F η = fdµB for a constant f with

f = ηDΣ /

∫ 0

δ
length(Στ )dτ = ηNΣ /length(Σ).

This completes the description of the space AB of all YM solutions in the disc B. Notice that
for the disc B, since any principal bundle E is trivialized by the choice of a connection (by
parallel transport along geodesics stemming out of the center of the disc), we have a natural
identification of linear and affine spaces

AB = LB, A∂B = L∂B.

Hence, for LB̃ ⊆ LΣ = LB,∂B we consider the subspace of pairs
(
φDΣ , φ

N
Σ

)
∈ LΣ such that

φNΣ · length(Σ) = φDΣ ·
∫ 0

δ
length(Στ )dτ.
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5.2 Surface of genus g ≥ 2 with boundary

Let M be a connected 2-manifold of genus g ≥ 2 and with m ≥ 1 boundary components
Σ1, . . . ,Σm. In this case

L∂M = LΣ1 ⊕ · · · ⊕ LΣm ' R2m

is a 2m-dimensional linear space consisting of constant boundary data, φ =
(
φD1 , φ

N
1

)
⊕ · · · ⊕(

φDm, φ
N
m

)
. It has symplectic form

ω∂M (φ, ξ) =
m∑
i=1

(
φDi · ξNi − φNi · ξDi

)
· length(Σj), ∀φ, ξ ∈ L∂M ,

where length(Σi) is the total length of each boundary component Σi.
Take a principal bundle E over M . Recall that the base point ηE ∈ AM is chosen in such a way

that F ηE is orthogonal to every exact one form dϕ for every curvature form F η = F ηE + dϕ
of a connection η = ηE + ϕ ∈ AM , ϕ ∈ Ω1(M). Since the space of closed 2-forms is one-
dimensional, the curvature F η is already contained in the one-dimensional space generated
by F ηE , the curvature of the base point ηE . Therefore ϕ is closed. This imposes a necessary
condition for vectors in the (2m− 2)-dimensional linear subspace LM,∂M , namely

m∑
i=1

φDΣi · length(Σi) = 0, ∀
(
φD∂M , φ

N
∂M

)
∈W. (5.1)

In fact, LM,∂M consists of the maximal symplectic subspace of L∂M contained in the codimension
one (non-symplectic and coisotropic) subspace W ⊆ L∂M defined by (5.1). More precisely,
LM,∂M is isomorphic to W/W⊥ where W⊥ is the one-dimensional symplectic complement of W ,
with W⊥ ⊆W . This ends the description of linear spaces LM,∂M , L∂M .

For the space LM we consider the space of flat connections which is parametrized by a linear
space of dimension dimLM = (2g+m−1), see [23]. In fact, LM consists of two types of boundary
data: on the one hand the data of the integral of the connection along the boundary components,
φDΣ1

, . . . , φDΣm , satisfying condition (5.1). On the other hand, the data of the connection integral
along the 2g non-contractible cycles in the interior of M generating H1(M). Hence we have the
Lagrangian LM̃ consisting of

(
φDΣ1

, 0
)
⊕ · · · ⊕

(
φDΣm , 0

)
∈ LM,∂M , satisfying (5.1).

5.3 Surface of genus g ≥ 2 without boundary

Let M1 be a closed 2-dimensional surface of genus g ≥ 2, obtained by gluing m ≥ 1 discs of
certain suitable small radii δi > 0, i = 1, . . . ,m, along the boundary components of a surface M ′

of genus g ≥ 2 and m boundary components. Thus we glue regions

M1 = M ′ ∪Σ M
′′, M = M ′ tM ′′, M ′′ = B1 t · · · tBm,

along the boundaries

Σ = ∂M ′ = tmi=1Σi, Σ′ = ∂M ′′ = tmi=1Σ′i, Σ′i = ∂Bi.

