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Boolean Lifting Properties
for Bounded Distributive Lattices
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Abstract

In this paper, we introduce the lifting properties for the Boolean
elements of bounded distributive lattices with respect to the congru-
ences, filters and ideals, we establish how they relate to each other and
to significant algebraic properties, and we determine important classes
of bounded distributive lattices which satisfy these lifting properties.
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1 Introduction

Several kinds of lifting properties have been studied in rings and in resi-
duated structures. In ring theory, the Lifting Idempotents Property (LIP)
([21], [1], [6], [16]), which is the property that the idempotent elements can
be lifted modulo every left (respectively right) ideal of a (unitary) ring,
is closely related to clean rings and exchange rings (in the commutative
case, rings with LIP coincide to clean rings and to exchange rings). It is
well known that the idempotent elements of a commutative unitary ring R
form a Boolean algebra, called the Boolean center of R. Properties similar
to LIP have been studied in other algebras which have a Boolean center,
namely residuated structures: MV–algebras ([10]), BL–algebras ([9], [17])
and residuated lattices ([11], [18], [12], [7]); the property studied in these
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algebras refers to the lifting of the Boolean elements modulo filters, and
was called the Boolean Lifting Property (BLP). In [7], we have introduced
a Boolean Lifting Property (BLP) modulo filters for bounded distributive
lattices, we have studied the BLP for residuated lattices from the algebraic
and the topological point of view, and we have proved that the BLP is
transferrable, through the reticulation functor, between the class of residu-
ated lattices and the class of bounded distributive lattices. This transfer
through the reticulation, as well as the multitude of algebraic and topological
properties the BLP is related to, has motivated us to pursue the study of
the BLP for bounded distributive lattices, which we have initiated with
the present article. Besides the properties which are similar in this case
to those which appear in residuated lattices and their subclasses, due to
the transfer we have mentioned, there are some differences between the
situation that occurs in bounded distributive lattices and the one we had
met in residuated structures, the first of which is the fact that the naturally
occurring Boolean Lifting Properties with respect to filters and to ideals
appear as particular cases of the BLP for congruences, so we have had to
define a general notion of a BLP for an arbitrary class of congruences, from
which all other Boolean Lifting Properties derive. Remarkable classes of
bounded distributive lattices have turned out to have either the strongest
version of the BLP, namely the one for all the congruences, or the BLP for
filters or ideals: Boolean algebras, chains and arbitrary direct products of
chains, B–normal, B–conormal, Filt–local and Id–local bounded distributive
lattices. We intend to continue the research in this paper, both by extending
this study for bounded distributive lattices and by applying the results we
obtain here to residuated lattices and other algebras of non–classical logics.
Furthermore, the study of the BLP for bounded distributive lattices, along
with the possibility of transfer of the BLP through the reticulation, might
allow us to connect the work concerning the BLP in the algebras of logic to
that regarding the LIP in commutative rings.

The present paper is structured as follows: the section of preliminaries
below precedes two sections made of original work, with the only exception
of the results cited from other papers and those provided with proofs, but
pointed out as being previously known. In Section 3, we introduce the
different Boolean Lifting Properties, provide algebraic characterizations for
them and give examples of classes of bounded distributive lattices in which
they are present. In Section 4, we prove that arbitrary direct products
preserve the BLP, that the BLP for filters is equivalent to B–conormality,



Boolean Lifting Properties for Bounded Distributive Lattices 31

and, when the Boolean center is trivial, but the lattice in question is not, also
to Filt–locality; dually, the BLP for ideals is equivalent to B–normality, and,
when the Boolean center is trivial and the bounded distributive lattice is
non–trivial, also to Id–locality; these properties enable us to provide further
examples of classes of bounded distributive lattices which satisfy the different
kinds of BLP, and classes whose members do not satisfy these kinds of BLP.

2 Preliminaries

In this section we recall some definitions, notations and properties related
to bounded distributive lattices that we shall use in the sequel. We refer the
reader to [2], [3], [4], [13], [22] for a further study of the notions and results
presented here. For the sake of completeness, we shall provide proofs for
some of these results.

Let N be set of the natural numbers and N∗ = N \ {0}. For any set M ,
we shall denote by ∆M = {(x, x) | x ∈M}, and by ∇M = M2. Throughout
this paper, whenever there is no danger of confusion, algebraic structures
will be designated by their underlying sets. Everywhere in this paper, unless
mentioned otherwise, we shall be using these classical notations for the
operations of a (bounded) lattice or a Boolean algebra: if L is a lattice,
or a bounded lattice, or a Boolean algebra, then we denote the algebraic
structure of L by (L,∧,∨), (L,∧,∨, 0, 1) or (L,∧,∨,¬ , 0, 1), respectively.
Also, unless mentioned otherwise, the partial order of any of these kinds of
structures will be denoted by ≤. If L is a poset or a bounded poset, then its
algebraic structure will be denoted by (L,≤) or (L,≤, 0, 1), respectively.

It is well known that complete lattices are bounded and, in particular,
finite lattices are bounded. A bounded lattice is said to be trivial iff it has
only one element, that is it has 0 = 1, and it is said to be non–trivial iff it
has 0 6= 1. It is well known that, if (L,≤) is a chain, then (L,min,max) is a
distributive lattice.

The dual of a poset (L,≤) or a bounded poset (L,≤, 0, 1) is the poset
(L,≥), respectively the bounded poset (L,≥, 1, 0). The dual of a lattice
(L,∧,∨), a bounded lattice (L,∧,∨, 0, 1) or a Boolean algebra (L,∧,∨,¬ , 0,
1) is the lattice (L,∨,∧), the bounded lattice (L,∨,∧, 1, 0) or the Boolean
algebra (L,∨,∧,¬ , 1, 0), respectively. Notice that, unlike the notions of a ∧–
semilattice and a ∨–semilattice, each of the notions of a lattice, a distributive
lattice, a bounded lattice and a Boolean algebra is dual to itself.

Trivially, a surjective lattice morphism between two bounded lattices
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is a bounded lattice morphism. If L1 and L2 are lattices, then a function
h : L1 → L2 is called a lattice anti–morphism iff h is a lattice morphism
between L1 and the dual of L2. h is called a lattice anti–isomorphism iff h
is a lattice isomorphism between L1 and the dual of L2; in this case, the
lattices L1 and L2 are said to be anti–isomorphic. The same goes if L1 and
L2 are bounded lattices, respectively Boolean algebras.

Throughout the rest of this section, unless mentioned otherwise, L will
be an arbitrary bounded distributive lattice.

The Boolean center of L will be denoted by B(L); the elements of B(L)
are called Boolean elements of L. We recall that B(L) is, by definition, the set
of the complemented elements of L, and that B(L) is a bounded sublattice of
L, and thus a Boolean algebra. Trivially, L is a Boolean algebra iff B(L) = L.
Just as for any Boolean algebra, the complement of any e ∈ B(L) will be
denoted by ¬ e. It is straightforward that, for all x ∈ L and all e ∈ B(L):
x ∨ e = 1 iff x ≥ ¬ e, and x ∧ e = 0 iff x ≤ ¬ e. Clearly, if L is a bounded
chain, then B(L) = {0, 1}.

For any bounded distributive lattices L1 and L2 and every bounded
lattice morphism f : L1 → L2, the inclusion f(B(L1)) ⊆ B(L2) holds. Hence
we can define B(f) : B(L1) → B(L2), for all x ∈ B(L1), B(f)(x) = f(x).
Then, obviously, B(f) is a Boolean morphism, and B becomes a covariant
functor from the category of bounded distributive lattices to the category of
Boolean algebras. Clearly, this also holds for bounded lattice anti–morphisms,
since the notion of complement is dual to itself and thus the notion of Boolean
center is dual to itself. If h : L1 → L2 is a bounded lattice anti–morphism,
then B(h) is a Boolean anti–morphism.

A non–empty subset F of L is called a filter of L iff, for any x, y ∈ L:

if x, y ∈ F , then x ∧ y ∈ F ;

if x ∈ F and x ≤ y, then y ∈ F .

A non–empty subset I of L is called an ideal of L iff, for any x, y ∈ L:

if x, y ∈ I, then x ∨ y ∈ I;

if x ∈ I and x ≥ y, then y ∈ I.

Clearly, the notion of ideal is dual to that of filter, that is the ideals of
L are the filters of the dual of L, and the filters of L are the ideals of the
dual of L.

The set of the filters of L will be denoted by Filt(L), and the set of the
ideals of L will be denoted by Id(L). {1} is the smallest element of Filt(L),
and L is the largest element of Filt(L), with respect to set inclusion. {1} is
called the trivial filter, and L is called the improper filter of L. Any filter
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having at least two different elements is called a non–trivial filter, and any
filter which is a proper subset of L is called a proper filter of L. Clearly,
a filter of L is proper iff it does not contain 0. Dually, {0} is the smallest
element of Id(L), and L is the largest element of Id(L), with respect to
set inclusion. {0} is called the trivial ideal, and L is called the improper
ideal of L. Any ideal having at least two different elements is called a
non–trivial ideal, and any ideal which is a proper subset of L is called a
proper ideal of L. An ideal of L is proper iff it does not contain 1. Clearly,
Filt(L) ∩ Id(L) = {L}.

A congruence of L is an equivalence on L which preserves ∧ and ∨, that
is an equivalence ∼ on the set L with the property that, for all x, y, x′, y′ ∈ L
such that x ∼ x′ and y ∼ y′, it follows that x∧x′ ∼ y∧y′ and x∨x′ ∼ y∨y′.
The set of the congruences of L will be denoted by Con(L). ∆L is the
smallest element of Con(L), and ∇L is the largest element of Con(L), with
respect to set inclusion. Clearly, the notion of congruence is dual to itself,
that is the congruences of L coincide to the congruences of the dual of L.

The intersection of any family of filters of L is a filter of L. Hence, for
every X ⊆ L, there exists the smallest filter of L (with respect to ⊆) which
includes X; this filter is denoted by [X) and called the filter of L generated by
X. For every a ∈ L, [{a}) is denoted, simply, by [a), and called the principal
filter generated by a. It is immediate that [∅) = {1} and, for all ∅ 6= X ⊆ L,
[X) = {x ∈ L | (∃n ∈ N∗) (∃x1, . . . , xn ∈ X) (x1 ∧ . . . ∧ xn ≤ x)}. Hence,
for all a ∈ L, [a) = {x ∈ L | a ≤ x}; thus: [a) = {1} iff a = 1, and [a) = L
iff a = 0. Notice, additionally, that [∅) = [1) and, for all n ∈ N∗ and all
x1, . . . , xn ∈ L, [{x1, . . . , xn}) = [x1 ∧ . . . ∧ xn); so every finitely generated
filter (that is filter generated by a finite subset of L) is a principal filter; in
particular, if L is finite, then Filt(L) = PFilt(L).

Dually, the same goes for ideals. For every X ⊆ L, the ideal generated
by X is denoted by (X], and, for every a ∈ L, the principal ideal generated
by a is denoted by (a]. (∅] = {0} and, for all ∅ 6= X ⊆ L, (X] = {x ∈
L | (∃n ∈ N∗) (∃x1, . . . , xn ∈ X) (x1 ∨ . . . ∨ xn ≥ x)}. For all a ∈ L,
(a] = {x ∈ L | a ≥ x}; (a] = {0} iff a = 0, and (a] = L iff a = 1. (∅] = (0]
and, for all n ∈ N∗ and all x1, . . . , xn ∈ L, ({x1, . . . , xn}] = (x1 ∨ . . . ∨ xn];
so every finitely generated ideal is a principal ideal; in particular, if L is
finite, then Id(L) = PId(L).

This also holds for congruences: the intersection of any family of
congruences of L is a congruence of L. For every Y ⊆ L2, the smallest
congruence of L which includes Y is denoted by Cg(Y ) and called the



34 D. Cheptea, G. Georgescu, C. Mureşan

congruence of L generated by Y . For any a, b ∈ L, Cg({(a, b)}) is denoted,
simply, by Cg(a, b), and called the principal congruence of L generated by
(a, b) ∈ L2; according to [4], for all x, y ∈ L, (x, y) ∈ Cg(a, b) iff x ∨ a ∨ b =
y ∨ a ∨ b and x ∧ a ∧ b = y ∧ a ∧ b. Clearly, for all a ∈ L, Cg(a, a) = ∆L,
because each congruence is reflexive. Whenever the lattice L needs to be
specified, for all Y ⊆ L2 and all a, b ∈ L, we shall denote CgL(Y ) and
CgL(a, b) instead of Cg(Y ) and Cg(a, b), respectively.

