
Scientific Annals of Computer Science vol. 29 (2), 2019, pp. 113–139

doi: 10.7561/SACS.2019.2.113

Program Algebra for

Turing-Machine Programs

J.A. Bergstra1, C.A. Middelburg1

Abstract

This paper presents an algebraic theory of instruction sequences
with instructions for Turing tapes as basic instructions, the behaviours
produced by the instruction sequences concerned under execution, and
the interaction between such behaviours and Turing tapes provided
by an execution environment. This theory provides a setting for the
development of theory in areas such as computability and computa-
tional complexity that distinguishes itself by offering the possibility of
equational reasoning and being more general than the setting provided
by a known version of the Turing-machine model of computation. The
theory is essentially an instantiation of a parameterized algebraic theory
which is the basis of a line of research in which issues relating to a
wide variety of subjects from computer science have been rigorously
investigated thinking in terms of instruction sequences.

Keywords: program algebra, thread algebra, model of computation,
Turing-machine program, computability, computational complexity.

1 Introduction

This paper introduces an algebraic theory that provides a setting for the
development of theory in areas such as computability and computational

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, email: {J.A.Bergstra,C.A.Middelburg}@uva.nl.

114 J.A. Bergstra, C.A. Middelburg

complexity. The setting in question distinguishes itself by offering the pos-
sibility of equational reasoning and being more general than the setting
provided by a known version of the Turing-machine model of computation.
Many known and unknown versions of the Turing-machine model of com-
putation can be dealt with by imposing apposite restrictions. We expect
that the generality is conducive to the investigation of novel issues in areas
such as computability and computational complexity. This expectation is
based on our experience with a comparable algebraic theory of instruction
sequences, where instructions operate on Boolean registers, in previous work
(see [7, 8, 9, 10, 11, 13]).

It is often said that a program is an instruction sequence. If this
characterization has any value, it must be the case that it is somehow easier
to understand the concept of an instruction sequence than to understand
the concept of a program. In tune with this, the first objective of the work
on instruction sequences that started with [4], and of which an enumeration
is available at [21], is to understand the concept of a program. The notion of
an instruction sequence appears in the work in question as a mathematical
abstraction for which the rationale is based on this objective.

The structure of the mathematical abstraction at issue has been deter-
mined in advance with the hope of applying it in diverse circumstances where
in each case the fit may be less than perfect. Until now, the work in question
has, among other things, yielded an approach to non-uniform computational
complexity where instruction sequence length is used as complexity measure,
a contribution to the conceptual analysis of the notion of an algorithm,
and new insights into such diverse issues as the halting problem, program
parallelization for the purpose of explicit multi-threading and virus detection.

The basis of all the work in question (see [21]) is the combination of
an algebraic theory of single-pass instruction sequences, called program
algebra, and an algebraic theory of mathematical objects that represent
the behaviours produced by instruction sequences under execution, called
basic thread algebra, extended to deal with the interaction between such
behaviours and components of an execution environment. This combination is
parameterized by a set of basic instructions and a set of objects that represent
the behaviours exhibited by the components of an execution environment.

The current paper contains a simplified presentation of the instantiation
of this combination in which all possible instructions to read out or alter the
content of the cell of a Turing tape under the tape’s head and to optionally
move the head in either direction by one cell are taken as basic instructions

Program Algebra for Turing-Machine Programs 115

and Turing tapes are taken as the components of an execution environment.
The rationale for taking certain instructions as basic instructions is that the
instructions concerned are sufficient to compute each function on bit strings.
However, shorter instruction sequences may be possible if certain additional
instructions are taken as basic instructions. That is why we opted for the
most general instantiation.

An instantiation in which instructions to read out or alter the content of
a Boolean register are taken as basic instructions and Boolean registers are
taken as the components of an execution environment turned out to be useful
to rigorous investigations of issues relating to non-uniform computational
complexity and algorithm efficiency (see e.g. [8, 10]). We expect that the
instantiation presented in this paper can be useful to rigorous investigations
relating to uniform computational complexity and algorithm efficiency.

Program algebra and basic thread algebra were first presented in [4].2

The extension of basic thread algebra referred to above, an extension to
deal with the interaction between the behaviours produced by instruction
sequences under execution and components of an execution environment,
was first presented in [5]. The presentation of the extension is rather involved
because it is parameterized and owing to this covers a generic set of basic
instructions and a generic set of execution environment components. In the
current paper, a much less involved presentation is obtained by covering
only the case where the execution environment components are Turing tapes
and the basic instructions are instructions to read out or alter the content
of the cell of a Turing tape under the tape’s head and to optionally move
the head in either direction by one cell.

After the presentation in question, we make precise in the setting of the
presented theory what it means that a given instruction sequence computes
a given partial function on bit strings, introduce the notion of a single-tape
Turing-machine program in the setting, give a result concerning the compu-
tational power of such programs, and give a result relating the complexity
class P to the functions that can be computed by such programs in polyno-
mial time. We also give a simple example of a single-tape Turing-machine
program. This example is only given to illustrate the close resemblance of
such programs to transition functions of Turing machines. The notation that
is used for Turing-machine programs is intended for theoretical purposes
and not for actual programming.

2In that paper and the first subsequent papers, basic thread algebra was introduced
under the name basic polarized process algebra.

116 J.A. Bergstra, C.A. Middelburg

This paper is organized as follows. First, we introduce program algebra
(Section 2) and basic thread algebra (Section 3) and extend their combination
to make precise which behaviours are produced by instruction sequences
under execution (Section 4). Next, we present the instantiation of the
resulting theory in which all possible instructions to read out or alter the
content of the cell of a Turing tape under the tape’s head and to optionally
move the head in either direction by one cell are taken as basic instructions
(Section 5), introduce an algebraic theory of Turing-tape families (Section 6),
and extend the combination of the theories presented in the two preceding
sections to deal with the interaction between the behaviours of instruction
sequences under execution and Turing tapes (Section 7). Then, we formalize
in the setting of the resulting theory what it means that a given instruction
sequence computes a given partial function on bit strings (Section 8) and give
as an example an instruction sequence that computes the non-zeroness test
function (Section 9). Finally, we make some concluding remarks (Section 10).

In this paper, some familiarity with algebraic specification, computabil-
ity, and computational complexity is assumed. The relevant notions are
explained in many handbook chapters and textbooks, e.g. [16, 23, 27] for no-
tions concerning algebraic specification and [2, 19, 24] for notions concerning
computability and computational complexity.

Sections 2–4 are largely shortened versions of Sections 2–4 of [12], which,
in turn, draw from the preliminary sections of several earlier papers.