Let E1 be a fixed principal bundle on M1 inducing the bundle E = p∗MM1
E1 in M . This means

that we consider connections

η = ηE + ϕ = aM ;Σ,Σ′(η1) ∈ AM ⊆ Conn(E)

that are YM solutions induced by solutions η1 = ηE1 +ϕ ∈ AM1 , ϕ ∈ Ω1(M1). Since region M1 is
a surface without boundary, hence L∂M1 = LM1,∂M1 = LM̃1

= 0. From condition dϕ = 0 (which
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implies the YM condition d?dϕ = 0) it follows that dimLM1 = 2g = dimH1
dR(M1). Notice that

the gauge condition is already incorporated in the cohomology class, c(E1) = 1
2π [F η] ∈ H2

dR(M1),
which is fixed.

Recall that for the discs we naturally identify

AM ′′ = LM ′′ , A∂M ′′ = L∂M ′′ .

We also have L∂M ′′ = LM ′′,∂M ′′ . Furthermore, there is an affine isomorphism A∂M ′ ' A∂M ′′

given by

ηDΣ′i
= −ηDΣi , ηNΣ′i

= −ηNΣi .

Due to the natural identification A∂M ′ = L∂M ′ , there is an associate isomorphism L∂M ′′ ' L∂M ′ .
Stokes’ theorem explicitly imposes m necessary conditions on aM ′′(η) ∈ AM̃ ′′

ηDΣ′i
· length(Σi) = ηNΣ′i

·
∫ 0

δi

length(Στ
i )dτ, i = 1, . . . ,m, (5.2)

for every solution η ∈ AM ′′ . Hence LM̃ ′′ ⊆ L∂M ′′ is a subspace of dimension m consisting of(
φDΣ1

, φNΣ1

)
⊕ · · · ⊕

(
φDΣm , φ

N
Σm

)
∈ L∂M ′′ , satisfying (5.2).

From this follows the Lagrangian condition. That is, for each φ ∈ LM̃ ′

m∑
i=1

φDΣ′i
· ξNi · length(Σi) =

m∑
j=1

φNΣ′j
· ξDj · length(Σj),

where ξ ∈ L∂M ′′ satisfying the Lagrangian condition (5.2).

Recall that for a surface M ′ of genus g ≥ 2 and m ≥ 1 boundary components dimLM̃ ′ = m−1
while dimLM ′ = 2g + m − 1. Each cohomology class in H1

dR(M ′) is represented by a unique
harmonic form in H1

N (M ′), while each class inH1
dR(M ′, ∂M ′) is represented by a unique harmonic

form in H1
D(M ′), yielding 2g and (m− 1)-dimensional subspaces of LM ′ , respectively.

Let η1 = ηE1 + ϕ ∈ AM1 . The linear inclusion rM ;Σ,Σ′ : LM1 → LM maps ϕ onto

rM ;Σ,Σ′(ϕ) = i∗M ′ϕ⊕ i∗M ′′ϕ ∈ LM ′ ⊕ LM ′′ ,

where i∗M ′ϕ ∈ LM ′ , M ′ with

rM ′(i
∗
M ′ϕ) =

(
ϕDΣ1

, 0
)
⊕ · · · ⊕

(
ϕDΣm , 0

)
∈ LM̃ ′ ,

m∑
i=1

ϕDΣm = 0.

Meanwhile, i∗M ′′ϕ ∈ LM ′′ = AM ′′ consists of YM solutions on discs, which may not be flat. If

aM ′′(i
∗
M ′′η1) =

(
φDΣ′1

, φNΣ′1

)
⊕ · · · ⊕

(
φDΣ′m , φ

N
Σ′m

)
∈ AM̃ ′′ ,

then the relation (5.2) holds for every pair of Dirichlet–Neumann data.

Recall that F ηE1 = fdµM1 , with f = φNΣ′i
/length(Σi), and dµM1 the area form in M1, and

that f = 2πc(E1)/area(M1) where c(E1) ∈ H2
dR(M1;Z) ' Z. Hence, the boundary data φDΣ′i

, φNΣ′i
can be obtained from the geometry of the boundary components and from the bundle E1.