If F and G are filters of L, then we shall denote by F ∨G = [F ∪G).
It is straightforward that, for any F,G ∈ Filt(L), F ∨G = {a ∈ L | (∃x ∈
F ) (∃ y ∈ G) (x∧y ≤ a)}. More generally, if (Ft)t∈T is a family of filters of L,

then we denote by
∨
t∈T

Ft = [
⋃
t∈T

Ft). Dually, if I, J ∈ Id(L), then we denote

I ∨ J = (I ∪ J ]. For any I, J ∈ Id(L), I ∨ J = {a ∈ L | (∃x ∈ I) (∃ y ∈
J) (x∨y ≥ a)}. If (It)t∈T ⊆ Id(L), then we denote

∨
t∈T

It = (
⋃
t∈T

It]. The same

goes for congruences: if ∼,≡∈ Con(L), then we denote ∼ ∨ ≡= Cg(∼ ∪ ≡),

and, if (θt)t∈T ⊆ Con(L), then we denote
∨
t∈T

θt = Cg(
⋃
t∈T

θt). With the

operations defined as above, (Filt(L),∩,∨, {1}, L), (Id(L),∩,∨, {0}, L) and
(Con(L),∩,∨,∆L,∇L) become bounded distributive lattices, with partial
order ⊆; moreover, each of them is a complete lattice. We shall denote
by PFilt(L) the set of the principal filters of L, and by PId(L) the set
of the principal ideals of L. Clearly, for all a, b ∈ L: [a) ∨ [b) = [a ∧ b),
[a)∩ [b) = [a∨b), (a]∨(b] = (a∨b], (a]∩(b] = (a∧b] and we have seen, above,
that [1) = {1}, [0) = L, (0] = {0} and (1] = L, hence PFilt(L) is a bounded
sublattice of Filt(L) and PId(L) is a bounded sublattice of Id(L). Moreover,
L is anti–isomorphic to PFilt(L), and isomorphic to PId(L); indeed, if we
define f : L → PFilt(L) and g : L → PId(L) by: for all a ∈ L, f(a) = [a)
and g(a) = (a], then f is a bounded lattice anti–isomorphism, and g is
a bounded lattice isomorphism. In particular, the bounded (distributive)
lattices PFilt(L) and PId(L) are anti–isomorphic; this is not the case for
Filt(L) and Id(L), which are not even always in bijection (take, for instance,
the bounded distributive lattice (N, gcd, lcm, |, 1, 0) of the set of natural
numbers ordered by the relation “divides“; it can be easily verified that
this lattice has all filters principal, which means that its set of filters is
countable, while its set of ideals in is bijection to the set of the subsets
of N). Furthermore, if we apply the functor B to f and g, we get the
Boolean anti–isomorphism B(f) : B(L) → B(PFilt(L)) and the Boolean
isomorphism B(g) : B(L) → B(PId(L)); in particular, B(f) and B(g) are
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bijections, hence B(PFilt(L)) = B(f)(B(L)) = f(B(L)) = {[e) | e ∈ B(L)}
and B(PId(L)) = B(g)(B(L)) = g(B(L)) = {(e] | e ∈ B(L)}. Clearly, for all
a ∈ L, ([a),∧,∨, a, 1) and ((a],∧,∨, 0, a) are bounded distributive lattices
and sublattices of L. It is straightforward and well known that, for all
e ∈ B(L), the bounded distributive lattice L is isomorphic to each of the
direct products [e)× [¬ e) and (e]× (¬ e].

Let L1 and L2 be bounded distributive lattices and f : L1 → L2 be a
bounded lattice morphism. Then, for every G ∈ Filt(L2), f−1(G) ∈ Filt(L1),
and, dually, for every J ∈ Id(L2), f

−1(J) ∈ Id(L1). If f is surjective, then
we also have: for every F ∈ Filt(L1), f(F ) ∈ Filt(L2), and, dually, for every
I ∈ Id(L1), f(I) ∈ Id(L2).

A proper filter P of L is called a prime filter iff, for all x, y ∈ L, if
x ∨ y ∈ P , then x ∈ P or y ∈ P . Dually, a proper ideal Q of L is called a
prime ideal iff, for all x, y ∈ L, if x ∧ y ∈ Q, then x ∈ Q or y ∈ Q. We shall
denote the set of the prime filters of L by SpecFilt(L), and the set of the
prime ideals of L by SpecId(L).

A maximal element of the set of proper filters of L (ordered by ⊆) is
called a maximal filter. Dually, a maximal element of the set of proper ideals
of L is called a maximal ideal. We shall denote the set of the maximal filters
of L by MaxFilt(L), and the set of the maximal ideals of L by MaxId(L). It
is well known that any maximal filter of L is a prime filter of L and, dually,
any maximal ideal is a prime ideal. Thus: MaxFilt(L) ⊆ SpecFilt(L) ⊆
Filt(L) \ {L} and MaxId(L) ⊆ SpecId(L) ⊆ Id(L) \ {L}. It is an immediate
consequence of Zorn‘s Lemma that any non–trivial bounded distributive
lattice has maximal filters and maximal ideals and, moreover, if L is non–
trivial, then any proper filter of L is included in a maximal filter and any
proper ideal of L is included in a maximal ideal. Thus, obviously, L has
maximal filters iff L has proper filters iff {1} is a proper filter of L iff L
is non–trivial iff {0} is a proper ideal of L iff L has proper ideals iff L has
maximal ideals.

Proposition 1 [4]

1. For every a, b ∈ L, Cg(a, b) ∈ B(Con(L)). If a ≤ b, then ¬Cg(a, b) =
Cg(0, a) ∨ Cg(b, 1).

2. B(Con(L)) = {
n∨

i=1

Cg(ai, bi) | n ∈ N∗, (∀ i ∈ 1, n) (ai, bi ∈ L)}.

3. Con(L) is a Boolean algebra iff L is finite.
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It is well known that, to every filter F of L, we can associate a congruence
of L which we shall denote ∼F , defined by: for all x, y ∈ L, (x, y) ∈∼F iff
x∧a = y∧a for some a ∈ F . Dually, to every ideal I of L, we can associate a
congruence ∼I of L, defined by: for all x, y ∈ L, (x, y) ∈∼I iff x∨ a = y ∨ a
for some a ∈ I. These notations pose no danger of confusion, because, as
we have seen, the only subset of L which is both a filter and an ideal of L
is L, and, clearly, the congruence ∼L associated to the filter L coincides
to the congruence ∼L associated to the ideal L, namely ∼L= L2 = ∇L.
It is immediate that, for every a, x, y ∈ L: (x, y) ∈∼[a) iff x ∧ a = y ∧ a;

(x, y) ∈∼(a] iff x ∨ a = y ∨ a. Hence ∼{1}=∼[1)= ∆L =∼(0]=∼{0}.

It is straightforward that, if (Lt)t∈T is a non–empty family of bounded

distributive lattices and L =
∏
t∈T

Lt, then B(L) =
∏
t∈T
B(Lt) = {(et)t∈T | (∀ t ∈

T ) (et ∈ B(Lt))}, Filt(L) = {
∏
t∈T

Ft | (∀ t ∈ T ) (Ft ∈ Filt(Lt))}, Id(L) =

{
∏
t∈T

It | (∀ t ∈ T ) (It ∈ Id(Lt))} and Con(L) = {
∏
t∈T

θt | (∀ t ∈ T ) (θt ∈

Con(Lt))}, where we have denoted by
∏
t∈T

θt = {((at)t∈T , (bt)t∈T ) | (∀ t ∈

T ) ((at, bt) ∈ θt)} for every family (θt)t∈T with θt ∈ Con(Lt) for all t ∈ T .
Notice that, for any family (Ft)t∈T with Ft ∈ Filt(Lt) for all t ∈ T , we have:

∼∏
t∈T Ft

=
∏
t∈T
∼Ft

; similarly, for any family (It)t∈T with It ∈ Id(Lt) for

all t ∈ T , we have: ∼∏
t∈T It

=
∏
t∈T
∼It .

For every θ ∈ Con(L) and any a ∈ L, we shall denote by a/θ the
congruence class of a with respect to θ. Also, for any X ⊆ L, we shall
denote X/θ = {a/θ | a ∈ X}. Then L/θ = {a/θ | a ∈ L} becomes a
bounded distributive lattice, with the operations defined canonically. L/θ is
called the quotient bounded (distributive) lattice of L with respect to θ. The
canonical surjection pθ : L→ L/θ, for all a ∈ L, pθ(a) = a/θ, is a bounded
lattice morphism. Thus pθ is order–preserving, which means that, for all
x, y ∈ L, if x ≤ y, then pθ(x) ≤ pθ(y), that is x/θ ≤ y/θ. Hence, if L is a
chain, then so is L/θ. It is straightforward that Con(L/θ) = {≡ /θ | ≡∈
Con(L), θ ⊆≡}, where, for every ≡∈ Con(L) such that θ ⊆≡, we denote by
≡ /θ = {(a/θ, b/θ) | a, b ∈ L, (a, b) ∈≡}.

Notice that a lattice congruence (that is a congruence defined as above)
on a Boolean algebra is a Boolean algebra congruence; in other words, if L is
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a Boolean algebra and θ is an equivalence on L which preserves ∧ and ∨, then
θ also preserves ¬ . Indeed, let L be a Boolean algebra and θ be a (lattice)
congruence on L; then, obviously, L/θ is a bounded distributive lattice; also,
for every x ∈ L, x/θ ∧ (¬x)/θ = (x ∧ ¬x)/θ = 0/θ and x/θ ∨ (¬x)/θ =
(x ∨ ¬x)/θ = 1/θ; hence L/θ is also complemented, thus it is a Boolean
algebra, and, for every x ∈ L, ¬ (x/θ) = (¬x)/θ; hence, if x, y ∈ L such that
(x, y) ∈ θ, that is x/θ = y/θ, then (¬x)/θ = ¬ (x/θ) = ¬ (y/θ) = (¬ y)/θ,
hence (¬x,¬ y) ∈ θ, so θ preserves ¬ .

If F ∈ Filt(L), then we shall denote: for all a ∈ L, by a/F = a/ ∼F ;
for all X ⊆ L, by X/F = X/ ∼F ; thus L/F = L/ ∼F , called the quotient
bounded (distributive) lattice of L with respect to F ; by pF = p∼F : L →
L/F the canonical surjective bounded lattice morphism. If L is a chain,
then L/F is a chain. Clearly, 1/F = F (F is one of the congruence classes
of ∼F ). It is straightforward that Filt(L/F ) = {G/F | G ∈ Filt(L), F ⊆ G}
and MaxFilt(L/F ) = {M/F | M ∈ MaxFilt(L), F ⊆M}.

Similarly, if I ∈ Id(L), then we shall denote: for all a ∈ L, by a/I =
a/ ∼I ; for all X ⊆ L, by X/I = X/ ∼I ; thus L/I = L/ ∼I , called the
quotient bounded (distributive) lattice of L with respect to I; by pI = p∼I :
L→ L/I the canonical surjective bounded lattice morphism. If L is a chain,
then L/I is a chain. 0/I = I (I is one of the congruence classes of ∼I ). We
have: Id(L/I) = {J/I | J ∈ Id(L), I ⊆ J} and MaxId(L/I) = {N/I | N ∈
MaxId(L), I ⊆ N}.

For every θ ∈ Con(L) and each X ⊆ L, we denote by X/θ = pθ(X) =
{x/θ | x ∈ X}. Also, for every F ∈ Filt(L), every I ∈ Id(L) and each X ⊆ L,
we denote by X/F = {x/F | x ∈ X} and by X/I = {x/I | x ∈ X}.

For every a ∈ L and each θ ∈ Con(L), we have: [a)/θ = [a/θ) and,
dually, (a]/θ = (a/θ]; indeed, clearly [a)/θ ⊆ [a/θ), while, if b ∈ L such
that b/θ ∈ [a/θ), then a/θ ≤ b/θ, thus b/θ = a/θ ∨ b/θ = (a ∨ b)/θ ∈ [a)/θ
since a ∨ b ∈ [a). Consequently: for every a ∈ L, each F ∈ Filt(L) and
each I ∈ Id(L), we have: [a)/F = [a/F ), (a]/F = (a/F ], (a]/I = (a/I] and
[a)/I = [a/I).