2 Program Algebra

In this section, we introduce PGA (ProGram Algebra). The starting-point
of PGA is the perception of a program as a single-pass instruction sequence,
i.e. a possibly infinite sequence of instructions of which each instruction is
executed at most once and can be dropped after it has been executed or
jumped over. The concepts underlying the primitives of program algebra
are common in programming, but the particular form of the primitives is
not common. The predominant concern in the design of PGA has been to
achieve simple syntax and semantics, while maintaining the expressive power
of arbitrary finite control.

It is assumed that a fixed but arbitrary set A of basic instructions
has been given. A is the basis for the set of instructions that may occur
in the instruction sequences considered in PGA. The intuition is that the
execution of a basic instruction may modify a state and must produce the

Program Algebra for Turing-Machine Programs 117

Boolean value 0 or 1 as reply at its completion. The actual reply may
be state-dependent. In applications of PGA, the instructions taken as
basic instructions vary from instructions relating to Boolean registers via
instructions relating to Turing tapes to machine language instructions of
actual computers.

The set of instructions of which the instruction sequences considered in
PGA are composed is the set that consists of the following elements:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for this set. The elements from this set are called primitive
instructions.

Primitive instructions are the elements of the instruction sequences
considered in PGA. On execution of such an instruction sequence, these
primitive instructions have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction
if 1 is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
inaction occurs;

• the effect of a negative test instruction −a is the same as the effect
of +a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if 1 is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction — if l equals 0 or there is no
primitive instruction to proceed with, inaction occurs;

• the effect of the termination instruction ! is that execution terminates.

118 J.A. Bergstra, C.A. Middelburg

Inaction occurs if no more basic instructions are executed, but execution
does not terminate.

PGA has one sort: the sort IS of instruction sequences. We make this
sort explicit to anticipate the need for many-sortedness later on. To build
terms of sort IS, PGA has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS→ IS ;

• the unary repetition operator ω : IS→ IS .

Terms of sort IS are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use infix
notation for concatenation and postfix notation for repetition.

A PGA term in which the repetition operator does not occur is called
a repetition-free PGA term.

One way of thinking about closed PGA terms is that they represent
non-empty, possibly infinite sequences of primitive instructions with finitely
many distinct suffixes. The instruction sequence represented by a closed term
of the form t ; t′ is the instruction sequence represented by t concatenated
with the instruction sequence represented by t′.3 The instruction sequence
represented by a closed term of the form tω is the instruction sequence
represented by t concatenated infinitely many times with itself. A closed
PGA term represents a finite instruction sequence if and only if it is a closed
repetition-free PGA term.

The axioms of PGA are given in Table 1. In this table, u, u1, . . . , uk and
v1, . . . , vk′+1 stand for arbitrary primitive instructions from I, k, k′, and l
stand for arbitrary natural numbers from N, and n stands for an arbitrary
natural number from N1.

4 For each n ∈ N1, the term tn, where t is a PGA
term, is defined by induction on n as follows: t1 = t, and tn+1 = t ; tn.

Let t and t′ be closed PGA terms. Then t = t′ is derivable from the
axioms of PGA iff t and t′ represent the same instruction sequence after
changing all chained jumps into single jumps and making all jumps as short
as possible. Moreover, t = t′ is derivable from PGA1–PGA4 iff t and t′

represent the same instruction sequence. We write PGAisc for the algebraic

3The concatenation of an infinite sequence with a finite or infinite sequence yields the
former sequence.

4We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.

Program Algebra for Turing-Machine Programs 119

Table 1: Axioms of PGA

(X ; Y) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y)ω = X ; (Y ;X)ω PGA4

#k+1 ; u1 ; . . . ; uk ; #0 = #0 ; u1 ; . . . ; uk ; #0 PGA5

#k+1 ; u1 ; . . . ; uk ; #l = #l+k+1 ; u1 ; . . . ; uk ; #l PGA6

(#l+k+1 ; u1 ; . . . ; uk)ω = (#l ; u1 ; . . . ; uk)ω PGA7

#l+k+k′+2 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)ω =

#l+k+1 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)ω PGA8

theory whose sorts, constants and operators are those of PGA, but whose
axioms are PGA1–PGA4.

The informal explanation of closed PGA terms as sequences of primitive
instructions given above can be looked upon as a sketch of the intended
model of the axioms of PGAisc. This model, which is described in detail in,
for example, [6], is an initial model of the axioms of PGAisc. Henceforth,
the instruction sequences of the kind considered in PGA are called PGA
instruction sequences.

3 Basic Thread Algebra for Finite and Infinite
Threads

In this section, we introduce BTA (Basic Thread Algebra) and an extension
of BTA that reflects the idea that infinite threads are identical if their
approximations up to any finite depth are identical.

BTA is concerned with mathematical objects that model in a direct
way the behaviours produced by PGA instruction sequences under execution.
The objects in question are called threads. A thread models a behaviour
that consists of performing basic actions in a sequential fashion. Upon
performing a basic action, a reply from an execution environment determines
how the behaviour proceeds subsequently. The possible replies are the
Boolean values 0 and 1.

The basic instructions from A are taken as basic actions. Besides, tau
is taken as a special basic action. It is assumed that tau /∈ A. We write Atau

120 J.A. Bergstra, C.A. Middelburg

for A ∪ {tau}.
BTA has one sort: the sort T of threads. We make this sort explicit to

anticipate the need for many-sortedness later on. To build terms of sort T,
BTA has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

• for each α ∈ Atau, the binary postconditional composition operator
�α� : T×T→ T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y, z. We use infix
notation for postconditional composition. We introduce basic action prefixing
as an abbreviation: α ◦ t, where α ∈ Atau and t is a BTA term, abbreviates
t�α� t. We treat an expression of the form α ◦ t and the BTA term that it
abbreviates as syntactically the same.

Closed BTA terms are considered to represent threads. The thread
represented by a closed term of the form t �α� t′ models the behaviour
that first performs α, and then proceeds as the behaviour modeled by the
thread represented by t if the reply from the execution environment is 1
and proceeds as the behaviour modeled by the thread represented by t′ if
the reply from the execution environment is 0. Performing tau, which is
considered performing an internal action, always leads to the reply 1. The
thread represented by S models the behaviour that does nothing else but
terminate and the thread represented by D models the behaviour that is
inactive, i.e. it performs no more basic actions and it does not terminate.

BTA has only one axiom. This axiom is given in Table 2.

Table 2: Axiom of BTA

x� tau� y = x� tau� x T1

Using the abbreviation introduced above, it can also be written as
follows: x� tau� y = tau ◦ x.

Each closed BTA term represents a finite thread, i.e. a thread with
a finite upper bound to the number of basic actions that it can perform.
Infinite threads, i.e. threads without a finite upper bound to the number
of basic actions that it can perform, can be defined by means of a set of
recursion equations (see e.g. [5]).

Program Algebra for Turing-Machine Programs 121

A regular thread is a finite or infinite thread that can be defined by
means of a finite set of recursion equations. The behaviours produced
by PGA instruction sequences under execution are exactly the behaviours
modeled by regular threads.

