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Abstract:

We classify non-symplectic automorphisms of 3-power order on algebraic K3

surfaces which act trivially on the Néron-Severi lattice, i.e., we describe their fixed locus.
Moreover we give Weierstrass equations of K3 surfaces with a non-symplectic automorphism of

3-power order.
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1. Introduction. Let X be a smooth com-
pact complex surface. If its canonical line bundle
Ky is trivial and dim H'(X,Ox) =0 then X is
called a K3 surface. In the following, for an
algebraic K3 surface X, we denote by Sy, Tx and
wy the Néron-Severi lattice, the transcendental
lattice and a nowhere vanishing holomorphic 2-form
on X, respectively.

An automorphism of X is symplectic if it acts
trivially on Cwy. In particular, this paper is
devoted to study of non-symplectic automorphisms
of 3-power order which act trivially on Sx.

We suppose that g is a non-symplectic auto-
morphism of order I on X such that g*wx = (wx
where (7 is a primitive I-th root of unity. Then g*
has no non-zero fixed vectors in Tx ® Q and hence
¢(I) divides rank Tx, where ¢ is the Euler function.
In particular ¢(I) <rankTy and hence I <66
([Ni1], Theorem 3.1 and Corollary 3.2).

Non-symplectic automorphisms have been
studied by several authors e.g. Nikulin [Nil,Ni2],
Vorontsov [Vo], Kondo [Ko|, Xiao [Xi], Oguiso,
Zhang [0Z1,072], Artebani, Sarti [AS] and Taki
[Ta]. Recently, we have the classification of non-
symplectic automorphisms of prime order on K3
surfaces [AST]. In particular we characterize their
fixed loci in terms of the invariants of p-elementary
lattices. Then Schiitt [Sc] classified K3 surfaces
with non-symplectic automorphisms which the
order is 2-power and equals the rank of the tran-
scendental lattice.

We know the following
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K3 surface; non-symplectic automorphism.

Proposition 1.1 [Vo,Ko|. Letk be a positive
integer. Assume that there exists a non-symplectic
automorphism o of order p* on X which acts trivially
on Sx. Then Sx is a p-elementary lattice, that is,
S%/Sx is a p-elementary group where S =
Hom(Sx,Z).

In general, the inverse of Proposition 1.1 is
not true. For example, Sx = U(3) ® E5(3) is a 3-
elementary lattice. But X has no non-symplectic
automorphisms of order 3 which act trivially on Sx.
(See [AS,Ta).)

If I is 3-power then I = 3, 9, 27. Non-symplec-
tic automorphisms of order 3 have been classified by
Artebani, Sarti [AS] and Taki [Ta]. They proved
the following

Theorem 1.2 [AS,Ta]. Let r be the Picard
number of X and let s be the minimal number of
generators of S /Sx.

X has a non-symplectic automorphism ¢ of
order 3 which acts trivially on Sx if and only if
22 —r—2s > 0. Moreover the fized locus X% :=
{z € X|p(z) = x} has the form

o (P, P, P} if Sx =U(3)® E;(3)
{P,..., Py} ICY T EITI---TT By otherwise

and M =r/2—-1,g=(22—r—2s)/4, K=(2+71—
25) /4, where we denote by P; an isolated point, C\9 q
non-singular curve of genus g and by E; a non-
singular rational curve.

Oguiso and Zhang [OZ1] have proved that the
K3 surface with non-symplectic automorphisms of
order 27 is unique. Then we mainly study non-
symplectic automorphisms of order 9.

And the main purpose of this paper is to prove
the following theorem.
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Theorem 1.3.

(1) X has a non-symplectic automorphism ¢ of
order9 acting trivially on Sy if and only if Sx =
Ud A, UBEs, UD Eg® Ay or U Es P Eg.
Moreover the fized locus X? has the form

{Pl,P27...,P5} ZfSX:U®A2,

{P,,P,..., P} 1 Ey
if Sy=U®Eg or U® Eg D Ay,

{P,,Po,..., Pyt I E 11 Ey

if Sx =U @ Lz ® Eg.
(2) X has a non-symplectic automorphism ¢ of
order 27 acting trivially on Sx if and only if

Sx =U & Ay. Moreover the fized locus X¥ has

the form X% ={Py, P, ..., Ps}.