Clearly, for any θ ∈ Con(L) and any e ∈ B(L), we have: e/θ ∈
B(L/θ), and ¬ (e/θ) = ¬ e/θ in the Boolean algebra B(L/θ). This is because
e/θ ∨ ¬ e/θ = (e ∨ ¬ e)/θ = 1/θ and e/θ ∧ ¬ e/θ = (e ∧ ¬ e)/θ = 0/θ. Hence
B(L)/θ ⊆ B(L/θ).

We have the mappings F →∼F from Filt(L) to Con(L) and I →∼I
from Id(L) to Con(L); these mappings are injective, because, as mentioned
above, if F ∈ Filt(L), then 1/ ∼F= 1/F = F , and, dually, if I ∈ Id(L),



38 D. Cheptea, G. Georgescu, C. Mureşan

then 0/ ∼I= 0/I = I. Also, to every congruence of L, we can associate
a filter and an ideal of L: if θ ∈ Con(L), then it is immediate that 1/θ ∈
Filt(L) and 0/θ ∈ Id(L). Notice that none of these mappings is necessarily
bijective. For instance, let L = {0, a, 1} be the three–element chain, with
0 < a < 1; then L is a bounded distributive lattice. Since L is finite, we
have Filt(L) = PFilt(L) = {{1}, [a), L} and Id(L) = PId(L) = {{0}, (a], L}.
But the equivalences corresponding to the following four different partitions
of L are congruences of L: P1 = {{0}, {a}, {1}}, P2 = {{0, a}, {1}}, P3 =
{{0}, {a, 1}}, P4 = {L}; indeed, if we denote, for every i ∈ 1, 4, by θi the
equivalence which corresponds to Pi, then θ1 = ∆L, θ2 =∼(a], θ3 =∼[a) and

θ4 = ∇L, so θ1, θ2, θ3, θ4 ∈ Con(L), hence the cardinality of Con(L) is strictly
greater that of Filt(L) and that of Id(L), thus Con(L) is not in bijection to
Filt(L), nor to Id(L). Furthermore, see in Example 6 a congruence which
does not correspond to any filter, nor to any ideal, that is an element of
Con(L) \ ({∼F | F ∈ Filt(L)} ∪ {∼I | I ∈ Id(L)}). However, it is well
known that, in the particular case when L is a Boolean algebra, the sets
Con(L), Filt(L) and Id(L) are in bijection (actually pairwise isomorphic
or anti–isomorphic as bounded distributive lattices), because the mapping
θ → 1/θ from Con(L) to Filt(L) is the inverse of the mapping F →∼F from
Filt(L) to Con(L), and the mapping θ → 0/θ from Con(L) to Id(L) is the
inverse of the mapping I →∼I from Id(L) to Con(L) (see above the fact
that, in this particular case, Con(L) is exactly the set of the Boolean algebra
congruences of L).

3 Boolean Lifting Properties

In this section, we introduce the different kinds of Boolean Lifting Properties
which appear in bounded distributive lattices, we study their behaviour with
respect to quotients and inverse images through surjective morphisms, and
we provide several examples of classes of bounded distributive lattices in
which these properties are present, as well as some concrete examples which
show how these different Boolean Lifting Properties relate to each other.

Throughout this section, unless mentioned otherwise, L will be an
arbitrary bounded distributive lattice.

Remark 1 Since the Boolean center of any bounded chain is {0, 1}, it
follows that any Boolean algebra with more than three elements is not a
chain, and any chain with at least three elements is not a Boolean algebra.
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Moreover, if (Lt)t∈T is a non–empty family of bounded chains and

L =
∏
t∈T

Lt, then, since B(L) =
∏
t∈T
B(Lt), the following hold:

(a) if Lk has cardinality at least 3 for some k ∈ T , then L is not a Boolean
algebra;
(b) if at least two of the bounded chains in the family (Lt)t∈T are non–trivial,
then L is not a chain;
(c) consequently, if, for some k, j ∈ T such that k 6= j, Lk has cardinality
at least 3 and Lj is non–trivial, then L is neither a chain, nor a Boolean
algebra.

Let us define the following functions:

L�
�
��

�*uL
Filt(L)

HHH
HHj

ΦL

H
HHH

Hj
vL

Id(L)
�
��

�
�*Con(L)

ΨL

• for all a ∈ L, uL(a) = [a) and vL(a) = (a];

• for all F ∈ Filt(L), ΦL(F ) =∼F ;

• for all F ∈ Id(L), ΨL(I) =∼I .

Clearly, uL is an injective bounded lattice anti–morphism and vL is an
injective bounded lattice morphism. It is straightforward that ΦL and ΨL

are injective bounded lattice morphisms; as pointed out in Section 2, their
injectivity follows from the fact that, for every filter F and any ideal I of L,
1/F = F and 0/I = I; in the particular case when L is a Boolean algebra,
Φ and Ψ are bounded lattice isomorphisms.

Remark 2 The form of the principal congruences and that of ∼[a) and

∼(a], along with Proposition 1, 1, show that, for all a ∈ L:

• ΦL(uL(a)) =∼[a)= Cg(a, 1) ∈ B(Con(L));

• ΨL(vL(a)) =∼(a]= Cg(0, a) ∈ B(Con(L));

• ΦL(uL(a)) = ¬ΨL(vL(a))
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Lemma 1 For every F,G ∈ Filt(L) such that F ⊆ G, we have: ∼F⊆∼G
and ∼G/F=∼G / ∼F .

Dually, for every I, J ∈ Id(L) such that I ⊆ J , we have: ∼I⊆∼J and
∼J/I=∼J / ∼I .

Proof: Let F and G be filters of L such that F ⊆ G. Then, since ΦL is a
lattice morphism, it follows that Φ(F ) ⊆ Φ(G), that is ∼F⊆∼G. Thus there
exist ∼G/F ,∼G / ∼F∈ Con(L/F ). ∼G/F= {(x/F, y/F ) | x, y ∈ L, (∃ a ∈
G) (x/F ∧ a/F = y/F ∧ a/F )}; ∼G / ∼F= {(x/ ∼F , y/ ∼F ) | x, y ∈
L, (x, y) ∈∼G} = {(x/F, y/F ) | x, y ∈ L, (x, y) ∈∼G} = {(x/F, y/F ) | x, y ∈
L, (∃ a ∈ G) (x∧a = y∧a)} ⊆ {(x/F, y/F ) | x, y ∈ L, (∃ a ∈ G) (x/F∧a/F =
y/F ∧ a/F )} =∼G/F . Now let x, y ∈ L such that x/F, y/F ∈∼G/F , that

is there exists an a ∈ G such that x/F ∧ a/F = y/F ∧ a/F . Then x/F =
(x∨(x∧a))/F = x/F∨(x/F∧a/F ) = x/F∨(y/F∧a/F ) = (x∨(y∧a))/F and,
analogously, y/F = (y∨(x∧a))/F . Since (x∨(y∧a))∧a = (x∧a)∨(y∧a∧a) =
(x ∧ a) ∨ (y ∧ a) = (y ∧ a) ∨ (x ∧ a ∧ a) = (y ∨ (x ∧ a)) ∧ a, it follows that
(x/F, y/F ) = ((x ∨ (y ∧ a))/F, (y ∨ (x ∧ a))/F ) ∈∼G / ∼F . Therefore we
also have ∼G/F⊆∼G / ∼F . Hence ∼G/F=∼G / ∼F . 2

Lemma 2 If F and G are filters of L, then the following are equivalent:

1. F ∩G = {1} and F ∨G = L;

2. there exists e ∈ B(L) such that F = [e) and G = [¬ e).

Dually, if I and J are ideals of L, then the following are equivalent:

• I ∩ J = {0} and I ∨ J = L;

• there exists e ∈ B(L) such that I = (e] and J = (¬ e].

Proof: 2⇒1: If F = [e) and G = [¬ e) for some e ∈ B(L), then F ∩G =
[e ∨ ¬ e) = [1) = {1} and F ∨G = [e ∧ ¬ e) = [0) = L.
1⇒2: F ∨G = L iff 0 ∈ F ∨G iff e∧ f = 0 for some e ∈ F and f ∈ G. Then
e ∨ f ∈ F ∩ G = {1}, so e ∨ f = 1. Hence e, f ∈ B(L) and f = ¬ e. Also,
[e) ⊆ F and [¬ e) = [f) ⊆ G. Now let x ∈ F ; then x ∨ f ∈ F ∩G = {1}, so
x ∨ f = 1, hence e = ¬ f ≤ x. Therefore x ∈ [e), hence F ⊆ [e). Therefore
F = [e). Similarly, for every y ∈ G, it follows that e ∨ y ∈ F ∨G = {1}, so
e ∨ y = 1, hence f = ¬ e ≤ y. Therefore y ∈ [f), hence G ⊆ [f). Therefore
G = [f) = [¬ e). 2
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Corollary 1 1. B(Filt(L)) = {[e) | e ∈ B(L)};

2. B(Id(L)) = {(e] | e ∈ B(L)}.

By applying the functor B to the previous diagram, we obtain the
following Boolean morphisms:

B(L)�
��

��*B(uL)
B(Filt(L))

HH
HHHj

B(ΦL)

HHH
HHjB(vL)

B(Id(L))
��

��
�*B(Con(L))

B(ΨL)

Proposition 2 1. B(uL) is a Boolean anti–isomorphism.

2. B(vL) is a Boolean isomorphism;

3. B(ΦL) and B(ΨL) are injective Boolean morphisms.

Proof: 1 Since uL is a bounded lattice anti–morphism, it follows that
B(uL) is a Boolean anti–morphism. The injectivity of uL and the definition
of the functor B on morphisms prove that B(uL) is injective. Corollary 1, 1,
shows that B(uL) is surjective.

2 By duality, from 1.

3 ΦL and ΨL are bounded lattice morphisms, so B(ΦL) and B(ΨL) are
Boolean morphisms. The fact that ΦL and ΨL are injective, along with the
definition of the functor B, show that B(ΦL) and B(ΨL) are injective. 2

The previous results are known, but, for the sake of completeness, we
have provided proofs for them.

For all F ∈ Filt(L), I ∈ Id(L) and θ ∈ Con(L), let us define the
functions:

• δF : Filt(L)→ Filt(L/F ), for all G ∈ Filt(L), δF (G) = (F ∨G)/F ;

• δI : Id(L)→ Id(L/I), for all J ∈ Id(L), δI (J) = (I ∨ J)/I;

• δθ : Con(L)→ Con(L/θ), for all ≡∈ Con(L), δθ(≡) = (≡ ∨θ)/θ.

We consider that the fact that, in the above, we can have F = I = L,
produces no danger of confusion, since everywhere in the following it will be
clear to which of the functions above we refer.
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Remark 3 It is straightforward that, for all F ∈ Filt(L), I ∈ Id(L) and
θ ∈ Con(L), δF , δI and δθ are bounded lattice morphisms.

For instance, in order to prove that δF is a bounded lattice mor-
phism between the bounded distributive lattices (Filt(L),∩,∨, {1}, L) and
(Filt(L/F ),∩,∨, {1/F}, L/F ), we may notice the following: δF ({1}) =
(F ∨ {1})/F = F/F = {1/F}, δF (L) = (F ∨ L)/F = L/F , and, for
all G,H ∈ Filt(L), δF (G∨H) = (F ∨G∨H)/F = ((F ∨G)∨ (F ∨H))/F =
(F ∨G)/F ∨ (F ∨H)/F = δF (G) ∨ δF (H) and, since the lattice Filt(L) is
distributive, δF (G ∩H) = (F ∨ (G ∩H))/F = ((F ∨ G) ∩ (F ∨H))/F =
(F ∨G)/F ∩ (F ∨H)/F = δF (G) ∩ δF (H).

Definition 1 • For every θ ∈ Con(L), we say that θ has the Boolean
Lifting Property (abbreviated BLP) iff, for all a ∈ L such that a/θ ∈
B(L/θ), there exists e ∈ B(L) such that a/θ = e/θ.

• For any Ω ⊆ Con(L), we say that L has the Ω–Boolean Lifting Property
(abbreviated Ω–BLP) iff every θ ∈ Ω has the BLP.

• We say that L has the Boolean Lifting Property (abbreviated BLP) iff
L has the Con(L)–BLP.