Two infinite threads are considered identical if their approximations
up to any finite depth are identical. The approximation up to depth n of a
thread models the behaviour that differs from the behaviour modeled by the
thread in that it will become inactive after it has performed n actions unless
it would terminate at this point. AIP (Approximation Induction Principle) is
a conditional equation that formalizes the above-mentioned view on infinite
threads. In AIP, the approximation up to depth n is phrased in terms of
the unary projection operator πn : T→ T.

The axioms for the projection operators and AIP are given in Table 3.

Table 3: Axioms for the projection operators and AIP

π0(x) = D PR1

πn+1(D) = D PR2

πn+1(S) = S PR3

πn+1(x�α� y) = πn(x) �α� πn(y) PR4∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

In this table, α stands for an arbitrary basic action from Atau and n
stands for an arbitrary natural number from N. We write BTA∞ for BTA ex-
tended with the projection operators, the axioms for the projection operators,
and AIP.

By AIP, we have to deal in BTA∞ with conditional equational formulas
with a countably infinite number of premises. Therefore, infinitary con-
ditional equational logic is used in deriving equations from the axioms of
BTA∞. A complete inference system for infinitary conditional equational
logic can be found in, for example, [26].

The depth of a finite thread is the maximum number of basic actions
that the thread can perform before it terminates or becomes inactive. We
define the function depth that assigns to each closed BTA term the depth of
the finite thread that it represents:

depth(S) = 0 ,

depth(D) = 0 ,

depth(t�α� t′) = max{depth(t), depth(t′)}+ 1 .

122 J.A. Bergstra, C.A. Middelburg

4 Thread Extraction and Behavioural Congruence

In this section, we make precise in the setting of BTA∞ which behaviours
are produced by PGA instruction sequences under execution and introduce
the notion of behavioural congruence on PGA instruction sequences.

To make precise which behaviours are produced by PGA instruction
sequences under execution, we introduce an operator | |. For each closed
PGA term t, |t| represents the thread that models the behaviour produced
by the instruction sequence represented by t under execution.

Formally, we combine PGA with BTA∞ and extend the combination
with the thread extraction operator | | : IS → T and the axioms given in
Table 4.

Table 4: Axioms for the thread extraction operator

|a| = a ◦ D TE1

|a ;X| = a ◦ |X| TE2

|+a| = a ◦ D TE3

|+a ;X| = |X|�a� |#2 ;X| TE4

|−a| = a ◦ D TE5

|−a ;X| = |#2 ;X|�a� |X| TE6

|#l| = D TE7

|#0 ;X| = D TE8

|#1 ;X| = |X| TE9

|#l + 2 ; u| = D TE10

|#l + 2 ; u ;X| = |#l + 1 ;X| TE11

|!| = S TE12

|! ;X| = S TE13

In this table, a stands for an arbitrary basic instruction from A, u stands
for an arbitrary primitive instruction from I, and l stands for an arbitrary
natural number from N. We write PGA/BTA∞ for the combination of PGA
and BTA∞ extended with the thread extraction operator and the axioms
for the thread extraction operator.

If a closed PGA term t represents an instruction sequence that starts
with an infinite chain of forward jumps, then TE9 and TE11 can be applied
to |t| infinitely often without ever showing that a basic action is performed.
In this case, we have to do with inaction and, being consistent with that,
|t| = D is derivable from the axioms of PGA and TE1–TE13. By contrast,
|t| = D is not derivable from the axioms of PGAisc and TE1–TE13. However,
if closed PGA terms t and t′ represent instruction sequences in which no
infinite chains of forward jumps occur, then t = t′ is derivable from the
axioms of PGA only if |t| = |t′| is derivable from the axioms of PGAisc and
TE1–TE13.

Program Algebra for Turing-Machine Programs 123

If a closed PGA term t represents an infinite instruction sequence,
then we can extract the approximations of the thread modeling the be-
haviour produced by that instruction sequence under execution up to every
finite depth: for each n ∈ N, there exists a closed BTA term t′′ such that
πn(|t|) = t′′ is derivable from the axioms of PGA, TE1–TE13, the ax-
ioms of BTA, and PR1–PR4. If closed PGA terms t and t′ represent
infinite instruction sequences that produce the same behaviour under ex-
ecution, then this can be proved using the following instance of AIP:∧

n≥0 πn(|t|) = πn(|t′|) ⇒ |t| = |t′|.
The following proposition, proved in [6], puts the expressiveness of PGA

in terms of producible behaviours.

Proposition 1 LetM be a model of PGA/BTA∞. Then, for each element p
from the domain associated with the sort T in M, there exists a closed PGA
term t such that p is the interpretation of |t| inM iff p is a component of the
solution of a finite set of recursion equations {V = tV | V ∈ V}, where V is
a set of variables of sort T and each tV is a BTA term that is not a variable
and contains only variables from V.

More results on the expressiveness of PGA can be found in [6].
PGA instruction sequences are behaviourally equivalent if they produce

the same behaviour under execution. Behavioural equivalence is not a con-
gruence. Instruction sequences are behaviourally congruent if they produce
the same behaviour irrespective of the way they are entered and the way
they are left.

Let t and t′ be closed PGA terms. Then:

• t and t′ are behaviourally equivalent, written t ≡be t
′, if |t| = |t′| is

derivable from the axioms of PGA/BTA∞;

• t and t′ are behaviourally congruent, written t ∼=bc t
′, if, for each

l, n ∈ N, #l ; t ; !n ≡be #l ; t′ ; !n.5

Behavioural congruence is the largest congruence contained in behavioural
equivalence.

5 The Case of Instructions for Turing Tapes

In this section, we present the instantiation of PGA in which the instructions
taken as basic instructions are all possible instructions to read out or alter the

5We use the convention that t ; t′
0

stands for t.

124 J.A. Bergstra, C.A. Middelburg

content of the cell of a Turing tape under the tape’s head and to optionally
move the head in either direction by one cell.

The instructions concerned are meant for Turing tapes of which each cell
contains a symbol from the input alphabet {0, 1} or the symbol t. Turing
proposed computing machines with a tape of which each cell contains a
symbol from a finite alphabet, the so-called tape alphabet, that includes the
input alphabet {0, 1} and the symbol t (see [25]).6 The tape alphabet may
differ from one machine to another. The choice between the tape alphabet
{0, 1,t} and any tape alphabet that includes {0, 1,t} is rather arbitrary
because it has no effect on the computability and the order-of-magnitude
time complexity of partial functions from ({0, 1}∗)n to {0, 1}∗ (n ≥ 0). We
have chosen for the tape alphabet {0, 1,t} because it allows of presenting
part of the material to come in a more comprehensible manner.

