
Scientific Annals of Computer Science vol. 27 (2), 2017, pp. 111–135

doi: 10.7561/SACS.2017.2.111

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences

J.A. Bergstra1,C.A. Middelburg1

Abstract

In program algebra, an algebraic theory of single-pass instruction
sequences, three congruences on instruction sequences are paid atten-
tion to: instruction sequence congruence, structural congruence, and
behavioural congruence. Sound and complete axiom systems for the
first two congruences were already given in early papers on program
algebra. The current paper is the first one that is concerned with an
axiom system for the third congruence. The presented axiom system is
especially notable for its axioms that have to do with forward jump
instructions.
Keywords: program algebra, instruction sequence congruence, struc-
tural congruence, behavioural congruence, axiom system

1 Introduction

Program algebra, an algebraic theory of single-pass instruction sequences,
was first presented in [3] as the basis of an approach to programming language
semantics. Various issues, including issues relating to programming language
expressiveness, computability, computational complexity, algorithm efficiency,
algorithmic equivalence of programs, program verification, program perform-
ance, program compactness, and program parallelization, have been studied
in the setting of program algebra since then. An overview of all the work
done to date and some open questions originating from it can be found
at [13]. Three congruences on instruction sequences were introduced in [3]:

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, E-mail: {J.A.Bergstra,C.A.Middelburg}@uva.nl.

112 J.A. Bergstra, C.A. Middelburg

instruction sequence congruence, structural congruence and behavioural
congruence. Sound and complete axiom systems for instruction sequence
congruence and structural congruence were already provided in [3], but an
axiom system for behavioural congruence has never been provided. This
paper is concerned with an axiom system for behavioural congruence.

Program algebra is parameterized by a set of uninterpreted basic in-
structions. In applications of program algebra, this set is instantiated by a
set of interpreted basic instructions. In the case of most issues that have been
studied in the setting of program algebra, the interpreted basic instructions
are instructions to set and get the content of Boolean registers. In the case
of a few issues, the interpreted basic instructions are other instructions,
e.g. instructions to manipulate the content of counters or instructions to
manipulate the content of Turing machine tapes (see e.g. [4]).

In the uninstantiated case, behavioural congruence is the coarsest con-
gruence respecting the behaviour produced by instruction sequences under
execution that is possible with uninterpreted basic instructions. In the
instantiated cases, behavioural congruence is the coarsest congruence re-
specting the behaviour produced by instruction sequences under execution
that is possible taking the intended interpretation of the basic instructions
into account. In this paper, an emphasis is laid on the uninstantiated case.
Yet attention is paid to the instantiation in which all possible instructions
for Boolean registers are taken as basic instructions.

The single-pass instruction sequences considered in program algebra
are non-empty, finite or eventually periodic infinite instruction sequences.
In this paper, the soundness question, i.e. the question whether derivable
equality implies behavioural congruence, is fully answered in the affirmative.
However, the completeness question, i.e. the question whether behavioural
congruence implies derivable equality, is answered in the affirmative only
for the restriction to finite instruction sequences because of problems in
mastering the intricacy of a completeness proof for the unrestricted case.

In [3], basic thread algebra, an algebraic theory of mathematical objects
that model in a direct way the behaviours produced by instruction sequences
under execution, was introduced to describe which behaviours are produced
by the instruction sequences considered in program algebra.2 It is rather
awkward to describe and analyze the behaviours of this kind using algebraic
theories of processes such as ACP [1, 2], CCS [11, 14] and CSP [10, 12].

2In [3], basic thread algebra is introduced under the name basic polarized process
algebra.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 113

However, the objects considered in basic thread algebra can be viewed as
representations of processes as considered in ACP (see e.g. [6]). Basic thread
algebra is parameterized by a set of uninterpreted basic actions and, when
it is used for describing the behaviours produced by instruction sequences
under execution, basic instructions are taken as basic actions. Like in [3],
basic thread algebra will be used in this paper for describing the behaviours
produced by the instruction sequences considered in program algebra and to
define the notion of behavioural congruence of instruction sequences.

This paper is organized as follows. First, we introduce a version of
program algebra with axioms for instruction sequence congruence, structural
congruence, and behavioural congruence (Section 2). Next, we present the
preliminaries on basic thread algebra that are needed in the rest of the
paper (Section 3). After that, we describe which behaviours are produced
by instruction sequences under execution and define a notion of behavioural
congruence for instruction sequences (Section 4). Then, we go into the
soundness and completeness of the presented axiom system with respect to
the defined notion of behavioural congruence (Section 5). Following this, we
look at the instantiation of program algebra in which all possible instructions
for Boolean registers are taken as basic instructions (Section 6). Finally, we
make some concluding remarks (Section 7).

The following should be mentioned in advance. The set B of Boolean
values is a set with two elements whose intended interpretations are the truth
values false and true. As is common practice, we represent the elements of
B by the bits 0 and 1.

This paper draws somewhat from the preliminaries of earlier papers
that built on program algebra and basic thread algebra. The most recent
one of the papers in question is [9].

2 Program Algebra for Behavioural Congruence

In this section, we present PGAbc. PGAbc is a version of PGA (ProGram
Algebra) with, in addition to the usual axioms for instruction sequence
congruence and structural congruence, axioms for behavioural congruence.

The instruction sequences considered in PGAbc are single-pass in-
struction sequences of a particular kind.3 It is assumed that a fixed but

3The instruction sequences concerned are single-pass in the sense that they are in-
struction sequences of which each instruction is executed at most once and can be dropped
after it has been executed or jumped over.

114 J.A. Bergstra, C.A. Middelburg

arbitrary set A of basic instructions has been given. A is the basis for the
set of instructions that may occur in the instruction sequences considered
in PGAbc. The intuition is that the execution of a basic instruction may
modify a state and must produce a Boolean value as reply at its completion.
The actual reply may be state-dependent.

The set of instructions of which the instruction sequences considered in
PGAbc are composed is the set that consists of the following elements:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for this set. The elements from this set are called primitive
instructions.

Primitive instructions are the elements of the instruction sequences
considered in PGAbc. On execution of such an instruction sequence, these
primitive instructions have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
1 is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
inaction occurs;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of
+a, but execution always proceeds as if 1 is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction — if l equals 0 or there is no
primitive instruction to proceed with, inaction occurs;

• the effect of the termination instruction ! is that execution terminates.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 115

Inaction occurs if no more basic instructions are executed, but execution
does not terminate.