• For every F ∈ Filt(L), we say that F has the Boolean Lifting Property
(abbreviated BLP) iff ∼F has the BLP.

• For every I ∈ Id(L), we say that I has the Boolean Lifting Property
(abbreviated BLP) iff ∼I has the BLP.

• We say that L has the Filt–Boolean Lifting Property (abbreviated
Filt–BLP) iff L has the ΦL(Filt(L))–BLP.

• We say that L has the Id–Boolean Lifting Property (abbreviated Id–
BLP) iff L has the ΨL(Id(L))–BLP.

Remark 4 • L has the BLP iff every θ ∈ Con(L) has BLP.

• L has the Filt–BLP iff every F ∈ Filt(L) has BLP.

• L has the Id–BLP iff every I ∈ Id(L) has BLP.

Remark 5 As we have seen in Section 2, for any θ ∈ Con(L), B(L)/θ ⊆
B(L/θ). Hence, for any F ∈ Filt(L), B(L)/F ⊆ B(L/F ), and, for any
I ∈ Id(L), B(L)/I ⊆ B(L/I).
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For every θ ∈ Con(L), F ∈ Filt(L) and I ∈ Id(L), let us consider the
Boolean morphisms: B(pθ) : B(L) → B(L/θ), B(pF ) : B(L) → B(L/F ),
B(pI ) : B(L) → B(L/I). The images of these Boolean morphisms are:
B(pθ)(B(L)) = B(L)/θ, B(pF )(B(L)) = B(L)/F , B(pI )(B(L)) = B(L)/I.

Remark 6 For all θ ∈ Con(L), F ∈ Filt(L) and I ∈ Id(L):

• θ has BLP iff, for all a ∈ L, a/θ ∈ B(L/θ) implies a/θ ∈ B(L)/θ,
iff B(L/θ) ⊆ B(L)/θ iff B(L/θ) = B(L)/θ iff the Boolean morphism
B(pθ) is surjective;

• F has BLP iff, for all a ∈ L, a/F ∈ B(L/F ) implies a/F ∈ B(L)/F ,
iff B(L/F ) ⊆ B(L)/F iff B(L/F ) = B(L)/F iff the Boolean morphism
B(pF ) is surjective;

• I has BLP iff, for all a ∈ L, a/I ∈ B(L/I) implies a/I ∈ B(L)/I,
iff B(L/I) ⊆ B(L)/I iff B(L/I) = B(L)/I iff the Boolean morphism
B(pI ) is surjective.

Remark 7 Clearly, if Ω ⊆ Σ ⊆ Con(L) and L has Σ–BLP, then L has
Ω–BLP. For instance, if L has BLP, then L has Filt–BLP and Id–BLP.

Remark 8 It is clear that the properties Filt–BLP and Id–BLP are dual to
each other: L has Filt–BLP iff the dual of L has Id–BLP. Also, clearly, the
notion of BLP is dual to itself: L has BLP iff the dual of L has BLP.

In what follows, we shall be using the previous remarks without refe-
rencing them. Actually, throughout this paper, in most cases, remarks will
be used without being referenced.

Remark 9 Any Boolean algebra has BLP. Indeed, if L is a Boolean algebra,
then B(L) = L, thus, for any θ ∈ Con(L), B(L)/θ = L/θ ⊇ B(L/θ), so θ
has BLP.

Furthermore, by Remark 5, we get that B(L)/θ ⊆ B(L/θ) and B(L)/θ ⊇
B(L/θ), so B(L/θ) = B(L)/θ = L/θ, thus L/θ is a Boolean algebra, as
expected, since, in this particular case, θ is a Boolean algebra congruence.

Proposition 3 For every F ∈ Filt(L), the following are equivalent:

1. F has BLP;
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2. the Boolean morphism B(δF ) : B(Filt(L))→ B(Filt(L/F )) is surjec-
tive.

Dually, for every I ∈ Id(L), the following are equivalent:

• I has BLP;

• the Boolean morphism B(δI ) : B(Id(L))→ B(Id(L/I)) is surjective.

Proof: The following diagram is commutative:
uLL -Filt(L)

pF
?

δF
?

L/F -Filt(L/F )
uL/F

Indeed, for all a ∈ L, the following hold: uL/F (pF (a)) = uL/F (a/F ) =

[a/F ) and δF (uL(a)) = δF ([a)) = ([a) ∨ F )/F = [a)/F ∨ F/F = [a)/F ∨
{1/F} = [a)/F = [a/F ); hence uL/F ◦ pF = δF ◦ uL.

By applying the functor B, we obtain the following commutative dia-
gram:

B(uL)
B(L) -B(Filt(L))

B(pF )
?

B(δF )
?

B(L/F ) - B(Filt(L/F ))
B(uL/F )

that is we get that: B(uL/F ) ◦ B(pF ) = B(δF ) ◦ B(uL). According to

Proposition 2, 1, B(uL) and B(uL/F ) are bijections. Therefore B(pF ) is

surjective iff B(δF ) is surjective, thus F has BLP iff B(δF ) is surjective. 2

Corollary 2 L has Filt–BLP iff, for each F ∈ Filt(L), B(δF ) is surjective.
Dually, L has Id–BLP iff, for each I ∈ Id(L), B(δI ) is surjective.

Example 1 Here is an example of a filter without BLP. Let L be the bounded
distributive lattice given by the following Hasse diagram:

1

0

c
a brr

r
r r
�@
@�

(L)

1/[c)

0/[c)

a/[c) b/[c)rrr r
�@
@�

(L/[c))
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The form of the congruence ∼[c) shows that: c/[c) = 1/[c) = [c), 0/[c) =

{0} and (a, b) /∈∼[c), that is a/[c) 6= b/[c), hence a/[c) = {a} and b/[c) = {b}.
Therefore L/[c) is the rhombus (the direct product between the two–element
chain and itself), which is a Boolean algebra, so B(L/[c)) = L/[c). But,
clearly, B(L) = {0, 1}, thus B(L)/[c) = {0/[c), 1/[c)} ( L/[c) = B(L/[c)),
therefore the filter [c) does not have BLP. Consequently, L does not have
Filt–BLP, hence it does not have BLP.

Example 2 Here is an example of an ideal without BLP. Let L be the
following bounded distributive lattice, which is the dual of the one from
Example 1: 1

0

c
a brrr
r r
�@
@�

By duality, from Example 1, we get that the ideal (c] does not have BLP
in L. Hence L does not have Id–BLP, thus L does not have BLP.

Example 3 In response to a question posed by the reviewer, let us provide
an example of a filter without BLP such that the quotient bounded lattice
through that filter is not a Boolean algebra. By dualizing this example, we
shall get an ideal with the same property.

Let L be the lattice with the Hasse diagram below, and let us consider
the filter [a) of L:

1

0

t

a

z u
x y

v w

r

rr
r

r rr rr r
@

@
�
�

�
�

@
@

@
@

�
�

(L) rr
r

r rr rr r
@

@
�
�

�
�

@
@

@
@

�
�

{0}

{t}

{a, 1}

{z} {u}
{x} {y}

{v} {w}

(L/[a))

Then B(L) = {0, 1}, [a) = {a, 1} = a/[a) = 1/[a) and, for all
α, β ∈ L \ [a) with α 6= β, we have α ≤ a and β ≤ a, thus α ∧ a =
α 6= β = β ∧ a, so α/[a) 6= β/[a), hence, for all α ∈ L \ [a), α/[a) = {α}.
Thus L/[a) = {x/[a) | x ∈ L \ {a}} is the direct product between the three–
element chain and itself, which is not a Boolean algebra, and has B(L/[a)] =
{0/[a), z/[a), u/[a), 1/[a)} ) {0/[a), 1/[a)} = {0, 1}/[a) = B(L)/[a), there-
fore [a) does not have BLP.

Of course, in the dual of L, (a] is an ideal without BLP such that L/(a]
is not a Boolean algebra.
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Lemma 3 [15, Theorem 2.3, (iii)] For every θ ∈ Con(L) and all a, b ∈ L,
δθ(CgL(a, b)) = (CgL(a, b) ∨ θ)/θ = CgL/θ(a/θ, b/θ).

Proposition 4 For each θ ∈ Con(L), the Boolean morphism B(δθ) :
B(Con(L))→ B(Con(L/θ)) is surjective.

Proof: Let ≡∈ B(Con(L/θ)). Then, according to Proposition 1, 2, there
exists n ∈ N∗ and, for every i ∈ 1, n, there exist ai, bi ∈ L, such that

≡=

n∨
i=1

CgL/θ(ai/θ, bi/θ). Then, by Lemma 3, ≡=

n∨
i=1

δθ(CgL(ai, bi)) =

δθ(

n∨
i=1

CgL(ai, bi)). By Proposition 1, 1, for all i ∈ 1, n, CgL(ai, bi) ∈

B(Con(L)), hence

n∨
i=1

CgL(ai, bi) ∈ B(Con(L)). Therefore we have: ≡=

B(δθ)(
n∨

i=1

CgL(ai, bi)) ∈ B(δθ)(B(Con(L))). Hence B(δθ) is surjective. 2

Remark 10 A characterization similar to the one from Proposition 3 for
filters and ideals does not hold for congruences: according to Proposition 4,
B(δθ) is surjective for every congruence θ of L; but, obviously, not every
congruence has BLP. Indeed, if F = [c) is the filter without BLP from
Example 1, then the congruence ∼F does not have BLP. Similarly, if I = (c]
is the ideal without BLP from Example 2, then the congruence ∼I does not
have BLP.

Corollary 3 If B(ΦL) is surjective, then L has Filt–BLP.
Dually, if B(ΨL) is surjective, then L has Id–BLP.

Proof: Assume that B(ΦL) is surjective, and let F be an arbitrary filter
of L. Then the following diagram is commutative:

ΦLFilt(L) -Con(L)

δF
?

δ∼F
?

Filt(L/F ) -Con(L/F )
ΦL/F

Indeed, for all G ∈ Filt(L), the following hold, according to Lemma 1:
δ∼F (ΦL(G)) = δ∼F (∼G) = (∼F ∨ ∼G)/ ∼F= (ΦL(F ) ∨ΦL(G))/ΦL(F )
= ΦL(F ∨G)/ΦL(F ) =∼F ∨G / ∼F=∼(F ∨G)/F= ΦL/F ((F ∨G)/F ) =

ΦL/F (δF (G)), thus ΦL/F ◦ δF = δ∼F ◦ ΦL.
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B(ΦL)
B(Filt(L)) -B(Con(L))

B(δF )

?

B(δ∼F )

?
B(Filt(L/F )) -B(Con(L/F ))

B(ΦL/F )

By applying the functor B, we get the commutative diagram above, that
is we obtain: B(ΦL/F ) ◦ B(δF ) = B(δ∼F ) ◦ B(ΦL), which is a surjective

Boolean morphism, since B(ΦL) is surjective by the hypothesis and B(δ∼F )
is surjective by Proposition 4. But, according to Proposition 2, 3, B(ΦL/F )

is injective. From this, it immediately follows that B(δF ) is surjective, hence
F has BLP, by Proposition 3. Therefore L has Filt–BLP. 2

Proposition 5 1. Let θ ∈ Con(L) such that B(L/θ) = {0/θ, 1/θ}. Then
θ has BLP.

2. Let F ∈ Filt(L) such that B(L/F ) = {0/F, 1/F}. Then F has BLP.

3. Let I ∈ Id(L) such that B(L/I) = {0/I, 1/I}. Then I has BLP.

Proof: 1 {0, 1} ⊆ B(L), thus B(L/θ) = {0/θ, 1/θ} ⊆ B(L)/θ, hence θ has
BLP. 2 and 3 follow from 1. 2

Remark 11 The converse of Proposition 5 does not hold. Indeed, for ins-
tance, let L be the cube (with the elements denoted as in the picture below),
which is a Boolean algebra, thus it has BLP, which means that all of its
congruences have BLP, so all of its filters and all of its ideals have BLP:

r
0
�
�

@
@
r r rr r rr
�
�
@
@
�
�

@
@

�
�
@
@

a b c

x y z

1

Also, all of its quotient lattices are Boolean algebras, hence, for all
θ ∈ Con(L), B(L/θ) = L/θ, thus, for all F ∈ Filt(L) and all I ∈ Id(L),
B(L/I) = L/I. Now take, for instance, [x) = {x, 1}. L/[x) is the rhombus,
which has four elements, hence B(L/[x)) = L/[x) ) {0/[x), 1/[x)}; but [x)
has BLP in L. Similarly, if we take (c] = {0, c}, then L/(c] is the rhombus,
hence B(L/(c]) = L/(c] ) {0/(c], 1/(c]}; but (c] has BLP. Finally, ∼[x) and

∼(c] have BLP, but B(L/ ∼[x)) = L/ ∼[x)) {0/[x), 1/[x)} = {0/ ∼[x),

1/ ∼[x)}, and the same goes for B(L/ ∼(c]).
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Corollary 4 1. Let θ ∈ Con(L). If L/θ is a chain, then θ has BLP.