Here we denote by P; an isolated point and by E; a

non-singular rational curve.

Remark 1.4. We have already had the clas-
sification of non-symplectic automorphisms of 5-
power order on K3 surfaces. If [ is 5-power then
I =5, 25. Non-symplectic automorphisms of order 5
have been classified by Artebani, Sarti and Taki
[AST]. Oguiso and Zhang [OZ1] have proved that
the K3 surface with non-symplectic automorphisms
of order 25 is unique.

In Section 2, we shall give the classification of
an even hyperbolic 3-elementary lattices admitting
a primitive embedding in K3 lattice. As a result, we
get all lattices which are the Néron-Severi lattice of
K3 surfaces with non-symplectic automorphisms
of 3-power order which act trivially on Sx. In
Section 3, we see that the number of isolated fixed
points is determined by the Picard number of X.
Here we use mainly the Lefschetz formula. In
Section 4, we check that the existence and non-
existence of K3 surfaces with a non-symplectic
automorphism of 3-power order. And we give
Weierstrass equations of K3 surfaces with a non-
symplectic automorphism of 3-power order acting
trivially on Sx. In Section 5, we see fixed locus of
non-symplectic automorphisms.

2. The Néron-Severi and p-elementary
lattices. A lattice L is a free abelian group of
finite rank 7 equipped with a non-degenerate
symmetric bilinear form, which will be denoted by
(', ). The bilinear form ( , ) determines a canonical
embedding L C L* = Hom(L,Z). We denote by Ay,
the factor group L*/L which is a finite abelian
group. L(m) is the lattice whose bilinear form is the
one on L multiplied by m.

X% =
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We denote by U the hyperbolic lattice defined
by ((1) é) which is an even unimodular lattice of
signature (1,1), and by A,, or E, an even negative
definite lattice associated with the Dynkin diagram
of type A, or E, (m>1,n=6,7,8).

Let p be a prime number. A lattice L is called
p-elementary if Ap ~ (Z/pZ)°, where s is the
minimal number of generator of A;. For a p-
elementary lattice we always have the inequality
s <, since |L*/L|=p®, |L*/pL*|=p" and pL* C
LcC L

Example 2.1. For all prime p, lattices Esg,
Es(p), U and U(p) are p-elementary. A; and Ej are
3-elementary.

Even indefinite p(> 2)-elementary lattices were
classified as follows:

Theorem 2.2 [RS]. An even indefinite p-el-
ementary lattice of rank n for p#2 and n > 2 is
uniquely determined by its discriminant (i.e., the
number s).

For p # 2 a hyperbolic lattice corresponding to
a given value of s < n exist if and only if the fol-
lowing conditions are satisfied: n =0 (mod 2) and

for s=0 (mod 2), n=2 (mod 4),
for s=1 (mod 2), p=(-1)"*" (mod 4).

And moreovern > s >0, ifn# 2 (mod 8).

Let ¢ be the Euler function. Then ¢(9) = 6.
Since ¢(9) divides rank Ty, rankTy =18, 12, 6.
(see Section 1 and [Nil].) Hence if X has a
non-symplectic automorphisms of order 9 then
rank Sy =4, 10, 16. In the same way, if X has a
non-symplectic automorphisms of order 27 then
rank Sy = 4.

By Theorem 1.2, X has a non-symplectic
automorphism ¢ of order 3 which acts trivially on
Sx if and only if 22 —rank Sy — 2s > 0. Hence if
X has a non-symplectic automorphism of order
3% which act trivially on Sx then 22 — rank Sx —
25 > 0.

Table I is a list of 3-elementary lattices which
satisfy 22 —rank Sy — 2s > 0 and rank Sy =4, 10,
16. Hence if X has a non-symplectic automorphisms
of order 9 (resp. 27) which act trivially on Sx then
Sx is one of the lattices in Table I (resp. U @ Aj or
U(3) & As).