PGAbc has one sort: the sort IS of instruction sequences. We make
this sort explicit to anticipate the need for many-sortedness later on. To
build terms of sort IS, PGAbc has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS→ IS ;

• the unary repetition operator ω : IS→ IS .

Terms of sort IS are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use infix
notation for concatenation and postfix notation for repetition.

A PGAbc term in which the repetition operator does not occur is called
a repetition-free PGAbc term.

One way of thinking about closed PGAbc terms is that they represent
non-empty, finite or eventually periodic infinite sequences of primitive in-
structions.4 The instruction sequence represented by a closed term of the
form t ; t′ is the instruction sequence represented by t concatenated with the
instruction sequence represented by t′. The instruction sequence represented
by a closed term of the form tω is the instruction sequence represented by t
concatenated infinitely many times with itself. A closed PGAbc term repre-
sents a finite instruction sequence if and only if it is a closed repetition-free
PGAbc term.

In this paper, closed PGAbc terms are considered equal if the instruction
sequences that they represent can always take each other’s place in an in-
struction sequence in the sense that the behaviour produced under execution
remains the same irrespective of the interpretation of the instructions from
A. In other words, equality of closed terms stands in PGAbc for a kind of
behavioural congruence of the represented instruction sequences. The kind
of behavioural congruence in question will be made precise in Section 4.

The axioms of PGAbc are given in Table 1. In this table, n stands for
an arbitrary natural number from N1,5 u, u1, . . . , uk and v1, . . . , vk′+1 stand
for arbitrary primitive instructions from I, k, k′, and l stand for arbitrary
natural numbers from N, and a stands for an arbitrary basic instruction

4An eventually periodic infinite sequence is an infinite sequence with only finitely many
distinct suffixes.

5We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.

116 J.A. Bergstra, C.A. Middelburg

Table 1: Axioms of PGAbc

(X ; Y) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y)ω = X ; (Y ;X)ω PGA4

#k+1 ; u1 ; . . . ; uk ; #0 = #0 ; u1 ; . . . ; uk ; #0 PGA5

#k+1 ; u1 ; . . . ; uk ; #l = #l+k+1 ; u1 ; . . . ; uk ; #l PGA6

(#l+k+1 ; u1 ; . . . ; uk)
ω = (#l ; u1 ; . . . ; uk)

ω PGA7

#l+k+k′+2 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)
ω =

#l+k+1 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)
ω PGA8

+a ; #0 ; #0 = a ; #0 ; #0 PGA9

−a ; #0 ; #0 = a ; #0 ; #0 PGA10

+a ; #1 = a ; #1 PGA11

−a ; #1 = a ; #1 PGA12

+a ; #l+2 ; #l+1 = a ; #l+2 ; #l+1 PGA13

−a ; #l+2 ; #l+1 = a ; #l+2 ; #l+1 PGA14

+a ; ! ; ! = a ; ! ; ! PGA15

−a ; ! ; ! = a ; ! ; ! PGA16

+a ; uω = a ; uω PGA17

−a ; uω = a ; uω PGA18

#k+3 ; #k+3 ; #k+3 ; u1 ; . . . ; uk ; +a = +a ; #k+3 ; #k+3 ; u1 ; . . . ; uk ; +a PGA19

#k+3 ; #k+3 ; #k+3 ; u1 ; . . . ; uk ;−a = −a ; #k+3 ; #k+3 ; u1 ; . . . ; uk ;−a PGA20

#k+2 ; #k+2 ; u1 ; . . . ; uk ; a = a ; #k+2 ; u1 ; . . . ; uk ; a PGA21

#k+k′+4 ; u1 ; . . . ; uk ; +a ; #k′+3 ; #k′+3 ; v1 ; . . . ; vk′ ; +a =

#k+1 ; u1 ; . . . ; uk ; +a ; #k′+3 ; #k′+3 ; v1 ; . . . ; vk′ ; +a PGA22

#k+k′+4 ; u1 ; . . . ; uk ;−a ; #k′+3 ; #k′+3 ; v1 ; . . . ; vk′ ;−a =

#k+1 ; u1 ; . . . ; uk ;−a ; #k′+3 ; #k′+3 ; v1 ; . . . ; vk′ ;−a PGA23

#k+k′+3 ; u1 ; . . . ; uk ; a ; #k′+2 ; v1 ; . . . ; vk′ ; a =

#k+1 ; u1 ; . . . ; uk ; a ; #k′+2 ; v1 ; . . . ; vk′ ; a PGA24

#k+1 ; u1 ; . . . ; uk ; ! = ! ; u1 ; . . . ; uk ; ! PGA25

#k+1 ; (u1 ; . . . ; uk ; u)ω = (u ; u1 ; . . . ; uk)
ω PGA26

(#k+2 ; #k+1 ; u1 ; . . . ; uk ; +a)ω = (a ; #k+1 ; u1 ; . . . ; uk ; a)ω PGA27

(#k+2 ; #k+1 ; u1 ; . . . ; uk ;−a)ω = (a ; #k+1 ; u1 ; . . . ; uk ; a)ω PGA28

(#k+2 ; #k+1 ; u1 ; . . . ; uk ; a)ω = (a ; #k+1 ; u1 ; . . . ; uk ; a)ω PGA29

(u1 ; . . . ; uk+1)
ω = aω

if, for all i ∈ {1, . . . , k+1}, ui ∈ {a,+a,−a} or, for some l ∈ {1, . . . , k},

ui ≡ #l and u(i+l)mod(k+1) ∈ {a,+a,−a} PGA30

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 117

from A. For each n ∈ N1, the term tn, where t is a PGAbc term, is defined
by induction on n as follows: t1 = t, and tn+1 = t ; tn.

If t = t′ is derivable from PGA1–PGA4, then t and t′ represent the same
instruction sequence. In this case, we say that the represented instruction
sequences are instruction sequence congruent. We write PGAisc for the
algebraic theory whose sorts, constants and operators are those of PGAbc,
but whose axioms are PGA1–PGA4.

The unfolding equation Xω = X ;Xω is derivable from the axioms of
PGAisc by first taking the instance of PGA2 in which n = 2, then applying
PGA4, and finally applying the instance of PGA2 in which n = 2 again.

A closed PGAbc term is in first canonical form if it is of the form t or
t ; t′ω, where t and t′ are closed repetition-free PGAbc terms. The following
proposition relates PGAisc and first canonical forms.

Proposition 1 For all closed PGAbc terms t, there exists a closed PGAbc

term t′ that is in first canonical form such that t = t′ is derivable from the
axioms of PGAisc.