In the present instantiation of PGA, it is assumed that a fixed but
arbitrary set F of foci has been given. Foci serve as names of Turing tapes.

The set of basic instructions used in this instantiation consists of the
following:

for each p : {0, 1,t} → {0, 1}, q : {0, 1,t} → {0, 1,t}, d ∈ {−1, 0, 1},
and f ∈ F , a basic Turing-tape instruction f.p/(q, d).

We write Att for this set.

Each basic Turing-tape instruction consists of two parts separated by a
dot. The part on the left-hand side of the dot plays the role of the name
of a Turing tape and the part on the right-hand side of the dot plays the
role of an operation to be carried out on the named Turing tape when the
instruction is executed. The intuition is basically that carrying out the
operation concerned produces as a reply 0 or 1 depending on the content of
the cell under the head of the named Turing tape, modifies the content of
this cell, and optionally moves the head in either direction by one cell. More
precisely, the execution of a basic Turing-tape instruction f.p/(q, d) has the
following effects:

• if the content of the cell under the head of the Turing tape named f
is b when the execution of f.p/(q, d) starts, then the reply produced
on termination of the execution of f.p/(q, d) is p(b);

6In many publications in which Turing machines are defined, the input alphabet may
even be any non-empty finite set of symbols.

Program Algebra for Turing-Machine Programs 125

• if the content of the cell under the head of the Turing tape named f
is b when the execution of f.p/(q, d) starts, then the content of this
cell is q(b) when the execution of f.p/(q, d) terminates;

• if the cell under the head of the Turing tape named f is the ith cell of
the tape when the execution of f.p/(q, d) starts, then the cell under the
head of this Turing tape is the max(i+ d, 1)th cell when the execution
of f.p/(q, d) terminates.

The execution of f.p/(q, d) has no effect on Turing tapes other than the one
named f .

We write [PGA/BTA∞](Att) for PGA/BTA∞ with A instantiated
by Att. Notice that [PGA/BTA∞](Att) is itself parameterized by a set
of foci.

Some functions from {0, 1,t} to {0, 1,t} are:

• the function 0?, satisfying 0?(0) = 1 and 0?(1) = 0 and 0?(t) = 0;

• the function 1?, satisfying 1?(0) = 0 and 1?(1) = 1 and 1?(t) = 0;

• the function t?, satisfying t?(0) = 0 and t?(1) = 0 and t?(t) = 1;

• the function 0, satisfying 0(0) = 0 and 0(1) = 0 and 0(t) = 0;

• the function 1, satisfying 1(0) = 1 and 1(1) = 1 and 0(t) = 1;

• the function t, satisfying 1(0) = t and 1(1) = t and 0(t) = t;

• the function i , satisfying i(0) = 0 and i(1) = 1 and 0(t) = t;

• the function c, satisfying c(0) = 1 and c(1) = 0 and 0(t) = t.

The first five of these functions are also functions from {0, 1,t} to {0, 1}.
For some instances of p/(q, d), we introduce a special notation. We write:

test:0 for 0?/(i , 0) ,

test:1 for 1?/(i , 0) ,

test:t for t?/(i , 0) ,

set:0:d for 1/(0, d) ,

set:1:d for 1/(1, d) ,

set:t:d for 1/(t, d) ,

skip:d for 1/(i , d) ,

where d ∈ {−1, 0, 1}.

126 J.A. Bergstra, C.A. Middelburg

6 Turing-Tape Families

PGA instruction sequences under execution may interact with the named
services from a family of services provided by their execution environment.
In applications of PGA, the services provided by an execution environment
vary from Boolean registers via Turing tapes to random access memories of
actual computers.7 In this section, we consider service families in which the
services are Turing tapes and introduce an algebraic theory of Turing-tape
families called TTFA (Turing-Tape Family Algebra).

A Turing-tape state is a pair (τ, i), where τ : N1 → {0, 1,t} and i ∈ N1,
satisfying the condition that, for some j ∈ N1, for all k ∈ N, τ(j + k) = t.
We write S for the set of all Turing-tape states.

Let (τ, i) be a Turing-tape state. Then, for all j ∈ N1, τ(j) is the
content of the jth cell of the Turing tape concerned and the ith cell is the
cell under its head.

Our Turing tapes are one-way infinite tapes. Turing proposed comput-
ing machine with two-way infinite tapes (see [25]). In many publications
in which Turing machine are defined, Turing machines are a variant of
Turing’s computing machines with one or more one-way infinite tapes (cf.
the textbooks [1, 2, 18, 19, 20, 24]). The choice between one-way infinite
tapes and two-way infinite tapes is rather arbitrary because it has no effect
on the computability and the order-of-magnitude time complexity of partial
functions from ({0, 1}∗)n to {0, 1}∗ (n ≥ 0). We have chosen for one-way
infinite tapes because it allows of presenting part of the material to come in
a more comprehensible manner.

In Section 7, we will use the notation (τ :i 7→b). For each τ :N1 → {0, 1,t},
i ∈ N1, and b ∈ {0, 1,t}, (τ : i 7→ b) is defined as follows: (τ : i 7→ b)(i) = b
and, for all j ∈ N1 with j 6= i, (τ : i 7→ b)(j) = τ(j).

In TTFA, as in [PGA/BTA∞](Att), it is assumed that a fixed but
arbitrary set F of foci has been given.

TTFA has one sort: the sort TTF of Turing-tape families. To build
terms of sort TTF, TTFA has the following constants and operators:

• the empty Turing-tape family constant ∅ :→TTF;

• for each f ∈ F and s ∈ S ∪ {∗}, the singleton Turing-tape family
constant f.tt(s) :→TTF;

7A Boolean register consists of a single cell that contains a symbol from the alphabet
{0, 1}. Carrying out an operation on a Boolean register produces as a reply 0 or 1,
depending on the content of the cell, and/or modifies the content of the cell.

Program Algebra for Turing-Machine Programs 127

• the binary Turing-tape family composition operator ⊕ : TTF ×
TTF→ TTF;

• for each F ⊆ F , the unary encapsulation operator ∂F : TTF→ TTF.

We assume that there are infinitely many variables of sort TTF, includ-
ing u, v, w. We use infix notation for the Turing-tape family composition
operator.

The Turing-tape family denoted by ∅ is the empty Turing-tape family.
The Turing-tape family denoted by a closed term of the form f.tt(s), where
s ∈ S, consists of one named Turing tape only, the Turing tape concerned
is an operative Turing tape named f whose state is s. The Turing-tape
family denoted by a closed term of the form f.tt(∗) consists of one named
Turing tape only, the Turing tape concerned is an inoperative Turing tape
named f . The Turing-tape family denoted by a closed term of the form t⊕ t′
consists of all named Turing tapes that belong to either the Turing-tape
family denoted by t or the Turing-tape family denoted by t′. In the case
where a named Turing tape from the Turing-tape family denoted by t and
a named Turing tape from the Turing-tape family denoted by t′ have the
same name, they collapse to an inoperative Turing tape with the name
concerned. The Turing-tape family denoted by a closed term of the form
∂F (t) consists of all named Turing tapes with a name not in F that belong
to the Turing-tape family denoted by t.