2. Any bounded chain has BLP.

Proof: 1 If the bounded lattice L/θ is a chain, then B(L/θ) = {0/θ, 1/θ},
thus θ has BLP by Proposition 5, 1.
2 If L is a bounded chain, then, for every θ ∈ Con(L), the quotient lattice
L/θ is a bounded chain as well, hence θ has BLP by 1. Therefore L has
BLP. 2

Remark 12 Each of the results Remark 9 and Corollary 4 provides us with
a class of counter–examples for the converse of the other one of these results:
any bounded chain with at least three elements has BLP, and is not a Boolean
algebra, and any Boolean algebra with more than three elements has BLP,
and is not a chain.

Proposition 6 1. ∆L and ∇L have BLP.

2. The filters {1} and L have BLP.

3. The ideals {0} and L have BLP.

Proof: 1 L/∆L = {x/∆L | x ∈ L} = {{x} | x ∈ L}, which is isomorphic
to L, since h : L→ L/∆L, for all x ∈ L, h(x) = x/∆L = {x}, is a bounded
lattice isomorphism. Hence B(L/∆L) = {{x} | x ∈ B(L)} = {x/∆L | x ∈
B(L)} = B(L)/∆L, thus ∆L has BLP.

L/∇L = {0/∇L} = {1/∇L} = {0/∇L, 1/∇L}, hence B(L/∇L) =
L/∇L = {0/∇L, 1/∇L}, therefore ∇L has BLP by Proposition 5, 1.
2 By 1 and the fact that ∼{1}= ΦL({1}) = ∆L and ∼L= ΦL(L) = ∇L.

3 By 1 and the fact that ∼{0}= ΨL({0}) = ∆L and ∼L= ΨL(L) = ∇L, or

simply by duality, from 2. 2

Proposition 7 Any prime filter of L has BLP.
Dually, any prime ideal of L has BLP.

Proof: Let P be a prime filter of L, and let x ∈ L such that x/P ∈ B(L/P ).
Then there exists y ∈ L such that x/P ∨ y/P = 1/P and x/P ∧ y/P = 0/P .
Then (x∨y)/P = 1/P = P , thus x∨y ∈ P , hence x ∈ P or y ∈ P since P is
a prime filter. If x ∈ P , then x/P = 1/P . If y ∈ P , then y/P = 1/P , hence
x/P = x/P ∧ 1/P = x/P ∧ y/P = 0/P . Since x/P is arbitrary in B(L/P ),
it follows that B(L/P ) = {0/P, 1/P}, hence P has BLP by Proposition 5, 2.
2
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Corollary 5 Any maximal filter of L has BLP.
Dually, any maximal ideal of L has BLP.

Proposition 8 1. L has Filt–BLP iff, for all F ∈ Filt(L), L/F has Filt–
BLP. Moreover, for each F ∈ Filt(L), we have: L/F has Filt–BLP iff,
for all G ∈ Filt(L) such that F ⊆ G, L/G has Filt–BLP.

2. L has Id–BLP iff, for all I ∈ Id(L), L/I has Id–BLP. Moreover, for
each I ∈ Id(L), we have: L/I has Id–BLP iff, for all J ∈ Id(L) such
that I ⊆ J , L/J has Id–BLP.

3. L has BLP iff, for all θ ∈ Con(L), L/θ has BLP. Moreover, for each
θ ∈ Con(L), we have: L/θ has BLP iff, for all φ ∈ Con(L) such that
θ ⊆ φ, L/φ has BLP.

Proof: 1 Assume that L has Filt–BLP and let F ∈ Filt(L). Then F has
BLP, so B(L/F ) = B(L)/F . Now let us consider an arbitrary filter of L/F ,
that is let G ∈ Filt(L) such that F ⊆ G, and let us prove that the filter
G/F of L/F has BLP. According to the Second Isomorphism Theorem, the
function h : L/G → (L/F )/(G/F ), for all x ∈ L, h(x/G) = (x/F )/(G/F )
is a bounded lattice isomorphism. Since L has Filt–BLP, it follows that
G has BLP, that is B(L/G) = B(L)/G. Therefore B((L/F ))/(G/F ) =

{(x/F )/(G/F ) | x ∈ L, x/F ∈ B(L/F )} = {(x/F )/(G/F ) | x ∈ B(L)} =

{h(x/G) | x ∈ B(L)} = h(B(L)/G) = h(B(L/G)) = B((L/F )/(G/F )),

hence G/F has BLP in L/F . Thus L/F has Filt–BLP. For the converse
implication, just take F = {1}.

The second statement follows from the above, the form of the filters of
L/F and the fact that, according to the Second Isomorphism Theorem, for
any G ∈ Filt(L) such that F ⊆ G, the bounded lattice L/G is isomorphic to
(L/F )/(G/F ).

2 By duality, from 1.
3 The argument is similar to the one from above 1, except filters are replaced
by congruences. 2

Remark 13 The lattice L in Example 2 has Filt–BLP, by Proposition 6, 2,
Proposition 7 and the immediate fact that all proper filters of L are prime
filters. Dually, the lattice L in Example 1 has Id–BLP.

Remark 14 None of the properties Filt–BLP and Id–BLP implies the other.
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Indeed, the bounded distributive lattice in Example 2 has Filt–BLP and
it does not have Id–BLP. The one in Example 1 has Id–BLP and it does not
have Filt–BLP.

Example 4 Now let us see a bounded distributive lattice which has neither
Filt–BLP, nor Id–BLP. Let L be the following bounded distributive lattice:

rrr rr rr
@�

�@

�
�
@

@

0

1

a
x y

z t

(L)

1/[a)

0/[a)

x/[a) y/[a)rrr r
�@
@�

(L/[a))

Clearly, B(L) = {0, 1}. Let us consider the filter [a) = {a, z, t, 1}.
Then a/[a) = z/[a) = t/[a) = 1/[a) = [a) and 0 ∧ a = 0, x ∧ a = x,
y ∧ a = y, thus 0/[a) = {0}, x/[a) = {x}, y/[a) = {y}. Hence L/[a) =
{0/[a), x/[a), y/[a), 1/[a)} is the rhombus, which is a Boolean algebra, thus
B(L/[a)) = L/[a), so B(L)/[a) = {0/[a), 1/[a)} ( L/[a) = B(L/[a)), hence
[a) does not have BLP, therefore L does not have Filt–BLP. At this point, we
can notice that, similarly, (a] does not have BLP, or we may simply notice
that L is dual to itself, hence, since L does not have Filt–BLP, it follows
that L does not have Id–BLP either.

Until mentioned otherwise, let L1 and L2 be bounded distributive
lattices and f : L1 → L2 be a bounded lattice morphism. For every θ ∈
Con(L2), we shall denote by f−1(θ) = {(x, y) | x, y ∈ L1, (f(x), f(y)) ∈ θ}.
For every Ω ⊆ Con(L2), we shall denote by f−1(Ω) = {f−1(θ) | θ ∈ Ω}.

Remark 15 For any θ ∈ Con(L2), it is immediate that f−1(θ) ∈ Con(L1).
Thus, for any Ω ⊆ Con(L2), f

−1(Ω) ⊆ Con(L1).
Clearly, if f is a bounded lattice isomorphism, then, for every θ ∈

Con(L2) and all x, y ∈ L1, we have: (x, y) ∈ f−1(θ) iff (f(x), f(y)) ∈ θ.

Until mentioned otherwise, assume that f is surjective.

Proposition 9 1. Let θ ∈ Con(L2). If f−1(θ) has BLP (in L1), then θ
has BLP (in L2).

2. Let Ω ⊆ Con(L2). If L1 has f−1(Ω)–BLP, then L2 has Ω–BLP.

3. If L1 has f−1(Con(L))–BLP, then L2 has BLP.

4. If L1 has BLP, then L2 has BLP.
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Proof: 1 Assume that f−1(θ) has BLP, and let y ∈ L2 such that y/θ ∈
B(L2/θ). Then y/θ ∨ b/θ = 1/θ and y/θ ∧ b/θ = 0/θ for some b ∈ L2. Since
f is surjective, it follows that there exist x, a ∈ L1 such that f(x) = y and
f(a) = b. Hence f(x)/θ ∨ f(a)/θ = 1/θ and f(x)/θ ∧ f(a)/θ = 0/θ, that is
(f(x) ∨ f(a))/θ = 1/θ and (f(x) ∧ f(a))/θ = 0/θ, so f(x ∨ a)/θ = 1/θ and
f(x ∧ a)/θ = 0/θ, which means that (f(x ∨ a), 1) ∈ θ and (f(x ∧ a), 0) ∈ θ,
that is (f(x ∨ a), f(1)) ∈ θ and (f(x ∧ a), f(0)) ∈ θ, thus (x ∨ a, 1) ∈ f−1(θ)
and (x∧a, 0) ∈ f−1(θ), which means that (x∨a)/f−1(θ) = 1/f−1(θ) and (x∧
a)/f−1(θ) = 0/f−1(θ), so x/f−1(θ) ∨ a/f−1(θ) = 1/f−1(θ) and x/f−1(θ) ∧
a/f−1(θ) = 0/f−1(θ), therefore x/f−1(θ) ∈ B(L1/f

−1(θ)). But f−1(θ) has
BLP, hence x/f−1(θ) ∈ B(L1)/f

−1(θ), that is x/f−1(θ) = e/f−1(θ) for
some e ∈ B(L1). Then, clearly, f(e) ∈ B(L2), and (x, e) ∈ f−1(θ), thus
(f(x), f(e)) ∈ θ, that is f(x)/θ = f(e)/θ ∈ B(L2)/θ. Therefore B(L2/θ) ⊆
B(L2)/θ, which means that θ has BLP.

2, 3, 4 follow from 1, 2, 3, respectively. 2

Proposition 10 If f is a bounded lattice isomorphism, then:

1. for every θ ∈ Con(L2), f−1(θ) has BLP (in L1) iff θ has BLP (in L2);

2. for any Ω ⊆ Con(L2), L1 has f−1(Ω)–BLP iff L2 has Ω–BLP.

Proof: 1 Let θ ∈ Con(L2). By Proposition 9, 1, the direct implication
holds. Now assume that θ has BLP, and let x ∈ L1 such that x/f−1(θ) ∈
B(L1/f

−1(θ)). Then (x∨ a)/f−1(θ) = x/f−1(θ)∨ a/f−1(θ) = 1/f−1(θ) and
(x ∧ a)/f−1(θ) = x/f−1(θ) ∧ a/f−1(θ) = 0/f−1(θ) for some a ∈ L1. So
(x ∨ a, 1) ∈ f−1(θ) and (x ∧ a, 0) ∈ f−1(θ), hence (f(x ∨ a), f(1)) ∈ θ and
(f(x∧a), f(0)) ∈ θ, that is (f(x)∨f(a), 1) ∈ θ and (f(x)∧f(a), 0) ∈ θ, which
means that f(x)/θ ∨ f(a)/θ = (f(x)∨ f(a))/θ = 1/θ and f(x)/θ ∧ f(a)/θ =
(f(x) ∧ f(a))/θ = 0/θ, hence f(x)/θ ∈ B(L2/θ) = B(L2)/θ, since θ has
BLP. Thus f(x)/θ = g/θ for some g ∈ B(L2) = f(B(L1)), where the last
equality is immediate from the fact that f is a bounded lattice isomorphism.
Hence f(x)/θ = f(e)/θ for some e ∈ B(L1), so (f(x), f(e)) ∈ θ, thus
(x, e) ∈ f−1(θ), that is x/f−1(θ) = e/f−1(θ) ∈ B(L1)/f

−1(θ). Therefore
B(L1/f

−1(θ)) ⊆ B(L1)/f
−1(θ), so f−1(θ) has BLP.