Proof: The proof is analogous to the proof of Lemma 2.2 from [5]. 2

If t = t′ is derivable from PGA1–PGA8, then t and t′ represent the
same instruction sequence after changing all chained jumps into single jumps
and making all jumps ending in the repeating part as short as possible if
they are eventually periodic infinite sequences. In this case, we say that
the represented instruction sequences are structurally congruent. We write
PGAsc for the algebraic theory whose sorts, constants and operators are
those of PGAbc, but whose axioms are PGA1–PGA8.

A closed PGAbc term t has chained jumps if there exists a closed
PGAbc term t′ such that t = t′ is derivable from the axioms of PGAisc

and t′ contains a subterm of the form #n+1 ; u1 ; . . . ; un ; #l. A closed
PGAbc term t that is in first canonical form has a repeating part if it is of
the form u1 ; . . . ; um ; (v1 ; . . . ; vk)ω. A closed PGAbc term t of the form
u1 ; . . . ;um ; (v1 ; . . . ; vk)ω has shortest possible jumps ending in the repeating
part if: (i) for each i ∈ [1,m] for which ui is of the form #l, l ≤ k +m− i;
(ii) for each j ∈ [1, k] for which vj is of the form #l, l ≤ k − 1. A closed
PGAbc term is in second canonical form if it is in first canonical form, does
not have chained jumps, and has shortest possible jumps ending in the
repeating part if it has a repeating part. The following proposition relates
PGAsc and second canonical forms.

118 J.A. Bergstra, C.A. Middelburg

Proposition 2 For all closed PGAbc terms t, there exists a closed PGAbc

term t′ that is in second canonical form such that t = t′ is derivable from
the axioms of PGAsc.

Proof: The proof is analogous to the proof of Lemma 2.3 from [5]. 2

If t = t′ is derivable from PGA1–PGA30, then t and t′ represent
instruction sequences that can always take each other’s place in an instruction
sequence without affecting the behaviour produced under execution in an
essential way. In this case, we say that the represented instruction sequences
are behaviourally congruent. In Section 4, we will use basic thread algebra to
make precise which behaviours are produced by the represented instruction
sequences under execution.

Axioms PGA1–PGA8 originate from [3]. Axioms PGA9–PGA30 are
new and some of them did not come into the picture until we recently
attempted to obtain a complete axiom system for behavioural congruence.

Henceforth, the instruction sequences of the kind considered in PGAisc,
PGAsc, and PGAbc are called PGA instruction sequences.

3 Basic Thread Algebra for Finite and Infinite
Threads

In this section, we present an extension of BTA (Basic Thread Algebra) that
reflects the idea that infinite threads are identical if their approximations up
to any finite depth are identical.

BTA is concerned with mathematical objects that model in a direct
way the behaviours produced by PGA instruction sequences under execution.
The objects in question are called threads. A thread models a behaviour that
consists of performing basic actions in a sequential fashion. Upon performing
a basic action, a reply from an execution environment determines how the
behaviour proceeds subsequently. The basic instructions from A are taken
as basic actions.

BTA has one sort: the sort T of threads. We make this sort explicit to
anticipate the need for many-sortedness later on. To build terms of sort T,
BTA has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 119

• for each a ∈ A, the binary postconditional composition operator
�a� : T×T→ T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y, z. We use infix
notation for postconditional composition. We introduce basic action prefixing
as an abbreviation: a ◦ t, where t is a BTA term, abbreviates t�a� t. We
treat an expression of the form a ◦ t and the BTA term that it abbreviates
as syntactically the same.

Different closed BTA terms are considered to represent different threads.
The thread represented by a closed term of the form t�a� t′ models the
behaviour that will first perform a, and then proceed as the behaviour
modeled by the thread represented by t if the reply from the execution
environment is 1 and proceed as the behaviour modeled by the thread
represented by t′ if the reply from the execution environment is 0. The
thread represented by S models the behaviour that will do no more than
terminate and the thread represented by D models the behaviour that will
become inactive.

Closed BTA terms are considered equal if they represent the same thread.
Equality of closed terms stands in BTA for syntactic identity. Therefore,
BTA has no axioms.

Each closed BTA term represents a finite thread, i.e. a thread with
a finite upper bound to the number of basic actions that it can perform.
Infinite threads, i.e. threads without a finite upper bound to the number
of basic actions that it can perform, can be defined by means of a set of
recursion equations (see e.g. [4]). A regular thread is a finite or infinite thread
that can only be in a finite number of states. The behaviours produced
by PGA instruction sequences under execution are exactly the behaviours
modeled by regular threads.

Two infinite threads are considered identical if their approximations
up to any finite depth are identical. The approximation up to depth n of a
thread models the behaviour that differs from the behaviour modeled by the
thread in that it will become inactive after it has performed n actions unless
it would terminate at this point. AIP (Approximation Induction Principle) is
a conditional equation that formalizes the above-mentioned view on infinite
threads. In AIP, the approximation up to depth n is phrased in terms of
the unary projection operator πn : T→ T.

The axioms for the projection operators and AIP are given in Table 2. In
this table, a stands for an arbitrary basic action from A and n stands for an

120 J.A. Bergstra, C.A. Middelburg

Table 2: Axioms of BTA∞

π0(x) = D PR1

πn+1(D) = D PR2

πn+1(S) = S PR3

πn+1(x�a� y) = πn(x) �a� πn(y) PR4∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 3: Axioms for the thread extraction operator
|a| = a ◦ D TE1

|a ;X| = a ◦ |X| TE2

|+a| = a ◦ D TE3

|+a ;X| = |X|�a� |#2 ;X| TE4

|−a| = a ◦ D TE5

|−a ;X| = |#2 ;X|�a� |X| TE6

|#l| = D TE7

|#0 ;X| = D TE8

|#1 ;X| = |X| TE9

|#l + 2 ; u| = D TE10

|#l + 2 ; u ;X| = |#l + 1 ;X| TE11

|!| = S TE12

|! ;X| = S TE13

arbitrary natural number from N. We write BTA∞ for BTA extended with
the projection operators, the axioms for the projection operators, and AIP.

4 Thread Extraction and Behavioural Congruence

In this section, we make precise in the setting of BTA∞ which behaviours
are produced by PGA instruction sequences under execution and introduce
the notion of behavioural congruence on PGA instruction sequences.

To make precise which behaviours are produced by PGA instruction
sequences under execution, we introduce an operator | | meant for extracting
from each PGA instruction sequence the thread that models the behaviour
produced by it under execution. For each closed PGAbc term t, |t| represents
the thread that models the behaviour produced by the instruction sequence
represented by t under execution.