An inoperative Turing tape can be viewed as a Turing tape whose state
is unavailable. Carrying out an operation on an inoperative Turing tape is
impossible.

The axioms of TTFA are given in Table 5.

Table 5: Axioms of TTFA

u⊕ ∅ = u TTFC1

u⊕ v = v ⊕ u TTFC2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) TTFC3

f.tt(s)⊕ f.tt(s′) = f.tt(∗) TTFC4

∂F (∅) = ∅ TTFE1

∂F (f.tt(s)) = ∅ if f ∈ F TTFE2

∂F (f.tt(s)) = f.tt(s) if f /∈ F TTFE3

∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) TTFE4

In this table, f stands for an arbitrary focus from F , F stands for an
arbitrary subset of F , and s and s′ stand for arbitrary members of S ∪ {∗}.
These axioms simply formalize the informal explanation given above.

The following proposition, proved in [6], is a representation result for
closed TTFA terms.

128 J.A. Bergstra, C.A. Middelburg

Proposition 2 For all closed TTFA terms t, for all f ∈ F , either t =
∂{f}(t) is derivable from the axioms of TTFA or there exists an s ∈ S ∪ {∗}
such that t = f.tt(s)⊕ ∂{f}(t) is derivable from the axioms of TTFA.

In Section 8, we will use the notation⊕n
i=1 ti. For each i ∈ N1, let ti be

a terms of sort TTF. Then, for each n ∈ N1, the term ⊕n
i=1 ti is defined by

induction on n as follows: ⊕1
i=1 ti = t1 and ⊕n+1

i=1 ti =⊕n
i=1 ti ⊕ tn+1. We

use the convention that ⊕n
i=1 ti stands for ∅ if n = 0.

7 Interaction of Threads with Turing Tapes

If instructions from Att are taken as basic instructions, a PGA instruction
sequence under execution may interact with named Turing tapes from a
family of Turing tapes provided by its execution environment. In line with
this kind of interaction, a thread may perform a basic action basically for
the purpose of modifying the content of a named Turing tape or receiving a
reply value that depends on the content of a named Turing tape. In this
section, we introduce related operators.

We combine PGA/BTA∞(Att) with TTFA and extend the combination
with the following operators for interaction of threads with Turing tapes:

• the binary use operator / : T×TTF→ T;

• the binary apply operator • : T×TTF→ TTF;

• the unary abstraction operator τtau : T→ T;

and the axioms given in Tables 6.8

In these tables, f stands for an arbitrary focus from F , p stands for an
arbitrary function from {0, 1,t} to {0, 1}, q stands for an arbitrary function
from {0, 1,t} to {0, 1,t}, d stands for an arbitrary member of {−1, 0, 1}, τ
stands for an arbitrary function from N1 to {0, 1,t}, i stands for an arbitrary
natural number from N1, n stands for an arbitrary natural number from N,
and t and t′ stand for arbitrary terms of sort TTF. We use infix notation
for the use and apply operators. We write [PGA/BTA∞](Att)/TTI for
the combination of [PGA/BTA∞](Att) and TTFA extended with the use
operator, the apply operator, the abstraction operator, and the axioms for
these operators.

8We write t[t′/x] for the result of substituting term t′ for variable x in term t.

Program Algebra for Turing-Machine Programs 129

Table 6: Axioms for the use, apply and abstraction operator

S / u = S U1

D / u = D U2

(tau ◦ x) / u = tau ◦ (x / u) U3

(x� f.p/(q, d)� y) / ∂{f}(u) = (x / ∂{f}(u)) � f.p/(q, d)� (y / ∂{f}(u)) U4

(x� f.p/(q, d)� y) / (f.tt(τ, i)⊕ ∂{f}(u))

= tau ◦ (x / (f.tt((τ : i 7→ q(τ(i))),max(i+ d, 1))⊕ ∂{f}(u))) if p(τ(i)) = 1 U5

(x� f.p/(q, d)� y) / (f.tt(τ, i)⊕ ∂{f}(u))

= tau ◦ (y / (f.tt((τ : i 7→ q(τ(i))),max(i+ d, 1))⊕ ∂{f}(u))) if p(τ(i)) = 0 U6

(x� f.p/(q, d)� y) / (f.tt(∗)⊕ ∂{f}(u)) = D U7

πn(x / u) = πn(x) / u U8

S • u = u A1

D • u = ∅ A2

(tau ◦ x) • u = tau ◦ (x • u) A3

(x� f.p/(q, d)� y) • ∂{f}(u) = ∅ A4

(x� f.p/(q, d)� y) • (f.tt(τ, i)⊕ ∂{f}(u))

= x • (f.tt((τ : i 7→ q(τ(i))),max(i+ d, 1))⊕ ∂{f}(u)) if p(τ(i)) = 1 A5

(x� f.p/(q, d)� y) • (f.tt(τ, i)⊕ ∂{f}(u))

= y • (f.tt((τ : i 7→ q(τ(i))),max(i+ d, 1))⊕ ∂{f}(u)) if p(τ(i)) = 0 A6

(x� f.p/(q, d)� y) • (f.tt(∗)⊕ ∂{f}(u)) = ∅ A7∧
k≥n t[πk(x)/z] = t′[πk(y)/z] ⇒ t[x/z] = t′[y/z] A8

τtau(S) = S C1

τtau(D) = D C2

τtau(tau ◦ x) = τtau(x) C3

τtau(x� f.p/(q, d)� y) = τtau(x) � f.p/(q, d)� τtau(y) C4∧
k≥0 τtau(πk(x)) = τtau(πk(y)) ⇒ τtau(x) = τtau(y) C5

Axioms U1–U7 and A1–A7 formalize the informal explanation of the
use operator and the apply operator given below and in addition stipulate
what is the result of apply if an unavailable focus is involved (A4) and what
is the result of use and apply if an inoperative Turing tape is involved (U7
and A7). Axioms U8 and A8 allow of reasoning about infinite threads, and

130 J.A. Bergstra, C.A. Middelburg

therefore about the behaviour produced by infinite instruction sequences
under execution, in the context of use and apply, respectively.