Therefore the base point ηM ′,E = aM ′(i
∗
M ′ηE1) = aM ′(ηE) ∈ AM̃ ′ ⊆ L∂M ′ equals(

−φDΣ′1 ,−φ
N
Σ′1

)
⊕ · · · ⊕

(
−φDΣ′m ,−φ

N
Σ′m

)
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and the affine space AM̃ ′ is the translation of LM̃ ′

AM̃ ′ = ηM ′,E + LM̃ ′ ⊆ L∂M ′ ' L∂M ′′

(which has null Neumann components) prescribed by E1 with translation vector aM ′(i
∗
M ′ηE1).

In particular, if we take m− 1 = 2g, then we have the exact amount of degrees of freedom in
the boundary conditions space LM̃ ′ ⊆ LM ′,∂M ′ to parametrize solutions ϕ1 ∈ LM1 . Thus

m− 1 = dimLM1 = dimLM̃ ′ = dimLM̃ ′′ − 1.

This completes the description of the closed surface without boundary.

The case of the sphere M1 obtained by gluing two discs M ′, M ′′ should be treated differently,
but the construction can also be performed.

We now calculate the amplitude corresponding to a closed surface M1 of genus g ≥ 2. We
decompose M1 as described in our previous discussion. The cases of genus g = 0, 1 will also be
excluded, but by the quantum setting, see Section 5.4 below.

To calculate the anomaly factor c(M ; Σ,Σ′), considering the linear theory will suffice. For
every ϕ1 ∈ LM1 the induced solutions in M ′, and M ′′ satisfy ϕΣ = −ϕΣ′ and

Kξ(ϕΣ)Kξ(ϕΣ′) = exp
(

1
2

(
{ξ, ϕΣ}∂M ′ − {ξ, ϕΣ}∂M ′

))
= 1,

where we used coisotropy for solutions. Thus, the anomaly factor can be calculated as in (3.6)
by ∫

L̂Σ

ρL
M

(
Kξ ⊗Kξ

)
dνΣ = 1. (5.3)

Therefore, since LM̃1
= 0, the vacuum amplitude ρM1

(
K̂η1

)
would be independent of the choice

of the fixed base point connection η1 in the cohomology class c(E1).

Related to this example, according to [17], if M1 is obtained by gluing of M ′ and M ′′ along
the boundary Σ ∼= Σ′ where ∂M ′ = Σ0 t Σ and ∂M ′′ ∼= Σ′ t Σ2, then c(M ; Σ,Σ′) = 1.

If f denotes the constant factor of the curvature F ηE1 = f ·dµM1 with respect to the area form,
then the Hodge dual f? ∈ R satisfies f?f = 4π2(c(E1))2. Hence ρM1

(
K̂η1

)
= exp(iSM1(ηE1))

equals

exp
(

i
2f · f

∗ · area(M1)
)

= exp
(
i2π2area(M1) · (c(E1))2

)
. (5.4)

The partition function (as the amplitude is also called in the case of empty boundary) for
quantum YM theory on compact closed surfaces has been extensively studied in several quan-
tization frameworks where the Hilbert spaces HΣ associated to circles Σ are generated by class
functions of the structure group. In the axiomatic GBQFT this deduction was reported in [14].
In the present work geometric quantization yielded another prescription for Hilbert spaces. The
precise relationship of these two quantization frameworks needs to be clarified. In particular we
need to clarify how (5.4) is related to the expression∑

n∈Z
exp

(
−1

2area(M1) · n2
)

appearing for instance in [4, 26].

In the torus case the partition function yields infinite trace. We may ask also what is the
precise relationship between the divergence of the partition function and the anomaly factor
c(M ; Σ,Σ′).
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5.4 The torus

We contrast the case of gluing two isometric regions, with the case of a cylinder, where c(M ;Σ,Σ′)
yields infinity and the integrability condition required in Theorem 3.3 is not satisfied. We
consider M = Σ × [0, 1] with the gluing of the bottom and top hypersurfaces Σ ∼= Σ × {0},
Σ′ = Σ× {1}. This includes the case of a closed surface M1 of genus g = 1.