Remark 2.3. Let {e, f} be a basis of U
(resp. U(3)) with (e,e) = (f,f) =0 and (e, f) =1
(resp. (e, f) = 3). If necessary replacing e by ¢(e),
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Table I. 3-elementary lattices
Rank Sy s Sx Tx

4 1 Ud A, U @ E; @ Eg
4 3 U(3) @ Ay UsUQ3)® Es; ® Es
10 0 U@ Eg U @ Ey

10 2 U®Eg® Ay UoU3)® Es
10 4 U AY UaU(3)® Es® A
10 6 U(3) @ AT Ar(—1) @ AT

16 1 U@ Es @ Eg U2 @ A,

16 3 U Es © AS® Ay(—1) @ AF?

where ¢ is a composition of reflections induced
from non-singular rational curves on X, we may
assume that e is represented by the class of an
elliptic curve F and the linear system |F'| defines an
elliptic fibration 7: X — P!. Note that = has a
section f — e in case U. In case U(3), there are no
(—2)-vectors r with (r,e) =1, and hence 7 has no
sections.

It follows from Remark 2.3 and Table I that X
has an elliptic fibration 7 : X — P!, In the follow-
ing, we fix such an elliptic fibration.

The following lemma follows from [PS,§3
Corollary 3] and the classification of singular fibers
of elliptic fibrations [Kd].

Lemma 2.4. Assume that Sx=U(m)®
Ki® - -®K,, wherem =1 or3, and K; is a lattice
isomorphic to As, Eg or Eg. Then w has a reducible
singular fiber with corresponding Dynkin diagram
K;.

3. The number of isolated fixed points.
In this Section, we shall see that the number of
isolated fixed points of non-symplectic automor-
phism of order 9.

Lemma 3.1. Let X be an algebraic K3 sur-
face and ¢ a non-symplectic automorphism of order
9 on X. Then we have:

(1) ¢* | Tx ® C can be diagonalized as:

¢, 0 0 0 0 0
0 ¢, 0 0 0 0
0 0 ¢'1, 0 0 0
o o o ¢, o o |
o 0o o0 o0 (1, 0
o 0 0 0 0 ¢,

where I is the identity matriz of size q, ( is a
primitive 9-th root of unity.
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(2) Let P be an isolated fized point of ¢ on X. Then
©* can be written as

"0
(< ) (i+j7=1 mod9)
0o ¢
under some appropriate local coordinates
around P.

(3) Let C be an irreducible curve in X¥ and Q a
point on C. Then ¢* can be written as

(o o)

under some appropriate

around Q. In particular, fized curves are non-

singular.

Proof. (1) This follows form [Nil, Theorem 3.1].

(2), (3) Since ¢* acts on H’(X,0%) as a
multiplication by (, it acts on the tangent space of
a fixed point as

(0= (50
or .
0 ¢ 0 ¢

where i +j=1 (mod 9). O
Thus the fixed locus of ¢ consists of disjoint
union of non-singular curves and isolated points.

Hence we can express the irreducible decomposition
of X¥ as

X* ={P,..

local coordinates

L Py LG I 11 Cy,

where P; is an isolated point and C} is a non-
singular curve.

Lemma 3.2. Let r be the Picard number of
X. Then x(X%) =r+2.

Proof. We apply the topological Lefschetz
formula:

4 . .
X(X7) = (1) tr(¢"|H' (X, R)).
i=0

Since ¢* acts trivially on Sy, tr(¢*|Sx) =r.
By Lemma 3.1 (1), tr(¢*|Tx) = ¢(¢+ C+ ¢+ ¢ +
"+ ¢ = —q(1 + ¢+ ¢°) = 0. Hence we can calcu-
late the right-hand side of the Lefschetz formula
as follows: 1 (—1) tr(¢*|H'(X,R)) =1 -0+
tr(¢*|Sx) + tr(¢*Tx) —0+1=r+2. O

By Table I and Lemma 2.4, the elliptic fibra-
tion m: X — P! has a reducible singular fiber. In
the following, we check a detail of Theorem 1.2.