Formally, we combine PGAbc with BTA∞ and extend the combination
with the thread extraction operator | | : IS → T and the axioms given in
Table 3. In this table, a stands for an arbitrary basic instruction from A,
u stands for an arbitrary primitive instruction from I, and l stands for an
arbitrary natural number from N.

If a closed PGAbc term t represents an instruction sequence that starts

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 121

with an infinite chain of forward jumps, then TE9 and TE11 can be applied
to |t| infinitely often without ever showing that a basic action is performed.
In this case, we have to do with inaction and, being consistent with that,
t = #0 ; t′ is derivable from the axioms of PGAsc for some closed PGAbc

term t′. By contrast, t = #0 ; t′ is not derivable from the axioms of PGAisc.
If closed PGAbc terms t and t′ represent instruction sequences in which no
infinite chains of forward jumps occur, then t = t′ is derivable from the
axioms of PGAsc only if |t| = |t′| is derivable from the axioms of PGAisc and
TE1–TE13.

If a closed PGAbc term t represents an infinite instruction sequence,
then we can extract the approximations of the thread modeling the behaviour
produced by that instruction sequence under execution up to every finite
depth: for each n ∈ N, there exists a closed BTA term t′′ such that πn(|t|) =
t′′ is derivable from the axioms of PGAsc, TE1–TE13, the axioms of BTA,
and PR1–PR4. If closed PGAbc terms t and t′ represent infinite instruction
sequences that produce the same behaviour under execution, then this can
be proved using the following instance of AIP:

∧
n≥0 πn(|t|) = πn(|t′|) ⇒

|t| = |t′|.
PGA instruction sequences are behaviourally equivalent if they produce

the same behaviour under execution. Behavioural equivalence is not a con-
gruence. Instruction sequences are behaviourally congruent if they produce
the same behaviour irrespective of the way they are entered and the way
they are left.

Let t and t′ be closed PGAbc terms. Then:

• t and t′ are behaviourally equivalent, written t ≡be t
′, if |t| = |t′| is

derivable from the axioms of PGAsc, TE1–TE13, and the axioms of
BTA∞.

• t and t′ are behaviourally congruent, written t ∼=bc t
′, if, for each

l, n ∈ N, #l ; t ; !n ≡be #l ; t′ ; !n.6

Behavioural congruence is the largest congruence contained in behavioural
equivalence. Moreover, structural congruence implies behavioural congru-
ence.

Proposition 3 For all closed PGAbc terms t and t′, t = t′ is derivable from
the axioms of PGAsc only if t ∼=bc t

′.

6We use the convention that t ; t′
0

stands for t.

122 J.A. Bergstra, C.A. Middelburg

Proof: The proof is analogous to the proof of Proposition 2.2 from [5].
In that proof use is made of the uniqueness of solutions of sets of recursion
equations where each right-hand side is a BTA term of the form D, S or
s �a� s′ with BTA terms s and s′ that contain only variables occurring
as one of the right-hand sides. This uniqueness follows from AIP (see also
Corollary 2.1 from [5]). 2

Conversely, behavioural congruence does not implies structural congruence.
For example, +a ; ! ; ! ∼=bc −a ; ! ; !, but +a ; ! ; ! = −a ; ! ; ! is not derivable
from the axioms of PGAsc.

5 Axioms of PGAbc and Behavioural Congruence

The axioms of PGAbc are intended to be used for establishing behavioural
congruence in a direct way by nothing more than equational reasoning. Two
questions arise: the soundness question, i.e. the question whether derivable
equality implies behavioural congruence, and the completeness question, i.e.
the question whether behavioural congruence implies derivable equality. The
two theorems presented in this section concern these questions. The first
theorem fully answers the soundness question in the affirmative. The second
theorem answers the completeness question in the affirmative only for the
restriction obtained by excluding the repetition operator because of problems
in mastering the intricacy of a completeness proof for the unrestricted case.

We start with a few additional definitions and results which will be
used in the proof of the theorems.

A closed PGAbc term t has simplifiable control flow if there exists a
closed PGAbc term t′ such that t = t′ is derivable from the axioms of PGAisc

and t′ contains a subterm of the same form as the left-hand side of one of
the axioms PGA9–PGA30. The intuition is that a closed PGAbc term has
simplifiable control flow if the instruction sequence that it represents has
unnecessary tests, unnecessary jumps or needlessly long jumps. A closed
PGAbc term is in third canonical form if it is in second canonical form and
does not have simplifiable control flow.

The following proposition relates PGAbc and third canonical forms.

Proposition 4 For all closed PGAbc terms t, there exists a closed PGAbc

term t′ that is in third canonical form such that t = t′ is derivable from the
axioms of PGAbc.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 123

Proof: By Proposition 2, there exists a closed PGAbc term t′′ that is
in second canonical form such that t = t′′ is derivable from the axioms of
PGAsc. If t′′ has simplifiable control flow, it can be transformed into a closed
PGAbc term that does not have simplifiable control flow by applications of
PGA9–PGA30 possibly alternated with applications of PGA1 and/or PGA4.
2

Proposition 4 is important to the proof of Theorem 2 below. Actually,
there are some axioms among PGA9–PGA30 that did not turn up until the
elaboration of the proof of Theorem 2.

The set of basic PGAbc terms is inductively defined as follows:

• if u ∈ I, then u is a basic PGAbc term;

• if u ∈ I and t is a basic PGAbc term, then u ; t is a basic PGAbc term;
and

• if t is a basic PGAbc term, then tω is a basic PGAbc term.

Obviously, for all closed PGAbc terms t, there exists a basic PGAbc term t′

such that t = t′ is derivable from PGA1.

Lemma 1 For all basic repetition-free PGAbc terms t that are in third
canonical form, t is of one of the following forms:

(a) u, where u ∈ I;

(b) u ; t′, where u ∈ I and t′ is a basic repetition-free PGAbc term that is
in third canonical form.

Proof: This lemma with all occurrences of “third canonical form” replaced
by “first canonical form” follows immediately from the definitions of basic
PGAbc term and first canonical form. Moreover, in the case that t is of
the form (b), it follows immediately from the definitions concerned that
the properties “does not have chained jumps”,“has shortest possible jumps
ending in the repeating part”, and “does not have simplifiable control flow”
carry over from t to t′. This means that t′ is also in third canonical form.
2

In the rest of this section, we refer to the possible forms of basic PGAbc

terms that are in third canonical form as in Lemma 1.