Any Dirichlet condition together with a null Neumann condition on Σ determine completely
solutions η1 ∈ LM1 in the whole M1 after gluing. More explicitly, we have η(x, τ) = ηDΣ (x),
τ ∈ [0, 1] for every coclosed ηDΣ ∈ Ω1(M ′).

Hence ηD1,Σ = ηD1,Σ′ , η
N
1,Σ = ηN1,Σ′ = 0. Therefore η1,Σ = η1,Σ′ . Thus using a projection

L̂M̃ → L̂M1 induced by the inclusion r
M ;Σ,Σ

′ : LM1 → LM we have

ρL
M

(
Kξ ⊗Kξ

)
=

∫
L̂M̃1

exp
(

1
2gΣ

(
ξR, η1,Σ

)
dνM̃1

)
.

By replacing in (5.3), ρL
M (Kξ ⊗ ιΣ(Kξ)) equals exp

(
1
2gΣ

(
ξR, ξR

))
, which is not dνΣ-integrable.

5.5 Complex manifolds

For the abelian Yang–Mills theory on some complex surfaces, namely CP2, CP1 × CP1, there
are also formulae for partition functions in the Euclidean action convention after Wick rotation,
see [24]. The precise process of how we can obtain these quantum calculations from its classical
counterparts will be treated elsewhere. We envisage the use of a gluing process similar to that
given for surfaces.

6 Outlook

We have presented in this work a functorial quantization prescription for abelian Yang–Mills
theory on Riemannian manifolds targeting general boundary quantum field theory (GBQFT).
There are some obvious directions for generalization which we comment on in the following.

Corners. We have restricted ourselves here to only consider hypersurfaces that are closed,
i.e., that do not have boundaries. However, this considerably restricts the possibilities for gluing
regions. In particular, from a physics point of view it is important to be able to glue two regions
with the topology of a ball to a new region that also has the topology of a ball (compare the
discussion in [13, 14]). In order to accomplish this the gluing has to proceed along pieces of
the boundary that are not connected components. That is, the gluing hypersurface has itself
a boundary, usually referred to as a corner. Corners are already allowed in the semiclassical
axioms of Section 2 and in the functorial quantization scheme for affine field theory of Section 3.
What is more, for abelian Yang–Mills theory implementing the symplectic reduction (Section 4)
on the spaces AΣ and LΣ of germs of solutions on a hypersurface Σ appears to generalize
straightforwardly to the case that Σ has a boundary. It remains to see that the complex structure
generalizes nicely, but formula (4.3) is quite suggestive.

Lorentzian manifolds. To describe physically realistic theories (such as electromagnetism)
we need to work on Lorentzian manifolds. This introduces several complications. On the
one hand the boundary value problem is hyperbolic instead of elliptic. Also, three different
signatures for induced metrics can occur on hypersurfaces depending on them being spacelike,
timelike or null. Finally, the complex structure has to be defined in a different way. For
spacelike hypersurfaces there is considerable guidance from the literature, see, e.g., [1]. For
timelike hypersurfaces there are some very basic examples [16, 17]. The general situation is
open.
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Non-abelian gauge theory. In two dimensions non-abelian Yang–Mills theory is solvable
and its quantization has been described in a TQFT-type formalism [4, 9, 21, 26]. The generali-
zation to include corners was described in [14]. It is clear from the latter work that and how
in the case with corners the axioms of the quantum theory (Appendix B) have to be modified.
Whether this modification is also sufficient in higher dimensions is unclear. On the classical
side the symplectic reduction on hypersurfaces becomes more complicated than in the abelian
theory, at least when corners are present. However, working out the modifications compared to
the abelian theory appears feasible. What in much more problematic in dimensions higher than
two is the description of the dynamics within regions. The solution spaces become complicated
manifolds and it is unknown what they are in general. Thus, it is quite unclear how to perform
the step of the quantization that consists in constructing the amplitude maps. Of course this
problem is not special to the present framework of GBQFT but appears in all approaches to
quantum field theory when trying to deal with non-linear theories.