Lemma 3.3. We put o= . All isolated
fixed points of o lie on reducible singular fibers. In
particular, these are intersection points of compo-
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nents of reducible singular fibers or a point of the
component of a singular fiber of type II* which is
multiplicity 3 and meet the component with multi-
plicity 6.

Proof. Since o also acts trivially on Sx, o
preserves reducible singular fibers. Hence intersec-
tion points of components of reducible singular
fibers are fixed by 0. We will check the claim for
each Sy individually.

Assume Sy =U @ Ay. By [Ta,Lemma 3.5] 7
has a singular fiber of type IV. By Theorem 1.2,
X7 =CWITP' I {P}. Now X7 contains C(Y. This
implies that the automorphism ¢ acts trivially on
the base of m and the section (cf. Remark 2.3) is
fixed by o. Since an automorphism of order 3 on
a smooth fiber has 3 fixed points, C¥).F = 2 where
F is a fiber of m. Thus C® does not pass the
intersection point. Hence a singular fiber of type IV
has exactly one isolated fixed point P; at the
intersection point of the three components of the
singular fiber. This settles Lemma 3.3 in the case
Sy =U& As.

Assume Sx = U & Eg. By Theorem 1.2, X7 =
COT, P! HH?ZI{P]} Note m has a singular
fibers of type II*. The component Dg with multi-
plicity 6 is pointwisely fixed by o. Since X? con-
tains C®), ¢ acts trivially on the base of 7, the
section (cf. Remark 2.3) is fixed by o, and C® is
a double section, that is, C®).F =2 where F is a
fiber of 7.

If F is a singular fiber of type II* then C®
meets the component with multiplicity 2 which
meets the component with multiplicity 4. Indeed,
if C® meets another component D of F with
multiplicity < 2 then it is easy to see that D has
three or more fixed points. Hence C®) meets
another pointwisely fixed curve D, a contra-
diction.

Therefore o fixes the 5 intersection points
Q1, - +,Q5 of F\ Dg and a point Qg of the compo-
nent with multiplicity 3 which meets Dg. Since X7
contains exactly 4 isolated points Pi,..., Py, F
contains one pointwisely fixed component contain-
ing @ and Q; (3t,j<5) and {P,...,P} =
{Qklk # 4,7} This settles Lemma 3.3 in the case
Sx =U & Ex.

In other cases we can check the claim by
similar arguments. (]

Corollary 3.4. Let P be an isolated fized
point of ©*. Then o(P) = P.

[Vol. 86(A),

Proof. By Lemma 3.3 P is a special point on
reducible singular fibers. Since ¢ preserves such a
singular fiber, these points are fixed by ¢. O

Proposition 3.5. Let r be the Picard num-
ber of X. Then the number of isolated points M is
(2r +10)/3.

Proof. First we calculate the holomorphic
Lefschetz number L(yp) in two ways as in
[AS1, page 542] and [AS2, page 567]. That is

2

i=0
My N
L(p) = a(P) + ) b(C),
Jj=1lu+v=10,u<v =1
where ]3]11L is an isolated point of type (COU CO” )
Here
U,V o 1
aFy) = det(1 — ¢*[Tpn)
. 1
(o 1)-(5 o)
0 1 O CU
R
(1= —-¢)
1—g(Ch) (Ct
b(C)) = _
(@) T—¢ 1o
(1490 g(@)
1-¢*

where Tp, is the tangent space of X at Pj, g(C)) is
the genus of C}.

Using the Serre duality H?*(X,0Ox) ~
HY(X,0x(Kx))", we calculate from the first for-
mula that L(p) =1+ ¢%. From the second formula,
we obtain

L(p) =

Y1+ 01 - g(@))
D D e

Combing these two formulae, we have

1 =mog—mgr+mas— 2ms3s,
1 =mg7r =230, (1—g(Ch),

() 1 =mas+mss — 351 (1—g(C1)),
2 =2mog —mzy +Mue— M55

=330 (1 - 9(C0)).
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We remark that @3(P*“") is a fixed point of a

non—symp%ectic automorphism of order 3. Since
i 3i

<<(.) é]]) —_ ((0 <2j>7 S03(1:)2,8) and (pi(P'J’)) are
isolated fixed points of ¢®. In the same way, ¢*(P")
and 3 (P*%) are points on a irreducible fixed curve
of 3. By Corollary 3.4, isolated fixed points of
¢* are P?® or P>, By Theorem 1.2, we have

(1) mag + M35 :T/Q—l.