2 By 1. 2

Trivially, if the lattices L1 and L2 are isomorphic, then: L1 has BLP, or
Filt–BLP, or Id–BLP iff L2 has BLP, or Filt–BLP, or Id–BLP, respectively.
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Proposition 11 • For all G ∈ Filt(L2), ∼f−1(G)⊆ f−1(∼G); if f is

a bounded lattice isomorphism, then, for all G ∈ Filt(L2), ∼f−1(G)=

f−1(∼G).

• Dually, for all J ∈ Id(L2), ∼f−1(J)⊆ f−1(∼J ); if f is a bounded

lattice isomorphism, then, for all J ∈ Id(L2), ∼f−1(J)= f−1(∼J ).

Proof: Let x, y ∈ L1 such that (x, y) ∈∼f−1(G), that is x ∧ a = y ∧ a
for some a ∈ f−1(G), hence f(a) ∈ G and f(x) ∧ f(a) = f(x ∧ a) = f(y ∧
a) = f(y) ∧ f(a), thus (f(x), f(y)) ∈∼G, so (x, y) ∈ f−1(∼G). Therefore
∼f−1(G)⊆ f−1(∼G). Now assume that f is bijective and let x, y ∈ L1

such that (x, y) ∈ f−1(∼G). Then (f(x), f(y)) ∈∼G, which means that
f(x) ∧ b = f(y) ∧ b for some b ∈ G. Since f is surjective, there exists
a ∈ L1 such that f(a) = b. But b ∈ G, thus a ∈ f−1(G). Then we have
f(x) ∧ f(a) = f(y) ∧ f(a), so f(x ∧ a) = f(y ∧ a), hence x ∧ a = y ∧ a
since f is injective. Therefore (x, y) ∈∼f−1(G). So f−1(∼G) ⊆∼f−1(G).

Therefore ∼f−1(G)= f−1(∼G). 2

Corollary 6 If f is a bounded lattice isomorphism, then:
for all G ∈ Filt(L2): f

−1(G) has BLP (in L1) iff G has BLP (in L2);
dually, for all J ∈ Id(L2): f

−1(J) has BLP (in L1) iff J has BLP (in L2).

Proof: By Proposition 11 and Proposition 10, 1, for any G ∈ Filt(L2), we
have: f−1(G) has BLP iff ∼f−1(G) has BLP iff f−1(∼G) has BLP iff ∼G
has BLP iff G has BLP. 2

Example 5 Here is a counter–example for the converse inclusions in Propo-
sition 11, in the general case: let L1 and L2 be the bounded distributive
lattices given by the next Hasse diagrams, and f : L1 → L2 be given by the
following table:

(L1) (L2)0

1

a

d
b c

rr
rrr r
�@
@� -f

0

1

x yrrr r
�@
@� α 0 a b c d 1

f(α) 0 0 x y 1 1
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Notice that f is a surjective bounded lattice morphism which is not
injective. Let us consider the filter [y) = {y, 1} of L2. f−1([y)) = {c, d, 1} =
[c). Since 0 ∧ c = 0 6= a = a ∧ c, we have (0, a) /∈∼[c)=∼f−1([y)). But

f(0) = f(a) = 0, thus (f(0), f(a)) = (0, 0) ∈∼[y), so (0, a) ∈ f−1(∼[y)).

Hence f−1(∼[y)) *∼f−1([y)). Similarly, if we consider the ideal (x] of L2,

we get f−1((x]) = (b], and we obtain that f−1(∼(x]) *∼f−1((x]).

Example 6 Now let us see an example of a bounded distributive lattice
which has Filt–BLP and Id–BLP, but it does not have BLP, and, at the
same time, an example of a congruence which does not correspond to a filter
or an ideal.

Let us consider the bounded distributive lattice L1 from Example 5. This
lattice is not a chain, nor a Boolean algebra, nor a direct product of chains
(see Corollary 11).

Since L1 is finite, we have Filt(L1) = PFilt(L1). By Proposition 6, 2,
the filters [0) = L1 and [1) = {1} have BLP. [a) ∈ MaxFilt(L1), thus [a) has
BLP by Corollary 5. [b), [c) ∈ SpecFilt(L1), thus [b) and [c) have BLP by
Proposition 7.

1/[d)

0/[d)

a/[d)
b/[d) c/[d)rrr

r r
�@
@�

1/[b)

0/[b)

a/[b)rr
r 1/θ = {d, 1}

0/θ = {0, a}
b/θ = {b} c/θ = {c}rrr r

�@
@�

(L1/[d)) (L1/[b)] (L1/θ)

Notice that B(L1) = {0, 1}, and let us consider the filter [d) = {d, 1}
of L1. We have: d/[d) = 1/[d) = [d) and each x ∈ L1 \ [d) satisfies
x ≤ d, thus x ∧ d = x, so 0/[d) = {0}, a/[d) = {a}, b/[d) = {b} and
c/[d) = {c}. Hence L1/[d) is isomorphic to the lattice in Example 2, thus
B(L1/[d)) = {0/[d), 1/[d)} = {0, 1}/[d) = B(L1)/[d), so [d) has BLP.

Therefore L1 has Filt–BLP. Since L1 is dual to itself, it follows that L1

also has Id–BLP.
Now let us denote by θ the equivalence which corresponds to the following

partition of L1: {{0, a}, {b}, {c}, {d, 1}}. It is easy to see that, for all x, y, z ∈
L1 such that (x, y) ∈ θ, it follows that (x∧ z, y∧ z) ∈ θ and (x∨ z, y∨ z) ∈ θ;
from this it is immediate that θ ∈ Con(L1). And L1/θ is the rhombus, which
is a Boolean algebra, so B(L1/θ) = L1/θ ) {0/θ, 1/θ} = {0, 1}/θ = B(L1)/θ,
thus θ does not have BLP. Hence L1 does not have BLP.

Notice, additionally, that the congruence θ does not correspond to any
filter of L1, nor to any ideal of L1, which can be derived from the fact that



54 D. Cheptea, G. Georgescu, C. Mureşan

L1 has Filt–BLP and Id–BLP, while θ does not have BLP, but can also
be observed directly: if there would exist F ∈ Filt(L) such that θ =∼F ,
then we would have F = 1/ ∼F= 1/θ = {d, 1} = [d), so θ =∼[d); but

0 ∧ d = 0 6= a = a ∧ d, so (0, a) /∈∼[d), while 0/θ = a/θ, so (0, a) ∈ θ; we

have obtained a contradiction; a similar proof can be given to the fact that
the congruence θ does not correspond to any ideal of L1.

Remark 16 The following example shows that the converses of the state-
ments from Proposition 9 do not hold, and, moreover, they do not even hold
in the particular cases of Filt–BLP or Id–BLP instead of BLP. This example
also shows that the version of statement 4 from Proposition 9 for Filt–BLP
or Id–BLP instead of BLP does not hold either.

Example 7 Let L1, L2, L3, L4, L5 be the bounded distributive lattices with
the following Hasse diagrams:

0

1

a

d
b c

rr
rrr r
�@
@�

(L1)

0

1

x yrrr r
�@
@�

(L2)

1

0

d
b crr

r
r r
�@
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(L3)

1

0

a
b crrr
r r
�@
@�

(L4)

rrr rr rr
@�

�@

�
�
@
@

0

1

a
x y

z t

(L5)

So L1 is the lattice L1 in Example 5, L2 is the rhombus and L3, L4 and
L5 are the lattices in Examples 1, 2 and 4, respectively.

Notice that the functions f : L1 → L2, g : L1 → L3, h : L1 → L4,
k : L3 → L2, l : L4 → L2 and m : L5 → L2, defined by the following tables,
are surjective bounded lattice morphisms:

α 0 a b c d 1

f(α) 0 0 x y 1 1
g(α) 0 0 b c d 1
h(α) 0 a b c 1 1
k(α) 0 x y 1 1
l(α) 0 0 x y 1

α 0 x y a z t 1

m(α) 0 x y 1 1 1 1

And now let us notice that, although there exist surjective bounded lattice
morphisms between these bounded distributive lattices, we have:
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(a) as shown in Example 6, L1 does not have BLP, while L2 is the rhombus,
which is a Boolean algebra, hence it has BLP;

(b) L3 does not have Filt–BLP, while L2 has BLP and thus Filt–BLP;

(c) L4 does not have Id–BLP, while L2 has BLP and thus Id–BLP;

(d) as shown in Example 6, L1 has Filt–BLP, while L3 does not have
Filt–BLP;

(e) as shown in Example 6, L1 has Id–BLP, while L4 does not have Id–BLP.

(f) L5 has neither Filt–BLP, nor Id–BLP, while L2 is a Boolean algebra,
thus it has BLP; this observation strengthens (a) above.

4 Characterization Theorems for the Boolean Lift-
ing Properties

In this section, we prove that the Boolean Lifting Property for filters is equi-
valent to B–conormality, and, when the Boolean center is the two–element
chain, also to Filt–locality. Dually, the Boolean Lifting Property for ideals is
equivalent to B–normality, and, when the Boolean center is the two–element
chain, also to Id–locality. We also prove that the Boolean Lifting Properties
are preserved by arbitrary direct products, and we provide a method for
obtaining examples of bounded distributive lattices which have these Boolean
Lifting Properties and examples without these properties.

Throughout this section, unless mentioned otherwise, L will be an
arbitrary bounded distributive lattice.

We recall that L is said to be:

• B–normal iff, for all x, y ∈ L such that x∨y = 1, there exist e, f ∈ B(L)
such that e ∧ f = 0 and x ∨ e = y ∨ f = 1;

• B–conormal iff, for all x, y ∈ L such that x ∧ y = 0, there exist
e, f ∈ B(L) such that e ∨ f = 1 and x ∧ e = y ∧ f = 0.

Clearly, the notions of B–normality and B–conormality are dual to each
other, that is L is B–normal iff its dual is B–conormal.

Lemma 4 L is B–normal iff, for all x, y ∈ L such that x ∨ y = 1, there
exists e ∈ B(L) such that x ∨ e = y ∨ ¬ e = 1;

Dually, L is B–conormal iff, for all x, y ∈ L such that x ∧ y = 0, there
exists e ∈ B(L) such that x ∧ e = y ∧ ¬ e = 0.
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Proof: Assume that L is B–conormal, and let x, y ∈ L such that x∧ y = 0.
Then there exist e, f ∈ B(L) such that e ∨ f = 1 and x ∧ e = y ∧ f = 0.
e ∨ f = 1 means that f ≥ ¬ e. Hence y ∧ ¬ e ≤ y ∧ f = 0, thus y ∧ ¬ e = 0.
The converse implication is trivial. 2

Proposition 12 The following statements are equivalent:

1. L has Filt–BLP;

2. L is B–conormal;

3. PFilt(L) is B–normal;

4. PId(L) is B–conormal;

5. Filt(L) is B–normal;

6. Id(L) is B–conormal;

7. for all n ∈ N∗ and all x1, . . . , xn ∈ L such that
n∧

i=1

xi = 0, there exist

e1, . . . , en ∈ B(L) such that

n∧
i=1

ei = 0, ei ∨ ej = 1 for all i, j ∈ 1, n

with i 6= j, and xi ≤ ei for all i ∈ 1, n.

Dually: L has Id–BLP iff L is B–normal iff PId(L) is B–normal iff
PFilt(L) is B–conormal iff Id(L) is B–normal iff Filt(L) is B–conormal

iff: for all n ∈ N∗ and all x1, . . . , xn ∈ L such that

n∨
i=1

xi = 1, there exist

e1, . . . , en ∈ B(L) such that
n∨

i=1

ei = 1, ei ∧ ej = 0 for all i, j ∈ 1, n with

i 6= j, and xi ≥ ei for all i ∈ 1, n.