A Geometric data

We recall here the formalization of the notion of spacetime in terms of a spacetime system on
which both the classical axioms (Section 2) and the quantum axioms (Appendix B) are based.
The presented version is adapted from [17, Section 4.1].

There is a fixed positive integer d, the dimension of spacetime. We are given a collectionMc
0

of connected oriented topological manifolds of dimension d, possibly with boundary, that we shall
refer to as (connected)/(regular) regions. Furthermore, there is a collection Mc

1 of connected
oriented topological manifolds of dimension d − 1, possibly with boundary, that we shall refer
to as (connected) hypersurfaces. The manifolds are either abstract manifolds or they are all
concrete closed regular submanifolds of a given fixed spacetime manifold. In the former case we
call the spacetime system local, in the latter we call it global.

There is a notion of formal disjoint union both for regular regions and for hypersurfaces.
This leads to the collection M0, of all formal finite unions of elements of Mc

0, and to the
collection M1, of all formal finite unions of elements of Mc

1. In the local case, the unions may
be realized concretely as actual disjoint unions. In the global case, only unions with members
whose interiors are disjoint are allowed in M1 and M0. Note that in this case the elements
of M1 and M0 cannot in general be identified with submanifolds of the spacetime manifold as
overlaps on boundaries may occur. We call all members ofM0 (regular) regions and all members
of M1 hypersurfaces and extend the notion of disjoint union to them.

The collections M1 and M0 are closed under orientation reversal. Also, any boundary of
a regular region is a hypersurface. That is, taking the boundary defines a map ∂ : M0 →M1.
If we want to emphasize explicitly that a given manifold is in one of those collections we use the
attribute admissible.

There is a notion of gluing of elements, both of M0 and of M1. To avoid confusion we
prefer for hypersurfaces the term decomposition, reserving gluing for regions. Given a presen-
tation of a hypersurface Σ as the union of hypersurfaces Σ1, . . . ,Σn we call this a decomposi-
tion if (a) each Σi is closed in Σ and (b) the intersection of Σi with Σj is contained in their
boundaries for each i and j with i 6= j. These intersections are called corners. Throughout
the present article, we do not allow for corners. That is, we require these intersections to be
empty.

It is convenient to also introduce the concept of a slice region. A slice region is topologically
a hypersurface, but thought of as an infinitesimally thin region. Concretely, the slice region
associated to a hypersurface Σ will be denoted by Σ̂ and its boundary is defined to decompose
as the disjoint union ∂Σ̂ = Σ ∪ Σ. There is one slice region for each hypersurface. We refer to
regular regions and slice regions collectively as regions.
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The notion of gluing of regions is as follows. Suppose we are given a region M with its
boundary decomposing as the union ∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. (Σ1 may be
empty.) Then, we may obtain a new region M1 by gluing M to itself along Σ, Σ′. That is, we
identify the points of Σ with corresponding points of Σ′ to obtain M1. The resulting region M1

might be inadmissible, in which case the gluing is not allowed.
Depending on the model to be considered, the manifolds may carry additional structure.

It is common in particular that the hypersurfaces need to be “thickened”, i.e., are equipped
with germs of ambient d-manifolds. Also, the additional structure of a metric or other types of
vector bundles or principal bundles are common. In that case all the hypersurfaces and regions
are equipped with this additional structure and the different operations such as orientation
reversal or gluing need to be compatible with the additional structures. This might also entail
that additional data must be specified when a gluing is performed. In the present work the
additional structures present are those of a Riemannian metric and of a principal bundle. In
Section 5 examples are shown where associated additional data required for gluing need to be
made explicit.

B Quantum axioms

A GBQFT on a spacetime system is a model satisfying the following axioms [16].