124 J.A. Bergstra, C.A. Middelburg

Lemma 2 For all basic repetition-free PGAbc terms t and t′ that are in
third canonical form, t ∼=bc t

′ only if

(1) t is of the form (a) iff t′ is of the form (a);

(2) t is of the form (b) iff t′ is of the form (b).

Proof: Suppose that t and t′ are in third canonical form and t ∼=bc t
′.

Property (1) is trivial because, in the case that t is of the form (a),
t ∼=bc t

′ iff t ≡ t′.7
Property (2) follows immediately from Lemma 1 and the consequence

of property (1) that, in the case that t is of the form (b), t′ is not of the
form (a). 2

We now move on to the two theorems announced at the beginning of
this section.

Theorem 1 For all closed PGAbc terms t and t′, t = t′ is derivable from
the axioms of PGAbc only if t ∼=bc t

′.

Proof: Because ∼=bc is a congruence, it is sufficient to prove for each
axiom of PGAbc that, for all its closed substitution instances t = t′,
t ∼=bc t

′. For PGA1–PGA8, this follows immediately from Proposition 3. For
PGA9–PGA30, it follows very straightforwardly from the definition of ∼=bc,
TE1–TE13, and in the case of PGA17 and PGA18, the unfolding equation
Xω = X ;Xω. 2

Theorem 2 For all closed repetition-free PGAbc terms t and t′, t = t′ is
derivable from the axioms of PGAbc if t ∼=bc t

′.

Proof: See Appendix A. 2

We will conclude Appendix A by going into the main problem that we
have experienced in mastering the intricacy of a proof of the unrestricted
version of Theorem 2, which reads as follows:

for all closed PGAbc terms t and t′, t = t′ is derivable from the
axioms of PGAbc if t ∼=bc t

′.

7We write ≡ for syntactic identity.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 125

6 The Case of Instructions for Boolean Registers

In this section, we present the instantiation of PGAbc in which all possible
instructions for Boolean registers are taken as basic instructions. This
instantiation is called PGAbc

br (PGAbc with instructions for Boolean registers).
In order to justify the additional axioms of PGAbc

br , we also present the
instantiation of BTA in which all possible instructions for Boolean registers
are taken as basic actions and adapt the definitions of behavioural equivalence
and behavioural congruence to closed PGAbc

br terms using this instantiation
of BTA.

In PGAbc
br , it is assumed that a fixed but arbitrary set F of foci has

been given. Foci serve as names of Boolean register services.

The set of basic instructions used in PGAbc
br consists of the following:

• for each f ∈ F and p, q : B→ B, a basic Boolean register instruction
f.p/q.

We write Abr for this set.

The intuition is that the execution of a basic Boolean register instruction
may modify the register content of a Boolean register service and must
produce a Boolean value as reply at its completion. The actual reply may
be dependent on the register content of the Boolean register service. More
precisely, the execution of a basic Boolean register instruction has the
following effects:

• if the register content of the Boolean register service named f is b when
the execution of f.p/q starts, then its register content is q(b) when the
execution of f.p/q terminates;

• if the register content of the Boolean register service named f is b when
the execution of f.p/q starts, then the reply produced on termination
of the execution of f.p/q is p(b).

The execution of f.p/q has no effect on the register content of Boolean
register services other than the one named f .

B→ B, the set of all unary Boolean functions, consists of the following
four functions:

• the function 0, satisfying 0(0) = 0 and 0(1) = 0;

• the function 1, satisfying 1(0) = 1 and 1(1) = 1;

126 J.A. Bergstra, C.A. Middelburg

Table 4: Additional axioms for PGAbc
br

+f.0/p = −f.1/p PGAbr1

+f.1/p = −f.0/p PGAbr2

+f. i/p = −f.c/p PGAbr3

+f.c/p = −f. i/p PGAbr4

+f.1/p = f.q/p PGAbr5

• the function i , satisfying i(0) = 0 and i(1) = 1;

• the function c, satisfying c(0) = 1 and c(1) = 0.

In [7], we actually used the methods 0/0, 1/1, and i/ i , but denoted them
by set:0, set:1 and get, respectively. In [8], we actually used, in addition to
these methods, the method c/c, but denoted it by com.

We write Ibr for the set I of primitive instructions in the case where
Abr is taken as the set A.

The constants and operators of PGAbc
br are the constants and operators

of PGAbc in the case where Ibr is taken as the set I.
Closed PGAbc

br terms are considered equal if the instruction sequences
that they represent can always take each other’s place in an instruction
sequence in the sense that the behaviour produced under execution remains
the same under the intended interpretation of the instructions from Abr.
In other words, equality of closed terms stands in PGAbc

br for a kind of
behavioural congruence of the represented instruction sequences. The kind
of behavioural congruence in question will be made precise at the end of this
section.

The axioms of PGAbc
br are the axioms of PGAbc and in addition the

axioms given in Table 4. In this table, f stands for an arbitrary focus from
F , and p and q stand for arbitrary unary Boolean functions from B→ B.

If t = t′ is derivable from the axioms of PGAbc
br , then t and t′ represent

instruction sequences that can always take each other’s place in an instruction
sequence without affecting the behaviour produced under execution in an
essential way, taking the intended interpretation of the instructions from
Abr into account. Below, we introduce the instantiation of BTA in which
all possible instructions for Boolean registers are taken as basic actions to
make this precise.

Henceforth, the instruction sequences of the kind considered in PGAbc
br

are called PGAbr instruction sequences.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 127

Table 5: Axioms of BTAbr

x� f.0/q� y = y � f.1/q� x BTAbr1

x� f. i/q� y = y � f.c/q� x BTAbr2

x� f.1/q� y = x� f.p/q� x BTAbr3

The instantiation of BTA referred to above is called BTAbr (BTA with
instructions for Boolean registers). In BTAbr, the effects of performing a
basic action on both the register content of Boolean register services and the
way in which the modeled behaviour proceeds subsequently to performing
the basic action concerned correspond to the intended interpretation of the
basic action when it is considered to be a basic instruction.

The constants and operators of BTAbr are the constants and operators
of BTA in the case where Abr is taken as the set A.

The idea behind equality of BTAbr terms is that two closed BTAbr

terms are equal if they represent threads that can be made the same by a
number of changes that never influences at any step of the modeled behaviour
the effects of the basic action performed on the register content of Boolean
register services and the way in which the modeled behaviour proceeds.
Equality of closed terms stands in BTAbr for a kind of congruence of the
represented threads which originates from the notion of effectual equivalence
of basic instructions introduced in [9].