On interaction between a thread and a Turing tape, the thread affects
the Turing tape and the Turing tape affects the thread. The use operator
concerns the effects of Turing tapes on threads and the apply operator
concerns the effects of threads on Turing tapes. The thread denoted by a
closed term of the form t / t′ and the Turing-tape family denoted by a closed
term of the form t • t′ are the thread and Turing-tape family, respectively,
that result from carrying out the operation that is part of each basic action
performed by the thread denoted by t on the Turing tape in the Turing-tape
family denoted by t′ with the focus that is part of the basic action as its
name. When the operation that is part of a basic action performed by a
thread is carried out on a Turing tape, the content of the Turing tape is
modified according to the operation concerned and the thread is affected as
follows: the basic action turns into the internal action tau and the two ways
to proceed reduce to one on the basis of the reply value produced according
to the operation concerned.

With the use operator the internal action tau is left as a trace of each
basic action that has led to carrying out an operation on a Turing tape. The
abstraction operator serves to abstract fully from such internal activity by
concealing tau. Axioms C1–C4 formalizes the concealment of tau. Axiom C5
allows of reasoning about infinite threads in the context of abstraction.

The following two theorems are elimination results for closed
[PGA/BTA∞](Att)/TTI terms.

Theorem 1 For all closed [PGA/BTA∞](Att)/TTI terms t of sort T in
which all subterms of sort IS are repetition-free, there exists a closed
[PGA/BTA∞](Att) term t′ of sort T such that t = t′ is derivable from
the axioms of [PGA/BTA∞](Att)/TTI.

Proof: It is easy to prove by structural induction that, for all closed
repetition-free [PGA/BTA∞](Att) terms s of sort IS, there exists a closed
[PGA/BTA∞](Att) term s′ of sort T such that |s| = s′ is derivable from
the axioms of [PGA/BTA∞](Att). Therefore, it is sufficient to prove the
proposition for all closed [PGA/BTA∞](Att)/TTI terms t of sort T in
which no subterms of sort IS occur. This is proved similarly to part (1) of
Theorem 3.1 from [6]. 2

Theorem 2 For all closed [PGA/BTA∞](Att)/TTI terms t of sort TTF
in which all subterms of sort IS are repetition-free, there exists a closed

Program Algebra for Turing-Machine Programs 131

[PGA/BTA∞](Att) term t′ of sort TTF such that t = t′ is derivable from
the axioms of [PGA/BTA∞](Att)/TTI.

Proof: As in the proof of Theorem 1, it is sufficient to prove the
proposition for all closed [PGA/BTA∞](Att)/TTI terms t of sort TTF in
which no subterms of sort IS occur. This is proved similarly to part (2) of
Theorem 3.1 from [6]. 2

8 Computing Partial Functions from ({0, 1}∗)n to
{0, 1}∗

In this section, we make precise in the setting of the algebraic theory
[PGA/BTA∞](Att)/TTI what it means that a given instruction sequence
computes a given partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N).

We write Fk
tt, where k ∈ N1, for the set {t:i | 1 ≤ i ≤ k} of foci. We

write [[PGA/BTA∞](Att)/TTI](Fk
tt) for [PGA/BTA∞](Att)/TTI with F

instantiated by Fk
tt.

Below, we use the function c:{τ :N1 → {0, 1,t} | (τ, 1) ∈ S} → {0, 1,t}∗
for extracting the content of a Turing tape. This function is defined as follows:

for all n ∈ N1, for all b1, . . . , bn ∈ {0, 1,t},
c(τ) = b1 . . . bn iff τ(i) = bi for all i ≤ n, τ(i) = t for all i > n, and

τ(n) 6= t;

c(τ) = ε iff τ(i) = t for all i ≥ 1.9

Let k ∈ N1, let t be a closed [[PGA/BTA∞](Att)/TTI](Fk
tt) term of

sort IS, let n ∈ N, let F : ({0, 1}∗)n 7→ {0, 1}∗,10 and let T : N→ N. Then t
computes F with k tapes in time T if:

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is defined,
there exist (τ ′1, i1), . . . , (τ

′
k−1, ik−1) ∈ S such that

|t| •⊕k
j=1 t:j.tt(τj , 1) =⊕k−1

j=1 t:j.tt(τ
′
j , ij)⊕ t:k.tt(τ ′k, 1) ,

depth(|t| /⊕k
j=1 t:j.tt(τj , 1)) ≤ T (len(w1) + . . .+ len(wn)) ,

where
9We write ε for the empty string.

10We write f :A 7→ B to indicate that f is a partial function from A to B.

132 J.A. Bergstra, C.A. Middelburg

τ1 is the unique τ : N1 → {0, 1,t} with (τ, 1) ∈ S and
c(τ) = w1 t . . . twn,

for j 6= 1, τj is the unique τ : N1 → {0, 1,t} with (τ, 1) ∈ S and
c(τ) = ε,

τ ′k is the unique τ : N1 → {0, 1,t} with (τ, 1) ∈ S and
c(τ) = F (w1, . . . , wn);

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is undefined,

|t| •⊕k
j=1 t:j.tt(τj , 1) = ∅ ,

where

τ1 is the unique τ : N1 → {0, 1,t} with (τ, 1) ∈ S and
c(τ) = w1 t . . . twn,

for j 6= 1, τj is the unique τ : N1 → {0, 1,t} with (τ, 1) ∈ S and
c(τ) = ε.

We say that t computes F in time T if there exists a k ∈ N1 such that t
computes F with k tapes in time T , and we say that t computes F if there
exists a T : N→ N such that t computes F in time T .

With the above definition, we can establish whether an instruction
sequence of the kind considered in [[PGA/BTA∞](Att)/TTI](Fk

tt) (k ∈ N1)
computes a given partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N) by
equational reasoning using the axioms of [[PGA/BTA∞](Att)/TTI](Fk

tt).
A single-tape Turing-machine program is a closed

[[PGA/BTA∞](Att)/TTI](F1
tt) term of sort IS that is of the form

(t1 ; . . . ; tn)ω, where each ti is of the form

test:0 ; #3 ; set:b0:d0 ; u0 ;

test:1 ; #3 ; set:b1:d1 ; u1 ;

test:t ; #3 ; set:bt:dt ; ut ,

where b0, b1, bt ∈ {0, 1,t}, d0, d1, dt ∈ {−1, 0, 1}, and

u0 is of the form #l with l ∈ {12 · i+ 9 | 0 ≤ i < n} or #0 or !,

u1 is of the form #l with l ∈ {12 · i+ 5 | 0 ≤ i < n} or #0 or !,

ut is of the form #l with l ∈ {12 · i+ 1 | 0 ≤ i < n} or #0 or !.

Program Algebra for Turing-Machine Programs 133

We refrain from defining a k-tape Turing-machine program (for k > 1),
which is much more involved than defining a single-tape Turing-machine
program. However, we remark that the theorems given below go through for
k-tape Turing-machine programs.

The following theorem is a result concerning the computational power
of single-tape Turing-machine programs.

Theorem 3 For each F : ({0, 1}∗)n 7→ {0, 1}∗, there exists a single-tape
Turing-machine program t such that t computes F iff F is Turing-computable.