(T1) Associated to each hypersurface Σ is a complex separable Hilbert space HΣ, called the
state space of Σ. We denote its inner product by 〈·, ·〉Σ. If Σ is the empty set, HΣ = C.

(T1b) Associated to each hypersurface Σ is a conjugate linear isometry ιΣ : HΣ → HΣ. This map
is an involution in the sense that ιΣ ◦ ιΣ is the identity on HΣ.

(T2) Suppose the hypersurface Σ decomposes into a union of hypersurfaces Σ = Σ1 ∪ · · · ∪ Σn.
Then, there is an isometric isomorphism of Hilbert spaces τΣ1,...,Σn;Σ :HΣ1⊗̂· · ·⊗̂HΣn→HΣ.

(T2b) The involution ι is compatible with the above decomposition. That is, τΣ1,...,Σn;Σ ◦
(ιΣ1⊗̂ · · · ⊗̂ιΣn) = ιΣ ◦ τΣ1,...,Σn;Σ.

(T4) Associated to each region M is a linear map from a dense subspace H◦∂M of the state
space H∂M of its boundary ∂M to the complex numbers, ρM : H◦∂M → C. This is called
the amplitude map.

(T3x) Let Σ be a hypersurface. The boundary ∂Σ̂ of the associated slice region Σ̂ decomposes into
the union ∂Σ̂ = Σ∪Σ′, where Σ′ denotes a second copy of Σ. Then, τΣ,Σ′;∂Σ̂(HΣ⊗HΣ′) ⊆
H◦
∂Σ̂

. Moreover, ρΣ̂ ◦ τΣ,Σ′;∂Σ̂ restricts to a bilinear pairing (·, ·)Σ : HΣ × HΣ′ → C such
that 〈·, ·〉Σ = (ιΣ(·), ·)Σ.

(T5a) Let M1 and M2 be regions and M = M1 t M2 be their disjoint union. Then ∂M =
∂M1 t ∂M2 is also a disjoint union and τ∂M1,∂M2;∂M

(
H◦∂M1

⊗ H◦∂M2

)
⊆ H◦∂M . Moreover,

for all ψ1 ∈ H◦∂M1
and ψ2 ∈ H◦∂M2

,

ρM ◦ τ∂M1,∂M2;∂M (ψ1 ⊗ ψ2) = ρM1(ψ1)ρM2(ψ2).

(T5b) Let M be a region with its boundary decomposing as a union ∂M = Σ1∪Σ∪Σ′, where Σ′

is a copy of Σ. Let M1 denote the gluing of M with itself along Σ, Σ′ and suppose that M1

is a region. Note ∂M1 = Σ1. Then, τΣ1,Σ,Σ′;∂M
(ψ ⊗ ξ ⊗ ιΣ(ξ)) ∈ H◦∂M for all ψ ∈ H◦∂M1

and ξ ∈ HΣ. Moreover, for any ON-basis {ξi}i∈I of HΣ, we have for all ψ ∈ H◦∂M1
,

ρM1(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

ρM ◦ τΣ1,Σ,Σ′;∂M
(ψ ⊗ ξi ⊗ ιΣ(ξi)), (B.1)

where c(M ; Σ,Σ′) ∈ C \ {0} is called the gluing anomaly factor and depends only on the
geometric data.
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C Geometry of abelian Yang–Mills fields

We present minimal tools of differential geometry to deal with abelian gauge classical Yang–Mills
(YM) fields.

Suppose that M has Riemannian metric hab, a, b = 1, . . . , n. Consider a hypersurface Σ ⊆M
with induced a Riemannian metric hij = hij , i, j = 1, . . . , n−1. For a geodesic tubular neighbor-
hood Σε ⊆M we consider the immersionXΣ : Σ×[0, ε]→ Σε ⊆M where geodesics τ 7→ XΣ(x, τ)
remain orthogonal to the hypersurfaces Στ := XΣ(Σ, τ) ⊆ M that describe the evolution of Σ.
Here x ∈ Σ and τ ∈ [0, ε]. Using this foliation with leafs Στ , decompose 1-forms on Σε as
ϕ = ϕτ + ϕτdτ .