Next we apply the topological Lefschetz
formula: x(X¥) = 3+ ,(—1)" tr(¢*|H (X, R)). The
left-hand side is

N
(2) X(X?) =M+ ) (2-29(Ch)).
=1

By (#), (1), (2) and Lemma 3.2, we have M =
(2r 4+ 10)/3. O

4. Existence. We show the existence of K3
surfaces with a non-symplectic automorphism of
3-power order acting trivially on Sx. To do this,
we shall give examples of such K3 surfaces. In
this Section, we denote by (, a primitive v-th root
of 1.

Example 4.1 [Ko, (7.7)].
Xy = + [T (- @),
(Gres 7y, G37).

Since 1 is a non-symplectic automorphism of
order 27, ¢? is of order 9. Moreover X; has a singular
fiber of type IV and 10 singular fibers of type II.

Example 4.2 [Ko, (3.2)]. (Sx =U & Ey)
Xo :yz =’ —t Hi:l(t_cg)a P2z, y,t) =
(G, Gy, Got).-

X5 has a singular fiber of type II* and 7 singular
fibers of type II.

Example 4.3. (Sx=U® E;® As) X3:y°=
at —t! Hg:l(t - 45)7 (103(1:7 Y, t) = (C9$7 <Sya Cgt)

X3 has a singular fiber of type IV*, a singular
fiber of type IV and 6 singular fibers of type II.

Example 4.4 [Ko, (7.8)]. (Sx=U®Es®
Es) Xi: y2 =2’ -t Hi:l(t - Cgk)’ pa(z,y,t) =
(G, Gy G).

X, has a singular fiber of type II*, a singular
fiber of type IV* and 3 singular fibers of type II.

It is easy to give Néron-Severi lattice Sy of
these examples by checking singular fibers (see also
Lemma 2.4.). And each irreducible singular fiber
has no symmetry, ¢; acts on Sy trivially.

In the following, we treat cases where X has no
non-symplectic automorphisms of 3-power order.

(SX =Uo® Ag)
Sal(xaya t) =
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The following Proposition has been proved by
Oguiso and Zhang.

Proposition 4.5 [0Z1,82]. Let ¢ be a non-
symplectic automorphism of 3-power order. Let ¢
be the FEuler function. Then there ezists, modulo
isomorphisms, a unique K3 surface X such that
¢(ord @) = rank T'y.

Therefore we have the uniqueness of K3
surfaces with a non-symplectic automorphism of
order 27. In particular, if Sy = U(3) ® Ay then X
has no non-symplectic automorphisms of order 27
which act trivially on Sy. Similarly, there exists the
uniqueness of K3 surface with a non-symplectic
automorphism of order 9 and rank Sx = 16. Hence
by Example 4.4, if Sy = U & Fs ® AJ® then X has
no non-symplectic automorphisms of order 9 which
act trivially on Sk.

In the following, we treat non-symplectic auto-
morphisms order 9 with rank Sy = 4, 10.

Proposition 4.6. IfSxy=U® A orU(3) @
A2@4, then X has no non-symplectic automorphisms
of order 9 which act trivially on Sx.

Proof. We assume that Sy = U @ Ay? and X
has a non-symplectic automorphism ¢ of order 9
which acts trivially on Sy. Then ¢ induces an
automorphism @ on P'. We see the order of @. A
priori ord@ =1, 3 or 9. If ord = 1 then a smooth
fiber E is {-stable and @"‘EwE = (gwg. But there
exists no such elliptic curve. If ord ¢ = 9 then since
X has 4 reducible singular fibers of type I'V or of type
I3, @ does not permute these fibers. Thus ord ¢ = 3.