Proof: For each F : ({0, 1}∗)n 7→ {0, 1}∗, F is Turing-computable iff there
exists a Turing machine with a single semi-infinite tape and stay option that
computes F . There is an obvious one-to-one correspondence between the
transition functions of such Turing machines and single-tape Turing-machine
programs by which the Turing machines concerned can be simulated when
they are applied to a single tape. Hence, for each F : ({0, 1}∗)n 7→ {0, 1}∗,
there exists a single-tape Turing-machine program t such that t computes F
iff F is Turing-computable. 2

Below, we write TMPst for the set of all single-tape Turing-machine
programs, and POLY for {T | T : N→ N ∧ T is a polynomial function}.

The following theorem is a result relating the complexity class P to the
functions that can be computed by a single-tape Turing-machine program
in polynomial time.

Theorem 4 P is equal to the class of all functions F : {0, 1}∗ → {0, 1} for
which there exist an t ∈ TMPst and a T ∈ POLY such that t computes F
in time T .

Proof: This follows from the proof of Theorem 3 and the fact that, if a
function F : {0, 1}∗ → {0, 1} is computed on a Turing machine in time T ,
then the one-to-one correspondence referred to in the proof of Theorem 3
yields for this Turing machine a single-tape Turing-machine program that
computes F in a time of O(T). 2

We think that Theorems 3 and 4 above provide evidence of the claim that
[PGA/BTA∞](Att)/TTI is a suitable setting for the development of theory
in areas such as computability and computational complexity. Moreover, in
this setting variations on Turing machines that have not attracted attention
yet come into the picture and can be studied.

134 J.A. Bergstra, C.A. Middelburg

9 A Turing-Machine Program Example

In this section, we give a simple example of a Turing-machine program. We
consider the non-zeroness test function NZT : ({0, 1}∗)1 → {0, 1}∗ defined by

NZT (b1 . . . bn) = 0 if b1 = 0 and . . . and bn = 0 ,

NZT (b1 . . . bn) = 1 if b1 = 1 or . . . or bn = 1 .

NZT models the function nzt :N→ N defined by nzt(0) = 0 and nzt(k+1) = 1
with respect to the binary representations of the natural numbers.

We define a Turing-machine program NZTIS that computes NZT
as follows:

NZTIS , (−test:0 ; #3 ; set:0:1 ; #33 ;

−test:1 ; #3 ; set:1:1 ; #29 ;

−test:t ; #3 ; set:t:−1 ; #1 ;

−test:0 ; #3 ; set:t:−1 ; #33 ;

−test:1 ; #3 ; set:t:−1 ; #5 ;

−test:t ; #3 ; set:0:0 ; ! ;

−test:0 ; #3 ; set:t:−1 ; #33 ;

−test:1 ; #3 ; set:t:−1 ; #29 ;

−test:t ; #3 ; set:1:0 ; !)ω .

First, the head is moved to the right cell-by-cell until the first cell whose
content is t has been reached and after that the head is moved to the left
by one cell. Then, the head is moved to the left cell-by-cell until the first
cell of the tape has been reached and on top of that the content of each cell
that comes under the head is replaced by t. Finally, the content of the first
cell is replaced by 1 if at least one cell with content 1 has been encountered
during the moves to the left and the content of the first cell is replaced by 0
if no cell with content 1 has been encountered during the moves to the left.

Because Turing-machine programs closely resemble the transition func-
tions of Turing machines, they have built-in inefficiencies. We use NZTIS
to illustrate this. We define an instruction sequence NZTIS ′ that computes
NZT according to the same algorithm in less time than NZTIS as follows:

Program Algebra for Turing-Machine Programs 135

NZTIS ′ , (+test:t ; #3 ; skip:1 ; #18 ;

skip:−1 ;

−test:0 ; #3 ; set:t:−1 ; #18 ;

−test:1 ; #3 ; set:t:−1 ; #3 ;

set:0:0 ; ! ;

+test:t ; #3 ; set:t:−1 ; #18 ;

set:1:0 ; !)ω .

In NZTIS ′, which is clearly not a single-tape Turing-machine program, all
instructions of the form test:b that are redundant or can be made redundant
by using instructions of the form skip:d are removed.

In [13], we have presented instruction sequences that compute the
restriction of NZT to {0, 1}n, for n > 0. The instruction sequences concerned
are instruction sequences that, under execution, can act on Boolean registers
instead of Turing tapes.

10 Concluding Remarks

We have presented an instantiation of a parameterized algebraic theory of
single-pass instruction sequences, the behaviours produced by such instruc-
tion sequences under execution, and the interaction between such behaviours
and components of an execution environment. The parameterized theory
concerned is the basis of a line of research in which issues relating to a wide
variety of subjects from computer science have been rigorously investigated
thinking in terms of instruction sequences (see [21]). In the presented in-
stantiation of this parameterized theory, all possible instructions to read
out or alter the content of the cell of a Turing tape under the tape’s head
and to optionally move the head in either direction by one cell are taken
as basic instructions and Turing tapes are taken as the components of an
execution environment.

The instantiated theory provides a setting for the development of
theory in areas such as computability and computational complexity that
distinguishes itself by offering the possibility of equational reasoning and
being more general than the setting provided by a known version of the
Turing-machine model of computation. Many known and unknown versions

136 J.A. Bergstra, C.A. Middelburg

of the Turing-machine model of computation can be dealt with by imposing
apposite restrictions.

We have defined the notion of a single-tape Turing-machine program
in the setting of the instantiated theory and have provided evidence for
the claim that the theory provides a suitable setting for the development
of theory in areas such as computability and computational complexity.
Single-tape Turing-machine programs and multiple-tape Turing-machine
programs make up only small parts of the instruction sequences that can
be considered in this setting. This largely explains why it is more general
than the setting provided by a known version of the Turing-machine model
of computation. From our experience in previous work with a comparable
algebraic theory of instruction sequences, with instructions that operate on
Boolean registers instead of Turing tapes, we expect that the generality is
conducive to the investigation of novel issues in areas such as computability
and computational complexity.

The given presentation of the instantiated theory is set up in a way
where the introduction of services, the generic kind of execution-environment
components from the parameterized theory in question, is circumvented.
In [12], the presentation of another instantiation of the same parameterized
theory, with instructions that operate on Boolean registers, is set up in
the same way. The distinguishing feature of this way of presenting an
instantiation of this parameterized theory is that it yields a less involved
presentation than the way adopted in earlier work based on an instantiation
of this parameterized theory.

The closed terms of the instantiated theory that are of sort IS can be
considered to constitute a programming language of which the syntax and
semantics is defined following an algebraic approach. This approach is more
operational than the usual algebraic approach which is among other things
followed in [14, 15, 17]. A more operational approach is needed to make it
possible to investigate issues in the area of computational complexity.