First let us consider the expression

?dϕ =

n−1∑
a,b=1

haihbj
(
∂ϕi
∂xj
− ∂ϕj
∂xi

)
µab +

n−1∑
i=1

hai
(
∂ϕi
∂τ
− ∂ϕτ
∂xi

)
µaτ ,

where we used that hτi = δτi and dµ = µab∧dxa∧dxb with dµ =
√

det(hab)dx
1∧· · ·∧dxn−1∧dτ

the volume form of hab (notice that we adopt the notation xn = τ). For α = ?dϕ, condition
d ? dϕ = 0 reads as dα = 0.

For the restriction onto Στ , we have

ϕτ :=
(
Xτ

Σ

)∗
ϕ =

n−1∑
i=1

ϕi(x, τ)dxi ∈ Ω1(Σ), ϕτ :=
(
Xτ

Σ

)∗
ϕτ

with Xτ
Σ = XΣ(·, τ) and

(
Xτ

Σ

)∗
(?dη) =

n−1∑
a=1

hai(τ)

(
∂ϕτ
∂xi
− ∂ϕi

∂τ

)
µa(τ).

We denote the Riemannian metric induced on Στ as hij
τ
, i, j = 1, . . . , n− 1, and µa∧dxa = dµ,

µa(τ) := (Xτ
Σ)∗µa. Since

(
Xτ

Σ

)∗
(?dϕ) = ?Στ

(
dϕτ −

d

dτ
ϕτ
)
,

then the YM condition, d ? dϕ = 0, implies that

d?Στ

(
d

dτ
ϕτ
)

= d?Στ dϕτ . (C.1)

On the other hand, we can decompose the divergence

d?ϕ = −
n∑

k,l=1

hkl ∂ϕk
∂xl
−

n∑
j=1

Γjklϕj


as

−
n−1∑
k,l=1

hkl ∂ϕk
∂xl
−
n−1∑
j=1

Γjklϕj

− n−1∑
l=1

hτl ∂ϕτ
∂xl
−
n−1∑
j=1

Γjτlϕτ

+ Γττlϕτ +
∂ϕτ
∂τ

.

Hence

(Xτ
Σ)∗d?ϕ =

∂ϕτ
∂τ

+ d?Στ ϕτ , (C.2)
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where we use that hτl = δτl and that for geodesics the Christoffel symbols Γ·τ · vanish for Fermi
coordinates adapted to that geodesic.

For the linear gauge action ϕ̃ = ϕ+ df we have

ϕ̃τ = ϕτ +
n−1∑
i=1

∂f

∂xi
dxi, ϕ̃τ =

(
ϕτ +

∂f

∂τ

)
dτ.

Choosing an axial gauge fixing in Σε means solving ϕ̃τ = 0 or equivalently ∂τf = cτ −ϕτ where
the constant cτ may be chosen in such a way that ϕ̃τ |τ=0 = 0. Thus the YM condition in (C.1)
can be rewritten as

d?Στ

(
d

dτ
ϕ̃
τ
)

= 0.

In particular, the Neumann boundary condition

ϕ̇(0) :=

(
d

dτ
ϕ̃
τ
) ∣∣∣∣

τ=0

is divergence-free. Furthermore, the Dirichlet boundary condition may also be gauge adjusted as
divergence-free. Just solve the Poisson–Laplace equation, d?Σdf0 = −(X0

Σ)∗d∗ϕ, for f0 = f |Σ.
Therefore the divergence decomposition (C.2) yields

d?Σϕ̃
0

= 0.

Choosing a Lorentz gauge fixing in Σε means obtaining d?ϕ̃ = 0 by solving ∂ϕ̃τ
∂τ + d?Στ ϕτ = 0

with initial condition such that ϕ̃τ |Σ = 0.