Proof: 1⇒2: Let x, y ∈ L such that x ∧ y = 0, and let us denote by
F = [x ∨ y). Then x/F ∧ y/F = (x ∧ y)/F = 0/F and, since x ∨ y ∈ F ,
x/F ∨y/F = (x∨y)/F = 1/F . Thus x/F, y/F ∈ B(L/F ) and y/F = ¬x/F
in the Boolean algebra B(L/F ). But L has Filt–BLP, so F has BLP, thus
B(L/F ) = B(L)/F . Hence there exists e ∈ B(L) such that x/F = e/F , that
is (x, e) ∈∼F=∼[x ∨ y), which means that x = x ∧ (x ∨ y) = e ∧ (x ∨ y).
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y/F = ¬ (x/F ) = ¬ (e/F ) = ¬ e/F , thus (y,¬ e) ∈∼F=∼[x ∨ y), so y =

y∧(x∨y) = ¬ e∧(x∨y). We thus have the following: x∧¬ e = e∧(x∨y)∧¬ e =
e∧¬ e∧(x∨y) = 0∧(x∨y) = 0 and y∧e = ¬ e∧(x∨y)∧e = ¬ e∧e∧(x∨y) =
0 ∧ (x ∨ y) = 0. By Lemma 4, it follows that L is B–conormal.

2⇒1: Let F ∈ Filt(L) and x ∈ L such that x/F ∈ B(L/F ), hence x/F ∨
y/F = 1/F and x/F ∧ y/F = 0/F for some y ∈ L. So (x ∧ y)/F =
0/F , which means that (x ∧ y, 0) ∈∼F , that is there exists t ∈ F such
that x ∧ y ∧ t = 0 ∧ t = 0. Hence (x ∧ t) ∧ (y ∧ t) = 0, so, since L
is B–conormal, by Lemma 4, it follows that there exists e ∈ B(L) such
that x ∧ t ∧ e = y ∧ t ∧ ¬ e = 0. t ∈ F , so t/F = 1/F . Therefore
x/F ∧e/F = x/F ∧1/F ∧e/F = x/F ∧t/F ∧e/F = (x∧t∧e)/F = 0/F and
y/F∧¬ e/F = y/F∧1/F∧¬ e/F = y/F∧t/F∧¬ e/F = (y∧t∧¬ e)/F = 0/F .
Hence x/F ∨e/F = x/F ∨e/F ∨0/F = x/F ∨e/F ∨(y/F ∧¬ e/F ) = (x/F ∨
e/F∨y/F )∧(x/F∨e/F∨¬ e/F ) = (x/F∨e/F∨y/F )∧(x/F∨e/F∨¬ e/F ) =
(x/F ∨ y/F ∨ e/F )∧ (x/F ∨ 1/F ) = (1/F ∨ e/F )∧ 1/F = 1/F ∧ 1/F = 1/F .
We have obtained that x/F ∧e/F = 0/F and x/F ∨e/F = 1/F , which means
that x/F = ¬ (e/F ) = ¬ e/F ∈ B(L)/F . Therefore B(L/F ) ⊆ B(L)/F , so
F has BLP. Hence L has Filt–BLP.

2⇒7: We shall apply induction on n ∈ N∗. For n = 1, the statement is
trivial: for x = 0 ∈ L, if we take e = 0 ∈ B(L), then x ≤ e. Now assume that
the statement is valid for an n ∈ N∗ and let us consider x1, . . . , xn, xn+1 ∈ L

such that

n+1∧
i=1

xi = 0. Let us denote by x =

n∧
i=1

xi. Then x∧xn+1 = 0, hence,

since L is B–conormal, by Lemma 4, it follows that there exists an e ∈ B(L)

such that x∧e = xn+1∧¬ e = 0. Thus 0 = x∧e =

n∧
i=1

xi∧e =

n∧
i=1

(xi∧e). By

the induction hypothesis, it follows that there exist f1, . . . , fn ∈ B(L) such

that
n∧

i=1

fi = 0, fi ∨ fj = 1 for all i, j ∈ 1, n with i 6= j, and xi ∧ e ≤ fi for

all i ∈ 1, n. The fact that xn+1 ∧ ¬ e = 0 is equivalent to xn+1 ≤ ¬¬ e = e.
For all i ∈ 1, n, xi ∧ e ∧ ¬ fi ≤ fi ∧ ¬ fi = 0, so xi ∧ e ∧ ¬ fi = 0, which is
equivalent to xi ≤ ¬ (e ∧ ¬ fi) = ¬ e ∨ ¬¬ fi = ¬ e ∨ fi. For all i ∈ 1, n, let
ei = ¬ e ∨ fi ∈ B(L), and let en+1 = e. Then, for all i ∈ 1, n+ 1, xi ≤ ei.
n+1∧
i=1

ei =
n∧

i=1

ei∧ en+1 =
n∧

i=1

(¬ e∨ fi)∧ e = (¬ e∨ (
n∧

i=1

fi))∧ e = (¬ e∨ 0)∧ e =

¬ e∧e = 0. For all i ∈ 1, n, ei∨en+1 = ¬ e∨fi∨e = ¬ e∨e∨fi = 1∨fi = 1. For
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all i, j ∈ 1, n with i 6= j, ei∨ej = ¬ e∨fi∨¬ e∨fj = ¬ e∨fi∨fj = ¬ e∨1 = 1.
Hence the statement is valid for all n ∈ N∗.

7⇒2: Let x, y ∈ L such that x ∧ y = 0. Then, by the statement applied for
n = 2, we get that there exist e, f ∈ B(L) such that e ∧ f = 0, e ∨ f = 1,
x ≤ e and y ≤ f . Then f = ¬ e, so we have: x ≤ e and y ≤ ¬ e, hence
x ∧ ¬ e = y ∧ e = 0, thus L is B–conormal by Lemma 4.
2⇔3: By the fact that the bounded distributive lattices L and PFilt(L) are
anti–isomorphic.
2⇔4: By the fact that the bounded distributive lattices L and PId(L) are
isomorphic.
2⇒5: Let F,G ∈ Filt(L) such that F ∨ G = L, thus x ∧ y = 0 for some
x ∈ F and y ∈ G. Since L is B–conormal, we get that there exist e, f ∈ B(L)
such that e ∨ f = 1 and x ∧ e = y ∧ f = 0. Then [e), [f) ∈ B(Filt(L)) by
Corollary 1, 1, [e) ∩ [f) = [e ∨ f) = [1) = {1} and [x) ∨ [e) = [x ∧ e) = [0) =
L = [0) = [y ∧ f) = [y)∨ [f), hence F ∨ [e) = G∨ [f) = L since [x) ⊆ F and
[y) ⊆ G. Therefore Filt(L) is B–normal.
5⇒2: Let x, y ∈ L such that x ∧ y = 0, so [x) ∨ [y) = [x ∧ y) = [0) = L.
Since Filt(L) is B–normal, it follows that there exist F,G ∈ B(Filt(L))
such that F ∩ G = {1} and [x) ∨ F = [y) ∨ G = L. By Corollary 1, 1, it
follows that there exist e, f ∈ B(L) such that F = [e) and G = [f). Hence
[e ∨ f) = [e) ∩ [f) = {1} and [x ∧ e) = [x) ∨ [e) = L = [y) ∨ [f) = [y ∧ f), so
e ∨ f = 1 and x ∧ e = y ∧ f = 0. Therefore L is B–conormal.
4⇔6: By duality, from the equivalence between 3 and 5. 2

Corollary 7 The following statements are equivalent:

• L has Filt–BLP and Id–BLP;

• L is both B–normal and B–conormal.

Corollary 8 If L has BLP, then L is both B–normal and B–conormal.

Corollary 9 Let us consider the bounded distributive lattices L, PFilt(L),
PId(L), Filt(L) and Id(L).

• If either of these lattices is both B–normal and B–conormal, then each
of these lattices is both B–normal and B–conormal.

• If either of these lattices has BLP, then each of these lattices is both
B–normal and B–conormal.



Boolean Lifting Properties for Bounded Distributive Lattices 59

Corollary 10 L has Filt–BLP iff PFilt(L) has Id–BLP iff PId(L) has Filt–
BLP iff Filt(L) has Id–BLP iff Id(L) has Filt–BLP.

Dually, L has Id–BLP iff PId(L) has Id–BLP iff PFilt(L) has Filt–BLP
iff Id(L) has Id–BLP iff Filt(L) has Filt–BLP.

Remark 17 In view of Corollary 10, it becomes natural to investigate the
relation between the presence of the different Boolean Lifting Properties in L
and their presence in Con(L). In this case, however, we find that correlations
similar to those in Corollary 10 do not exist.

For instance, according to Proposition 1, 3, if L is finite, then Con(L)
is a Boolean algebra, thus Con(L) has BLP. But, in Examples 1, 2, 3 and 6,
we have finite distributive lattices without BLP. Moreover, in Example 4, we
have a finite distributive lattice which has neither Filt–BLP, nor Id–BLP.

Proposition 13 Let (Lt)t∈T be a non–empty family of bounded distributive

lattices and L =
∏
t∈T

Lt. Then:

• L has Filt–BLP iff, for all t ∈ T , Lt has Filt–BLP;

• dually, L has Id–BLP iff, for all t ∈ T , Lt has Id–BLP.

Proof: According to Proposition 12, it suffices to show that: L is B–
conormal iff, for all t ∈ T , Lt is B–conormal.

Assume that, for all t ∈ T , Lt is B–conormal, and let x, y ∈ L such
that x ∧ y = 0. Then x = (xt)t∈T , y = (yt)t∈T , with xt, yt ∈ Lt for all t ∈ T ,
and (0)t∈T = 0 = x ∧ y = (xt)t∈T ∧ (yt)t∈T = (xt ∧ yt)t∈T , thus xt ∧ yt = 0
for all t ∈ T . Since each Lt is B–conormal, it follows that, for all t ∈ T ,
there exist et, ft ∈ B(Lt) such that et ∨ ft = 1 and xt ∧ et = yt ∧ ft = 0. Let
e = (et)t∈T ∈ B(L) and f = (ft)t∈T ∈ B(L). Then e∨f = (et)t∈T ∨(ft)t∈T =
(et∨ft)t∈T = (1)t∈T = 1, x∧e = (xt)t∈T ∧(et)t∈T = (xt∧et)t∈T = (0)t∈T = 0
and y ∧ f = (yt)t∈T ∧ (ft)t∈T = (yt ∧ ft)t∈T = (0)t∈T = 0. Therefore L is
B–conormal.

Now assume that L is B–conormal and let k ∈ I, arbitrary. Let
xk, yk ∈ Lk such that xk∧yk = 0. For every t ∈ T \{k}, let xt = yt = 0 ∈ Lt,
and let x = (xt)t∈T ∈ L and y = (yt)t∈T ∈ L. Then, for all t ∈ T ,
xt ∧ yt = 0, so x ∧ y = (xt)t∈T ∧ (yt)t∈T = (xt ∧ yt)t∈T = (0)t∈T = 0. But
L is B–conormal, thus there exist e, f ∈ B(L) such that e ∨ f = 1 and
x ∧ e = y ∧ f = 0. Then e = (et)t∈T and f = (ft)t∈T , with et, ft ∈ B(Lt)
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for all t ∈ T . Also, (et ∨ ft)t∈T = (et)t∈T ∨ (ft)t∈T = e ∨ f = 1 = (1)t∈T ,
(xt ∧ et)t∈T = (xt)t∈T ∧ (et)t∈T = x ∧ e = 0 = (0)t∈T and (yt ∧ ft)t∈T =
(yt)t∈T ∧ (ft)t∈T = y ∧ f = 0 = (0)t∈T . Thus ek, fk ∈ B(Lk), ek ∨ fk = 1 and
xk ∧ ek = yk ∧ fk = 0. Therefore Lk is B–conormal. 2

Proposition 13 does hold for congruences, and it also holds for individual
congruences, filters and ideals, but, in these cases, it needs a different proof.