The axioms of BTAbr are given in Table 5. In this table, f stands for
an arbitrary focus from F , and p and q stand for arbitrary unary Boolean
functions from B→ B.

Like BTA, we can extend BTAbr with the projection operators, the
axioms for the projection operators and AIP. We write BTA∞br for the
resulting theory.

To make precise which behaviours are produced by PGAbr instruction
sequences under execution, we combine PGAbc

br with BTA∞br and extend the
combination with the thread extraction operator and the axioms for the
thread extraction operator.

PGAbr instruction sequences are behaviourally equivalent if the behavi-
ours that they produce under execution are the same under the intended
interpretation of the instructions from Abr.

Let t1 and t2 be closed PGAbc
br terms. Then:

• t and t′ are behaviourally equivalent, written t ≡be t
′, if |t| = |t′| is

derivable from the axioms of PGAsc, TE1–TE13, and the axioms of

128 J.A. Bergstra, C.A. Middelburg

BTA∞br .

• t and t′ are behaviourally congruent, written t ∼=bc t
′, if, for each

l, n ∈ N, #l ; t ; !n ≡be #l ; t′ ; !n.

It is obvious that, with this adapted definition of behavioural congruence,
Theorem 1 goes through for closed PGAbc

br terms and Theorem 2 goes through
for closed repetition-free PGAbc

br terms.

7 Concluding Remarks

In program algebra, three congruences on instruction sequences are paid
attention to: instruction sequence congruence, structural congruence, and
behavioural congruence. However, an axiom system for behavioural congru-
ence had never been given. In this paper, we have given an axiom system
for behavioural congruence and proved its soundness for closed terms and
completeness for closed repetition-free terms. This means that behavioural
congruence of finite instruction sequences can now be established in a direct
way by nothing more than equational reasoning. In earlier work, it had to
be established in an indirect way, namely via thread extraction, by reasoning
that was not purely equational. It is an open question whether the axiom
system is also complete for closed terms in the case where the closed terms
considered are not restricted to the repetition-free ones.

A Appendix

In this appendix, we outline the proof of Theorem 2. We do not give full
details of the proof because the full proof is really tedious. We have aimed
at providing sufficient information in the outline of the proof to make a
reconstruction of the full proof a routine matter.

Proof of Theorem 2:

For all closed PGAbc terms s, there exists a basic PGAbc term s′ such that
s = s′ is derivable from PGA1. Moreover, for all closed PGAbc terms s and
s′, s = s′ is trivially derivable from the axioms of PGAbc if s ≡ s′. By these
facts, Proposition 4, and Theorem 1, it is sufficient to prove:

for all basic repetition-free PGAbc terms t and t′ that are in third
canonical form, t ≡ t′ if t ∼=bc t

′.

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 129

We prove this by induction on the depth of t and case distinction on the
form of t according to Lemma 1.

The case t ≡ u, for u ∈ I, is trivial because t ∼=bc t
′ only if t ≡ t′.

The case t ≡ u ; s, for u ∈ I and basic repetition-free PGAbc term s
that is in third canonical form, is more involved. It follows immediately from
Lemma 2 that in this case t ∼=bc t

′ only if t′ ≡ u′ ;s′ for some u′ ∈ I and basic
repetition-free PGAbc term s′ that is in third canonical form. Let u′ ∈ I and
s′ be a basic repetition-free PGAbc term that is in third canonical form such
that t′ ≡ u′ ; s′. Then it follows immediately from the definition of ∼=bc that
t ∼=bc t

′ only if s ∼=bc s
′. Hence, by the induction hypothesis, we have that

t ∼=bc t
′ only if s ≡ s′. We proceed with a case analysis on (u, u′). There exist

25 combinations of kinds of primitive instructions. In 9 of these combinations,
it matters whether the basic instructions involved are the same and, in 1 of
these combinations, it matters whether the natural numbers involved are the
same. Hence, in total, there are 35 cases to consider. However, 5 cases are
trivial because in those cases u ≡ u′ and 13 cases are covered by a symmetric
case. Of the remaining 17 cases, 9 cases contradict t ∼=bc t

′. Left over are
the following 8 cases: (u, u′) = (+a, a), (u, u′) = (−a, a), (u, u′) = (+a,−a),
(u, u′) = (#l,+a), (u, u′) = (#l,−a), (u, u′) = (#l, a), (u, u′) = (#l,#l′)
with l 6= l′, (u, u′) = (#l, !). The proof now continues with a case analysis
on (s, s′) for each of these eight cases, using implicitly the above-mentioned
fact that s ≡ s′ each time that the conclusion is drawn that there is a
contradiction with t ∼=bc t

′. We will also implicitly use several times the easy
to check fact that, for all basic repetition-free PGAbc terms r that are in
third canonical form, |r| 6= |#l+2 ; r| and |r| 6= |u1 ; . . . ; uk+1 ; r| if u1 ≡ a or
u1 ≡ +a or u1 ≡ −a.

In the analysis for the case (u, u′) = (+a, a), we make a case distinction
on the form of s according to Lemma 1:

• in the case that s ≡ v, we make a further case distinction on the form
of v:

– if v ≡ b or v ≡ +b or v ≡ −b, then we have |+a ; v| 6= |a ; v| and
hence a contradiction with t ∼=bc t

′;

– if v ≡ #0, then we have |+a ; v ; !| 6= |a ; v ; !| and hence a
contradiction with t ∼=bc t

′;

– if v ≡ #1, then t is not in third canonical form;

– if v ≡ #l+2, then we have |+a ; v ; !| 6= |a ; v ; !| and hence a
contradiction with t ∼=bc t

′;

130 J.A. Bergstra, C.A. Middelburg

– if v ≡ !, then we have |+a ; v| 6= |a ; v| and hence a contradiction
with t ∼=bc t

′;

• in the case that s ≡ v ; r, for some basic repetition-free PGAbc term r
that is in third canonical form, we make a further case distinction on
the form of v as well:

– if v ≡ b or v ≡ +b or v ≡ −b, then we have |+a ; v ; r| 6= |a ; v ; r|,
because r is repetition-free, and hence a contradiction with t ∼=bc

t′;

– if v ≡ #0, then it follows from t ∼=bc t
′ that r ≡ #0 or r ≡ #0 ; r′

for some r′ and hence t is not in third canonical form;

– if v ≡ #1, then t is not in third canonical form;

– if v ≡ #l+2, then we make a further case distinction on the form
of r according to Lemma 1:

∗ in the case that r ≡ w, we make a further case distinction on
the form of w:

· if w ≡ b or w ≡ +b or w ≡ −b, then we have |+a ; #l+2 ;
w| 6= |a ;#l+2;w| and hence a contradiction with t ∼=bc t

′;

· if w ≡ #0, then we have |+a ; #l+2 ;w ; !l+1| 6= |a ; #l+2 ;
w ; !l+1| and hence a contradiction with t ∼=bc t

′;

· if w ≡ #l′+1 and l′ > l, then we have |+a;#l+2;w;!l+1| 6=
|a ; #l+2 ;w ; !l+1| and hence a contradiction with t ∼=bc t

′;

· if w ≡ #l′+1 and l′ < l, then we have |+a ; #l+2 ; w ;
!l
′+1| 6= |a ;#l+2;w ; !l

′+1| and hence a contradiction with
t ∼=bc t

′;

· if w ≡ #l′+1 and l′ = l, then t is not in third canonical
form;

· if w ≡ !, then we have |+a ; #l+2 ;w| 6= |a ; #l+2 ;w| and
hence a contradiction with t ∼=bc t

′;

∗ in the case that r ≡ w ; r′, for some basic repetition-free
PGAbc term r′ that is in third canonical form, we make a
further case distinction on the form of w as well:

· if w ≡ b or w ≡ +b or w ≡ −b, then we have |+a ; #l+2 ;
w ; r′| 6= |a ; #l+2 ; w ; r′|, because r′ is repetition-free,
and hence a contradiction with t ∼=bc t

′;

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 131

· if w ≡ #0, then it follows from t ∼=bc t
′ that r′ ≡ w1 ; . . . ;

wl ; #0 or r′ ≡ w1 ; . . . ;wl ; #0 ; r′′ for some r′′ and hence
t is not in third canonical form;

· if w ≡ #l′+1 and l′ 6= l, then we have |+a ;#l+2;w ;r′| 6=
|a ; #l+2 ; w ; r′|, because r′ is repetition-free, and hence
a contradiction with t ∼=bc t

′;

· if w ≡ #l′+1 and l′ = l, then t is not in third canonical
form;

· if w ≡ !, then it follows from t ∼=bc t
′ that r′ ≡ w1 ;. . .;wl ;!

or r′ ≡ w1 ; . . . ; wl ; ! ; r′′ for some r′′ and hence t is not
in third canonical form;

– if v ≡ !, then it follows from t ∼=bc t
′ that r ≡ ! or r ≡ ! ; r′ for

some r′ and hence t is not in third canonical form.

We conclude from this analysis that, in the case that t ≡ +a ; s and t′ ≡ a ; s
for some basic repetition-free PGAbc term s that is in third canonical form,
we have a contradiction with t ∼=bc t

′.

The analyses for the cases (u, u′) = (−a, a) and (u, u′) = (+a,−a) are
similar to the analysis for the case (u, u′) = (+a, a).

In the analysis for the case (u, u′) = (#l, a), we make a case distinction
on l:

• if l = 0, then we have |#l ; s| 6= |a ; s| and hence a contradiction with
t ∼=bc t

′;

• if l = 1, then we have |#l ; s| 6= |a ; s|, because s is repetition-free, and
hence a contradiction with t ∼=bc t

′;

• if l = l′ + 2, then we make a further case distinction on the form of s
according to Lemma 1:

– in the case that s ≡ v, we have |#l ; s| 6= |a ; s| and hence a
contradiction with t ∼=bc t

′;

– in the case that s ≡ v ; r, for some basic repetition-free PGAbc

term r that is in third canonical form, it follows from t ∼=bc t
′

that r ≡ v1 ; . . . ; vl′ ; a ; r′ for some basic repetition-free PGAbc

term r′ that is in third canonical form and we make a further
case distinction on the form of v:

132 J.A. Bergstra, C.A. Middelburg

∗ if v ≡ b or v ≡ +b or v ≡ −b, then we have |#l′+2 ; v ; v1 ; . . . ;
vl′ ;a ;r′| 6= |a ;v ;v1 ; . . . ;vl′ ;a ;r′|, because r′ is repetition-free,
and hence a contradiction with t ∼=bc t

′;

∗ if v ≡ #0, then it follows from t ∼=bc t
′ that r′ ≡ #0 or

r′ ≡ #0 ; r′′ for some r′′ and hence t is not in third canonical
form;

∗ if v ≡ #l′′+1 and l′′ 6= l′+ 1, then we have |#l′+2 ; v ; v1 ; . . . ;
vl′ ;a ;r′| 6= |a ;v ;v1 ; . . . ;vl′ ;a ;r′|, because r′ is repetition-free,
and hence a contradiction with t ∼=bc t

′;

∗ if v ≡ #l′′+1 and l′′ = l′ + 1, then t is not in third canonical
form;

∗ if v ≡ !, then it follows from t ∼=bc t
′ that r′ ≡ ! or r′ ≡ ! ; r′′

for some r′′ and hence t is not in third canonical form.

We conclude from this analysis that, in the case that t ≡ #l ; s and t′ ≡ a ; s
for some basic repetition-free PGAbc term s that is in third canonical form,
we have a contradiction with t ∼=bc t

′.
The analyses for the cases (u, u′) = (#l,+a) and (u, u′) = (#l,−a) are

similar to the analysis for the case (u, u′) = (#l, a).
In the analyses for the cases (u, u′) = (#l,#l′), with l 6= l′, and

(u, u′) = (#l, !), we use the function len, which assigns to each closed
repetition-free PGAbc term the length of the instruction sequence that it
represents. This function is recursively defined as follows: len(u) = 1 and
len(t ; t′) = len(t) + len(t′).