We remark that @ has exactly 2 isolated fixed
points @)1 and Q2. Hence ¢ permutes 3 reducible
singular fibers, and fixes a reducible singular fiber
over Q1 and irreducible singular fiber over Q5. Since
reducible singular fibers which X has are of type IV
or of type I3, ¢ has at most 4 fixed points on a fiber
over (1 and at most 2 fixed points on a fiber over
(2. Therefore ¢ has at most 6 fixed point on X. But
this is a contradiction by Proposition 3.5.

Similarly we can see the same assertion in the
case of Sy = U(3) @ A*. O

By Theorem 1.2, if Sx = U(3) @ Ay then X has
a non-symplectic automorphism of order 3 which
acts trivially on Sy. The following lemma follows
from [AS, Proposition 4.9].

Lemma 4.7 [AS]. Let X be a K3 surface
with Sx =U(3)® Ay then X is isomorphic to
a smooth quartic in P? with equations of
the form X : Fy(zo,z1,29) + Fi(xo, 21, 22)23 =0,
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9(xo, 1, 29, x3) = (20,21, 22, (323) where F; is a ho-
mogeneous polynomials of degree i.

Proposition 4.8. If Sx =U(3) ® As then X
has mo non-symplectic automorphisms of order 9
which act trivially on Sx.

Proof. Let ¢ be a non-symplectic automor-
phism of order 9 which acts trivially on Sy.
By Lemma 4.7, ¢® =g. Hence o(wg,x1,29,23) =
o(f(xo, 21,22),Cox3) where f is a non-trivial
automorphism of order 3 on P?. Thus we can
put f(zo,x1,22) = (20,21, (m2), (w0, (a1, a0) oF
(z0, (a1, C§2).

Since ¢ preserves X, if f(xg,x1,29) =
(330,3:1, Cgﬂ,‘g) and Fl(xo,xl,xg) = G1($0,$1) then
f(F4(l‘0, l’l,mg)) = IQGg(LIEo,Il) where Gl is a
homogeneous polynomials of degree i. Therefor
X¥ = {(07 0,0, 1)}H{(O’ 0,1, O)}H{(Gd(x[b xl) = 0) n
(9 = 23 =0)}, i.e. X¥ has 5 isolated fixed points.
But these are contradictions by Proposition 3.5.
Similarly if Fj(xg,x1,22) = 22 then X¥ does not
have exactly 6 isolated points. In the same way, a
similar assertion holds in the other cases. O

5. Fixed locus of non-symplectic auto-
morphisms. By Proposition 4.5, we have the
uniqueness of K3 surfaces with a non-symplectic
automorphism of order 27. And it is easy to see the
fixed locus is exactly 6 isolated points. In this
section, we see fixed locus of non-symplectic auto-
morphisms of order 9.

Proposition 5.1. Let Sy =U @ As, U @ Ex,
UG Eg® Ay or Ud Es @ Eg. Then X has a non-
symplectic automorphism ¢ of order 9 acting
trivially on Sx. Moreover X¥ has the form
{Pl,PQ,...,P(;} Zf SX:UQBAAQ7
{P,P,..., P} 1 By

if Sy=U®Eg or U EgD Ay,
{Pl,PQ,. .. ,P14} HEl HEQ

if Sx=U® Eg® E.

Proof. We will check the claims for each Sy
individually.

Assume U @ Eg @ As. Is is easy to see ¢ does
not act trivially on the base of 7 (see also proof of
Proposition 4.6.). Thus X¥ does not contain a non-
singular curve with genus greater than 2. Note 7 has
a singular fiber of type IV*. The component with
multiplicity 3 of the singular fiber is pointwisely
fixed by . By Proposition 3.2 and Proposition 3.5,
we have X¥ = {Pl, P27 ey Pl()} I El.

Similarly in other cases we can calculate fixed
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locus by the same argument of the example. These

results satisfy the assertion. (I
Therefore, we have proved Theorem 1.3.
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