Proposition 14 Let (Lt)t∈T be a non–empty family of bounded distributive

lattices, L =
∏
t∈T

Lt, for all t ∈ T , θt ∈ Con(Lt), Ft ∈ Filt(Lt) and It ∈

Id(Lt), θ =
∏
t∈T

θt, F =
∏
t∈T

Ft and I =
∏
t∈T

It. Then the following hold:

1. θ has BLP (in L) iff, for all t ∈ T , θt has BLP (in Lt);

2. F has BLP (in L) iff, for all t ∈ T , Ft has BLP (in Lt);

3. I has BLP (in L) iff, for all t ∈ T , It has BLP (in Lt).

Proof: 1 First let us prove the converse implication, so assume that, for
all t ∈ T , the θt has BLP, that is B(L/θt) = B(L)/θt. Let a ∈ L such that
a/θ ∈ B(L/θ). Then (a∨b)/θ = a/θ∨b/θ = 1/θ and (a∧b)/θ = a/θ∧b/θ =
0/θ for some b ∈ L. So (a ∨ b, 1) ∈ θ and (a ∧ b, 0) ∈ θ. Let a = (at)t∈T
and b = (bt)t∈T , with at, bt ∈ Lt for all t ∈ T . Then a ∨ b = (at ∨ bt)t∈T ,
a ∧ b = (at ∧ bt)t∈T and, of course, 1 = (1)t∈T and 0 = (0)t∈T . Thus,
for all t ∈ T , (at ∨ bt, 1) ∈ θt and (at ∧ bt, 0) ∈ θt, which means that
at/θt∨bt/θt = (at∨bt)/θt = 1/θt and at/θt∧bt/θt = (at∧bt)/θt = 0/θt, hence
at/θt ∈ B(Lt/θt) = B(Lt)/θt since θt has BLP, so there exists et ∈ B(Lt) such

that at/θt = et/θt. Let e = (et)t∈T ∈
∏
t∈T
B(Lt) = B(

∏
t∈T

Lt) = B(L). Then

(a, e) = ((at)t∈T , (et)t∈T ) ∈
∏
t∈T

θt = θ, so a/θ = e/θ ∈ B(L)/θ. Therefore

B(L/θ) ⊆ B(L)/θ, thus θ has BLP.

And now let us prove the direct implication, so assume that θ has BLP,
and let k ∈ T . Let ak ∈ Lk such that ak/θk ∈ B(Lk/θk), thus (ak ∨ bk)/θk =
ak/θk ∨ bk/θk = 1/θk and (ak ∧ bk)/θk = ak/θk ∧ bk/θk = 0/θk for some
bk ∈ Lk. Hence (ak ∨ bk, 1) ∈ θk and (ak ∧ bk, 0) ∈ θk. Let a = (xt)t∈T ∈ L
and b = (yt)t∈T ∈ L, with xk = ak ∈ Lk, yk = bk ∈ Lk and, for all t ∈ T \{k},
xt = 0 ∈ Lt and yt = 1 ∈ Lt. Then a ∨ b = (xt ∨ yt)t∈T , a ∧ b = (xt ∧ yt)t∈T
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and we have: (xk ∨ yk, 1) = (ak ∨ bk, 1) ∈ θk, (xk ∧ yk, 0) = (ak ∧ bk, 0) ∈ θk
and, for all t ∈ T \ {k}, (xt ∨ yt, 1) = (1, 1) ∈ θt and (xt ∧ yt, 0) = (0, 0) ∈ θt,
therefore (a ∨ b, 1) ∈

∏
t∈T

θt = θ and (a ∧ b, 0) ∈
∏
t∈T

θt = θ, which means

that a/θ ∨ b/θ = (a ∨ b)/θ = 1/θ and a/θ ∧ b/θ = (a ∧ b)/θ = 0/θ, hence
a/θ ∈ B(L/θ) = B(L)/θ since θ has BLP. So a/θ = e/θ for some e ∈ B(L) =∏
t∈T
B(Lt), which means that e = (et)t∈T , with et ∈ B(Lt) for all t ∈ T , and

we obtain: ((xt)t∈T , (et)t∈T ) = (a, e) ∈ θ =
∏
t∈T

θt, that is (xt, et) ∈ θt for

all t ∈ T , hence (ak, ek) = (xk, ek) ∈ θk, thus ak/θk = ek/θk ∈ B(Lk)/θk.
Therefore B(Lk/θk) ⊆ B(Lk)/θk, so θk has BLP. Hence we have obtained
that, for all t ∈ T , θt has BLP.

2 By 1 and the fact that ∼F=
∏
t∈T
∼Ft

.

3 By 1 and the fact that ∼I=
∏
t∈T
∼It . 2

Proposition 15 Let (Lt)t∈T be a non–empty family of bounded distributive

lattices and L =
∏
t∈T

Lt. Then: L has BLP iff, for all t ∈ T , Lt has BLP.

Proof: By Proposition 14, 1, and the fact that Con(L) = {
∏
t∈T

θt | (∀ t ∈

T ) (θt ∈ Con(Lt))}. 2

Notice, additionally, that Proposition 3, 1 and 2, follow from Proposition
14, 2 and 3, respectively.

Corollary 11 Any direct product of bounded chains has BLP.

Proof: By Corollary 4, 2, and Proposition 15. 2

Remark 18 Corollary 11 provides us with a class of examples of bounded
distributive lattices with BLP which are neither chains, nor Boolean algebras:
any direct product of at least two non–trivial bounded chains such that at
least one of these bounded chains has at least three elements has BLP, but it
is neither a chain, nor a Boolean algebra. For instance, the direct product
between the three–element chain and itself is a bounded distributive lattice
with BLP which is neither a chain, nor a Boolean algebra.
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Corollary 12 If e ∈ B(L), then the following hold:

1. L has Filt–BLP iff the lattices [e) and [¬ e) have Filt–BLP iff the
lattices (e] and (¬ e] have Filt–BLP;

2. L has Id–BLP iff the lattices [e) and [¬ e) have Id–BLP iff the lattices
(e] and (¬ e] have Id–BLP;

3. L has BLP iff the lattices [e) and [¬ e) have BLP iff the lattices (e]
and (¬ e] have BLP.

Proof: By the fact that L is isomorphic to [e) × [¬ e) and to (e] × (¬ e]
and by: Proposition 13 in the case of 1 and 2, and Proposition 15 in the
case of 3. 2

Definition 2 [5] L is said to be Filt–local iff it has a unique maximal filter.

L is said to be Id–local iff it has a unique maximal ideal.

Clearly, the trivial bounded lattice is neither Filt–local, nor Id–local.
Clearly, L is Filt–local iff its dual is Id–local, that is these two notions are
dual to each other.

Example 8 The lattice in Example 2 is Filt–local, with the unique maximal
filter [c). The one in Example 1 is Id–local, with the unique maximal ideal
(c].

Lemma 5 [5] If L is non–trivial, then:

• L is Filt–local iff, for all x, y ∈ L, x ∧ y = 0 implies x = 0 or y = 0;

• L is Id–local iff, for all x, y ∈ L, x ∨ y = 1 implies x = 1 or y = 1.

Corollary 13 If L is Filt–local or Id–local, then B(L) = {0, 1}.

Corollary 14 L is Filt–local iff L \ {0} ∈ Filt(L) iff L \ {0} ∈ MaxFilt(L)
iff MaxFilt(L) = {L \ {0}}.

Dually, L is Id–local iff L \ {1} ∈ Id(L) iff L \ {1} ∈ MaxId(L) iff
MaxId(L) = {L \ {1}}.
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Remark 19 Any non–trivial bounded chain is both Filt–local and Id–local.
Indeed, if L is a non–trivial bounded chain, then ∧ = min in L, from which
it follows that L is Filt–local by Lemma 5, and ∨ = max in L, from which it
follows that L is Id–local, again by Lemma 5.

It is immediate, for instance from Lemma 5, that a direct product of at
least two non–trivial bounded chains is neither Filt–local, nor Id–local. It is
straightforward, by Lemma 5, that any Boolean algebra with more than three
elements is neither Filt–local, nor Id–local. In fact, the two–element chain
is Filt–local and Id–local, and it is the only Boolean algebra which has either
of these properties.

Corollary 15 If L is Filt–local, then L has Filt–BLP.
Dually, if L is Id–local, then L has Id–BLP.

Proof: Assume that L is Filt–local, and let x, y ∈ L such that x ∧ y = 0.
Then x = 0 or y = 0. Assume, for instance, that x = 0. Then, by taking
e = 1 and f = 0, we get: e, f ∈ B(L), e∨ f = 1 and x∧ e = y ∧ f = 0. Thus
L is B–conormal, hence L has Filt–BLP by Proposition 12. 2

Remark 20 The converses of the implications from Corollary 15 are not
valid. Indeed, for instance, if L is a Boolean algebra with more than three
elements, then L has BLP (thus L has Filt–BLP and Id–BLP), but L is
neither Filt–local, nor Id–local. Furthermore, if L is a direct product of at
least two non–trivial chains, then L has BLP (thus L has Filt–BLP and
Id–BLP), but L is neither Filt–local, nor Id–local.

Proposition 16 If L is Filt–local, then, for any F ∈ Filt(L), B(L/F ) =
{0/F, 1/F}. Dually, if L is Id–local, then, for any I ∈ Id(L), B(L/I) =
{0/I, 1/I}.

Proof: Assume that L is Filt–local, and let F ∈ Filt(L). Then, by
Corollary 13 and Corollary 15, B(L) = {0, 1} and F has BLP, thus B(L/F ) =
B(L)/F = {0/F, 1/F}. 2

Remark 21 Notice that, in fact, if L is Filt–local, then, for any proper
filter F of L, L/F is Filt–local, and, dually, the same holds for ideals. Many
proofs can be given for these facts; they can be proven directly from the
definitions, or from Corollary 14, or even by using Proposition 17 below.

Notice, also, that Corollary 15 could have been obtained from Proposition
16.
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Proposition 17 The following are equivalent:

1. If L is Filt–local;

2. L is non–trivial, L has Filt–BLP and B(L) = {0, 1}.

Dually, the following are equivalent:

• L is Id–local;

• L is non–trivial, L has Id–BLP and B(L) = {0, 1}.

Proof: 1⇒2: By Corollary 15 and Corollary 13.
2⇒1: Assume that L is non–trivial and it has Filt–BLP and B(L) = {0, 1}.
Then, by Lemma 4, Proposition 12 and Lemma 5, we get that: L is B–
conormal, hence, for all x, y ∈ L with x∧ y = 0, it follows that x = x∧ 1 = 0
or y = y ∧ 1 = 0, thus L is Filt–local. 2

Remark 22 Corollary 15 provides us with a quite productive method to ob-
tain bounded distributive lattices with Filt–BLP and/or Id–BLP and bounded
distributive lattices without Filt–BLP and/or Id–BLP. Let us first notice that
the ordinal sum between a bounded lattice A and the trivial bounded lattice is
A, and, similarly, the ordinal sum between the trivial bounded lattice and a
bounded lattice B is B. Now let us analyze the following situations, in which
the Hasse diagrams for the bounded distributive lattice L are suggested by
the pictures below:

r
r
r
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'$
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1. if L is the ordinal sum between two non–trivial bounded distributive
lattices A and B, then it is immediate, by Corollary 14, that: L is
Filt–local iff A is Filt–local, and L is Id–local iff B is Id–local; hence,
according to Corollary 15: if A is Filt–local, then L has Filt–BLP, and,
if B is Id–local, then L has Id–BLP;
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2. if L is the ordinal sum between a non–trivial bounded chain C and a
bounded distributive lattice B, then, by 1, Remark 19 and Corollary
15, we get that L is Filt–local, hence L has Filt–BLP;

3. if L is the ordinal sum between a bounded distributive lattice A and a
non–trivial bounded chain C, then, by 1, Remark 19 and Corollary 15,
we get that L is Id–local, hence L has Id–BLP.

For instance, see Remark 13 and notice that the bounded distributive
lattice in Example 2 is the ordinal sum between the two–element chain and
the rhombus, while the one in Example 1 is the ordinal sum between the
rhombus and the two–element chain. The rhombus is a Boolean algebra,
which has BLP, thus it has Filt–BLP and Id–BLP, hence, if L is the ordinal
sum between two bounded distributive lattices A and B, then: Example 1
shows that, if A has Filt–BLP, then L does not necessarily have Filt–BLP,
while Example 2 shows that, if B has Id–BLP, then L does not necessarily
have Id–BLP. Therefore these strengthenings of the implications from 1
above do not hold.
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Roumanie 53 (101), No. 1, 11–24, 2010.

[21] W. K. Nicholson. Lifting Idempotents and Exchange Rings. Transactions
of the American Mathematical Society 229, 269–278, 1977. doi:10.

1090/S0002-9947-1977-0439876-2.

[22] R. Padmanabhan, S. Rudeanu. Axioms for Lattices and Boolean Alge-
bras. World Scientific Publ. Co., Hackensack, NJ, 2008.

c© Scientific Annals of Computer Science 2015

http://dx.doi.org/10.1090/S0002-9947-1977-0439876-2
http://dx.doi.org/10.1090/S0002-9947-1977-0439876-2

	Introduction
	Preliminaries
	Boolean Lifting Properties
	Characterization Theorems for the Boolean Lifting Properties