Broadly speaking, the work presented in this paper is concerned with
formalization in subject areas, such as computability and computational
complexity, that traditionally relies on a version of the Turing-machine model
of computation. To the best of our knowledge, very little work has been
done in this area. Three notable exceptions are [3, 22, 28]. However, in
those papers, formalization means formalization in a theorem prover (Matita,
HOL4, Isabelle/HOL). Little or nothing is said in these papers about the
syntax and semantics of the notations used — which are probably the ones

Program Algebra for Turing-Machine Programs 137

that have to be used in the theorem provers. This makes it impracticable
to compare the work presented in those papers with our work, but it is of
course clear that the approach followed in the work presented in those papers
is completely different from the algebraic approach followed in our work.

Acknowledgement

We thank two anonymous referees for their helpful suggestions.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] S. Arora, B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, Cambridge, 2009.

[3] A. Asperti, W. Ricciotti. A Formalization of Multi-tape Turing Machines.
Theoretical Computer Science 603, 23–42, 2015. doi:10.1016/j.tcs.

2015.07.013.

[4] J. A. Bergstra, M. E. Loots. Program Algebra for Sequential Code.
Journal of Logic and Algebraic Programming 51(2), 125–156, 2002.
doi:10.1016/S1567-8326(02)00018-8.

[5] J. A. Bergstra, C. A. Middelburg. Instruction Sequence Processing
Operators. Acta Informatica 49(3), 139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[6] J. A. Bergstra, C. A. Middelburg. Instruction Sequences for Computer
Science, volume 2 of Atlantis Studies in Computing. Atlantis Press,
Amsterdam, 2012. doi:10.2991/978-94-91216-65-7.

[7] J. A. Bergstra, C. A. Middelburg. Instruction Sequence Expressions for
the Secure Hash Algorithm SHA-256. 2013. arXiv:1308.0219.

[8] J. A. Bergstra, C. A. Middelburg. Instruction Sequence Based Non-
Uniform Complexity Classes. Scientific Annals of Computer Science
24(1), 47–89, 2014. doi:10.7561/sacs.2014.1.47.

138 J.A. Bergstra, C.A. Middelburg

[9] J. A. Bergstra, C. A. Middelburg. On Algorithmic Equivalence of
Instruction Sequences for Computing Bit String Functions. Fundamenta
Informaticae 138(4), 411–434, 2015. doi:10.3233/fi-2015-1219.

[10] J. A. Bergstra, C. A. Middelburg. Instruction Sequence Size Complexity
of Parity. Fundamenta Informaticae 149(3), 297–309, 2016. doi:10.

3233/fi-2016-1450.

[11] J. A. Bergstra, C. A. Middelburg. Instruction Sequences Expressing
Multiplication Algorithms. Scientific Annals of Computer Science 28(1),
39–66, 2018. doi:10.7561/sacs.2018.1.39.

[12] J. A. Bergstra, C. A. Middelburg. A Short Introduction to Program
Algebra with Instructions for Boolean Registers. Computer Science
Journal of Moldova 26(3), 199–232, 2018.

[13] J. A. Bergstra, C. A. Middelburg. On the Complexity of the Correctness
Problem for Non-Zeroness Test Instruction Sequences. Theoretical
Computer Science 802, 1–18, 2020. doi:10.1016/j.tcs.2019.03.040.

[14] M. Broy, W. Dosch, B. Möller, M. Wirsing. GOTOs – A Study in the
Algebraic Specification of Programming Languages (Extended Abstract).
In W. Brauwer (Ed.) GI — 11. Jahrestagung, volume 50 of Informatik-
Fachberichte, 109–121, 1981. doi:10.1007/978-3-662-01089-1_13.

[15] M. Broy, M. Wirsing, P. Pepper. On the Algebraic Definition of Pro-
gramming Languages. ACM Transactions on Programming Languages
and Systems 9(1), 54–99, 1987. doi:10.1145/9758.10501.

[16] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification I: Equations
and Initial Semantics, EATCS Monographs on Theoretical Computer
Science 6, 1985. doi:10.1007/978-3-642-69962-7.

[17] J. A. Goguen, G. Malcolm. Algebraic Semantics of Imperative Programs.
Foundations of Computing. MIT Press, Cambridge, MA, 1996. doi:

10.7551/mitpress/1188.001.0001.

[18] O. Goldreich. Computational Complexity: A Conceptual Perspec-
tive. Cambridge University Press, Cambridge, 2008. doi:10.1017/

CBO9780511804106.

Program Algebra for Turing-Machine Programs 139

[19] S. Homer, A. L. Selman. Computability and Complexity The-
ory. Springer-Verlag, Berlin, second edition, 2011. doi:10.1007/

978-1-4614-0682-2.

[20] D. C. Kozen. Theory of Computation. Springer-Verlag, Berlin, 2006.
doi:10.1007/1-84628-477-5.

[21] C. A. Middelburg. Instruction Sequences as a Theme in Com-
puter Science. 2015. Springer-Verlag, Berlin, 2006. https://

instructionsequence.wordpress.com/.

[22] M. Norrish. Mechanised Computability Theory. In M. van Eekelen,
H. Geuvers, J. Schmaltz, F. Wiedijk (Eds.) Interactive Theorem Proving
(ITP 2011), Lecture Notes in Computer Science 6898, 297–311, 2011.
doi:10.1007/978-3-642-22863-6_22.

[23] D. Sannella, A. Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Monographs in Theoretical Computer
Science. An EATCS Seriess. Springer-Verlag, 2012. doi:10.1007/

978-3-642-17336-3.

[24] M. Sipser. Introduction to the Theory of Computation. Cengage Learn-
ing, Boston, MA, third edition, 2013.

[25] A. M. Turing. On Computable Numbers, with an Application to
the Entscheidungs Problem. Proceedings of the London Mathematical
Society, Series 2, 42, 230–265, 1937. doi:10.1112/plms/s2-42.1.230.
Correction: ibid 43, 544–546, 1938. doi:10.1112/plms/s2-43.6.544.

[26] R. J. van Glabbeek, F. W. Vaandrager. Modular Specification of
Process Algebras. Theoretical Computer Science 113(2), 293–348, 1993.
doi:10.1016/0304-3975(93)90006-F.

[27] M. Wirsing. Algebraic Specification. In J. van Leeuwe (Ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Se-
matics, 675–788. Elsevier, 1990. doi:10.1016/B978-0-444-88074-1.

50018-4.

[28] J. Xu, X. Zhang, C. Urban. Mechanising Turing Machines and Com-
putability Theory in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring,
D. Pichardie (Eds.) Proceedings 4th International Conference on Inter-
active Theorem Proving (ITP 2013), Lecture Notes in Computer Science
7998, 147–162, 2013. doi:10.1007/978-3-642-39634-2_13.

c© Scientific Annals of Computer Science 2019