Lemma C.1. Let φD, φN ∈ ker d?Σ be any pair of 1-forms in Σ. Then there exists a solution
ϕ ∈ Ω1(Σε) of the YM condition belonging to the axial gauge fixing space in the bulk and whose
boundary conditions belong to the divergence free gauge fixing space. In other words, there exists
a solution of the following boundary value problem

d ? dϕ = 0, ι∂τϕ = 0, ϕD = φD, ϕN = φN .

Proof. Our aim is finding a one-parameter family ϕτ ∈ Ω1(Σ) such that

d?Στ
d

dτ
ϕτ = 0, ϕ0 = φD,

d

dτ

∣∣∣∣
τ=0

ϕτ = φN . (C.3)

We recall Moser’s argument. Take the induced metric on Στ and Σ, hij
τ

and hij respectively
with corresponding volume forms, µΣτ = µΣ, and cτ such that cτ

∫
Σ µΣτ =

∫
Σ µΣ. Recall that

both volume forms µΣ and (cτµΣτ ) have the same cohomology class. Define the volume forms

µτ (t) = (1− t)µΣ + t(cτµΣτ ), 0 ≤ t ≤ 1.

Then dµτ (t)
dt = cτµΣτ − µΣ. Define the t-dependent family of vector fields Zτ (t) such that

ιZτ (t)µt = µΣ − cτµΣτ .

Let ψτ (t), t ∈ [0, 1] be the non-autonomous solution for Zτ (t). Then

(ψτ (t))∗(cτµτ (t)) = µΣ.
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If we define a family of diffeomorphisms as ψτ : Σ→ Σ, τ ∈ [0, ε], ψτ := ψτ (1), then

ψ∗τ (cτµΣτ ) = µΣ, ψ0 = idΣ.

Take

d

dτ
ϕτ :=

(
ψ−1
τ

)∗
φN , ϕτ := φD +

∫ τ

0

(
ψ−1
τ

)∗
φN , ϕτ ≡ 0.

Then, by definition,
(
X0

Σ

)∗( d
dτ

∣∣
τ=0

ϕ
)

= φN ,
(
X0

Σ

)∗
ϕτ = φD. Furthermore d ?Στ

d
dτϕ

τ = d ?Στ(
ψ−1
τ

)∗
φN , hence

cτψ
∗
τd ?Στ

d

dτ
ϕτ = cτψ

∗
τd ?Στ

(
ψ−1
τ

)∗
φN = dcτψ

∗
τ ?Στ

(
ψ−1
τ

)∗
φN = d ? φN = 0.

That is, d ?Στ
d
dτϕ

τ = 0. �

Lemma C.2. Let φD ∈ ker d?Σ be any 1-form in Σ. Then there exists a solution ϕ ∈ Ω1(Σε)
of the YM condition belonging to the Lorentz gauge fixing space in the bulk and whose boundary
conditions belong to the divergence free gauge fixing space with ϕ vanishing in the top boundary
component of the cylinder Σε. In other words, there exists a solution of the following boundary
value problem

d ? dϕ = 0, d ? ϕ = 0, ϕD = φD, i∗Σ′ϕ = 0,

with Σ′ = XΣ(Σ, ε).

Proof. First we obtain a solution for axial gauge fixing, proceeding as in Lemma C.2, but
solving

d?Στ
d

dτ
ϕτ = 0, ϕ0 = φD, ϕε = 0,

instead of (C.3). This ϕ solves YM condition (C.1). To obtain a Lorentz condition take a gauge
translation

ϕ̃ = ϕ̃τ + ϕ̃τdτ = ϕ+ df, ϕ̃τ =
∂f

∂τ
, ϕ̃

τ
= ϕτ + df.

Lorentz gauge (C.2) can be written as

∂

∂τ
ϕ̃τ = −d?Στ ϕ̃

τ
.

This implies

∂2f

∂τ2
= −d?Στ ϕτ − d?Στ df,

which yield a Poisson equation for f in Σε. This can be solved if we consider the suitable
boundary conditions f |Σ = 0 = f |Σ′ . �
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