In the analysis for the case (u, u′) = (#l,#l′) with l 6= l′, we only
consider the case l < l′ (because the cases l < l′ and l > l′ are symmetric)
and make a case distinction on l:

• if l = 0, then we have |#0 ; s| 6= |#l′ ; s| and hence a contradiction with
t ∼=bc t

′;

• if 0 < l ≤ len(s), then it follows from t ∼=bc t
′ that s ≡ u1 ; . . . ; ul−1 ;

a ; v1 ; . . . ; vl′−(l+1) ; a ; r for some basic repetition-free PGAbc term r
that is in third canonical form and we make a further case distinction
on the form of v:

– if v1 ≡ b or v1 ≡ +b or v1 ≡ −b, then we have |#l ;u1 ; . . . ;ul−1 ;a ;
v1 ; . . . ;vl′−(l+1) ;a ;r| 6= |#l′ ;u1 ; . . . ;ul−1 ;a ;v1 ; . . . ;vl′−(l+1) ;a ;r|,
because r is repetition-free, and hence a contradiction with t ∼=bc

t′;

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 133

– if v1 ≡ #0, then it follows from t ∼=bc t
′ that r ≡ #0 or r ≡ #0;r′

for some r′ and hence t is not in third canonical form;

– if v1 ≡ #l′′+1 and l′′ 6= l′ − l, then we have |#l ; u1 ; . . . ; ul−1 ; a ;
v1 ; . . . ;vl′−(l+1) ;a ;r| 6= |#l′ ;u1 ; . . . ;ul−1 ;a ;v1 ; . . . ;vl′−(l+1) ;a ;r|,
because r is repetition-free, and hence a contradiction with t ∼=bc

t′;

– if v1 ≡ #l′′+1 and l′′ = l′ − l, then t is not in third canonical
form;

– if v1 ≡ !, then it follows from t ∼=bc t
′ that r ≡ ! or r ≡ ! ; r′ for

some r′ and hence t is not in third canonical form;

• if l > len(s), then we have |#0 ; s ; !l−len(s)| 6= |#l′ ; s ; !l−len(s)| and
hence a contradiction with t ∼=bc t

′.

We conclude from this analysis that, in the case that t ≡ #l ;s and t′ ≡ #l′ ;s,
with l 6= l′, for some basic repetition-free PGAbc term s that is in third
canonical form, we have a contradiction with t ∼=bc t

′.
In the analysis for the case (u, u′) = (#l, !), we make a case distinction

on l:

• if l = 0, then we have |#l ; s| 6= |! ; s| and hence a contradiction with
t ∼=bc t

′;

• if 0 < l ≤ len(s), then it follows from t ∼=bc t
′ that s ≡ u1 ; . . . ; ul−1 ; !

or s ≡ u1 ; . . . ;ul−1 ; ! ; r for some r and hence t is not in third canonical
form;

• if l > len(s), then we have |#l ; s| 6= |! ; s| and hence a contradiction
with t ∼=bc t

′.

We conclude from this analysis that, in the case that t ≡ #l ; s and t′ ≡ ! ; s
for some basic repetition-free PGAbc term s that is in third canonical form,
we have a contradiction with t ∼=bc t

′.
From the conclusions of the analyses, it follows immediately that for all

basic repetition-free PGAbc terms t and t′ that are in third canonical form,
t ≡ t′ if t ∼=bc t

′. 2

We conclude this appendix by going into the main problem that we
have experienced in mastering the intricacy of a proof of the generalization of
Theorem 2 from all closed repetition-free PGAbc terms to all closed PGAbc

terms.

134 J.A. Bergstra, C.A. Middelburg

In the proof of Theorem 2, case distinctions are made on a large scale.
It frequently occurs that the number of cases to be distinguished is kept
small by making use of Lemma 1. To devise and prove a generalization
of this lemma that is not restricted to repetition-free terms is not a big
problem. In the proof of Theorem 2, something of the following form occurs
at many places: “we have |s| 6= |s′| because r is repetition-free, and hence
a contradiction with t ∼=bc t

′”. At several similar places in the proof of the
generalization of this theorem, r is not repetition-free and |s| 6= |s′| requires
an elaborate proof. In some of these proofs, no use can be made of the
generalization of Lemma 1 and one gets completely lost in the many deeply
nested case distinctions. This is the main problem that we have experienced.

References

[1] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 1990.

[2] J. A. Bergstra and J. W. Klop. Process algebra for synchronous
communication. Information and Control, 60(1–3):109–137, 1984.
doi:10.1016/S0019-9958(84)80025-X.

[3] J. A. Bergstra and M. E. Loots. Program algebra for sequential code.
Journal of Logic and Algebraic Programming, 51(2):125–156, 2002. doi:
10.1016/S1567-8326(02)00018-8.

[4] J. A. Bergstra and C. A. Middelburg. Instruction sequence proces-
sing operators. Acta Informatica, 49(3):139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[5] J. A. Bergstra and C. A. Middelburg. Instruction Sequences for Compu-
ter Science, volume 2 of Atlantis Studies in Computing. Atlantis Press,
Amsterdam, 2012. doi:10.2991/978-94-91216-65-7.

[6] J. A. Bergstra and C. A. Middelburg. On the behaviours produced
by instruction sequences under execution. Fundamenta Informaticae,
120(2):111–144, 2012. doi:10.3233/FI-2012-753.

[7] J. A. Bergstra and C. A. Middelburg. Instruction sequence based non-
uniform complexity classes. Scientific Annals of Computer Science,
24(1):47–89, 2014. doi:10.7561/SACS.2014.1.47.

http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.2991/978-94-91216-65-7
http://dx.doi.org/10.3233/FI-2012-753
http://dx.doi.org/10.7561/SACS.2014.1.47

Axioms for Behavioural Congruence
of Single-Pass Instruction Sequences 135

[8] J. A. Bergstra and C. A. Middelburg. Instruction sequence size com-
plexity of parity. Fundamenta Informaticae, 149(3):297–309, 2016.
doi:10.3233/FI-2016-1450.

[9] J. A. Bergstra and C. A. Middelburg. On instruction sets for Boolean
registers in program algebra. Scientific Annals of Computer Science,
26(1):1–26, 2016. doi:10.7561/SACS.2016.1.1.

[10] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of com-
municating sequential processes. Journal of the ACM, 31(3):560–599,
1984. doi:10.1145/828.833.

[11] M. Hennessy and R. Milner. Algebraic laws for non-determinism and
concurrency. Journal of the ACM, 32(1):137–161, 1985. doi:10.1145/
2455.2460.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs, 1985.

[13] C. A. Middelburg. Instruction sequences as a theme in computer science.
https://instructionsequence.wordpress.com/, 2015.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood
Cliffs, 1989.

c© Scientific Annals of Computer Science 2017

http://dx.doi.org/10.3233/FI-2016-1450
http://dx.doi.org/10.7561/SACS.2016.1.1
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1145/2455.2460
https://instructionsequence.wordpress.com/

	Introduction
	Program Algebra for Behavioural Congruence
	Basic Thread Algebra for Finite and Infinite Threads
	Thread Extraction and Behavioural Congruence
	Axioms of PGAbc and Behavioural Congruence
	The Case of Instructions for Boolean Registers
	Concluding Remarks
	Appendix

