
Scientific Annals of Computer Science vol. 24 (2), 2014, pp. 253–286

doi: 10.7561/SACS.2014.2.253

Learning Cover Context-Free Grammars from

Structural Data

Mircea Marin1, Gabriel Istrate2

Abstract

We consider the problem of learning an unknown context-free gram-
mar from its structural descriptions with depth at most `. The structural
descriptions of the context-free grammar are its unlabelled derivation
trees. The goal is to learn a cover context-free grammar (CCFG) with
respect to `, that is, a CFG whose structural descriptions with depth at
most ` agree with those of the unknown CFG. We propose an algorithm,
called LA`, that efficiently learns a CCFG using two types of queries:
structural equivalence and structural membership. The learning proto-
col is based on what is called in the literature a “minimally adequate
teacher.” We show that LA` runs in time polynomial in the number of
states of a minimal deterministic finite cover tree automaton (DCTA)
with respect to `. This number is often much smaller than the number
of states of a minimum deterministic finite tree automaton for the
structural descriptions of the unknown grammar.

Keywords: automata theory and formal languages, grammatical
inference, structural descriptions

1 Introduction

Angluin’s approach to grammatical inference [1] is an important contribution
to computational learning, with extensions to problems, such as composi-
tional verification and synthesis [6, 11], that go beyond the usual applications
to natural language processing and computational biology [5].

1Department of Computer Science, West University of Timişoara, Romania,
E-mail: mmarin@info.uvt.ro

2Department of Computer Science, West University of Timişoara and eAustria Research
Institute, Timişoara, Romania, E-mail: gabrielistrate@acm.org

254 M. Marin, G. Istrate

Practical concerns, e.g. [9], seem to require going beyond regular
languages to classes of languages with regular tree nature. However, Angluin
and Kharitonov have shown that learning context-free grammars (CFGs)
from membership and equivalence queries is intractable under plausible
cryptographic assumptions [2]. A way out is to learn structural descriptions
of CFGs, that is, trees obtained from the derivation trees of the grammar
by unlabelling all its internal nodes. Sakabibara has shown that Angluin’s
algorithm L∗ extends to this setting [12], and proposed a learning algorithm
LA that runs in time polynomial in the number of states of a minimal
deterministic bottom-up tree automaton for the structural descriptions
of the unknown grammar and the maximum size of any counterexample
returned by a structural equivalence query. His approach has applications in
learning the structural descriptions of natural languages, which describe the
shape of the parse trees of well chosen CFGs.

Often, these structural descriptions are subject to additional restrictions
arising from modelling considerations. For instance, in natural language
understanding, the bounded memory restriction on human comprehension
seems to limit the recursion depth of such a parse tree to a constant. A
natural example with a similar flavour is the limitation imposed by the LATEX
system, that limits the number of nestings of itemised environments to a
small constant. For such applications, a reasonable requirement is to restrict
our interest to structural descriptions whose depth is bound by a constant,
say `, and to learn a deterministic tree automaton A which recognises all
structural descriptions of depth at most `; for structural descriptions of
larger depth, the behaviour of A is irrelevant. We call such a tree automaton
a deterministic cover tree automaton (DCTA) for depth `. If, instead of
structural descriptions of depth at most ` we consider learning a set of strings
with length at most `, the problem boil down to learning a minimum cover
automaton (DCA) for them. Minimal cover automata were first discussed
by Câmpeanu et al. in [4], and an efficient algorithm capable to learn a
minimal DCA for finite sets of word with length at most ` was described by
Ipate in [8]. Ipate’s algorithm, called L`, learns such an automaton in time
polynomial in the number of its states.

In this paper, we extend Ipate’s approach to the learning of structural
descriptions of CFGs up to a constant depth `. We propose an algorithm
called LA` which asks two types of queries: structural equivalence and
structural membership queries, both restricted to structural descriptions
with depth at most `, where ` is a constant. LA` stores the answers retrieved

Learning Cover Context-Free Grammars from
Structural Data 255

from the teacher in an observation table which is used to guide the learning
protocol and to construct a minimal DCTA of the unknown context-free
grammar with respect to `. Our main result shows that LA` runs in time
polynomial in n and m, where n is the number of states of a minimal DCTA
of the unknown CFG with respect to `, and m is the maximum size of a
counterexample returned by a failed structural membership query.

The paper is structured as follows. Section 2 introduces the basic notions
and results to be used later in the paper. It also describes algorithm LA.
In Sect. 4 we introduce the main concepts related to the specification and
analysis of our learning algorithm LA`. They are natural generalisations to
languages of structural descriptions of the concepts proposed by Ipate [8] in
the design and study of his algorithm L`. In Sect. 5 we analyse the space and
time complexity of LA` and show that its time complexity is a polynomial
in n and m, where n is the number of states of a minimal deterministic
finite cover automaton w.r.t. ` of the language of structural descriptions
of interest, and m is an upper bound to the size of the counterexamples
returned by failed structural equivalence queries.

2 Preliminaries

We write N for the set of nonnegative integers, A∗ for the set of finite strings
over a set A, and ε for the empty string. If v, w ∈ A∗, we write v ≤ w if
there exists w′ ∈ A∗ such that vw′ = w; v < v′ if v ≤ v′ and v 6= v′; and
v ⊥ w if neither v ≤ w nor w ≤ v.

Trees, Terms, Contexts, and Context-free Grammars

A ranked alphabet is a finite set F of function symbols together with a finite
rank relation rk(F) ⊆ F×N. We denote the subset {f ∈ F | (f,m) ∈ rk(F)}
by Fm, the set {m | (f,m) ∈ rk(F)} by ar(f), and

⋃
f∈F ar(f) by ar(F).

The terms of the set T (F) are the strings of symbols defined recursively by
the grammar t ::= a | f(t1, . . . , tm) where a ∈ F0 and f ∈ Fm with m > 0.
The yield of a term t ∈ T (F) is the finite string yield(t) ∈ F∗0 defined as
follows: yield(a) := a if a ∈ F0, and yield(f(t1, . . . , tm)) := w1 . . . wm where
wi = yield(ti) for 1 ≤ i ≤ m.

A finite ordered tree over a set of labels F is a mapping t from a nonempty,
finite, and prefix closed set Pos(t) ⊆ (N \ {0})∗ into F . Each element in
Pos(t) is called a position. The tree t is ranked if F is a ranked alphabet,

256 M. Marin, G. Istrate

and t satisfies the following additional property: For all p ∈ Pos(t), there
exists m ∈ N such that {i ∈ N | pi ∈ Pos(t)} = {1, . . . ,m} and t(p) ∈ Fm.

Thus, any term t ∈ T (F) may be viewed as a finite ordered ranked tree,
and we will refer to it by “tree” when we mean the finite ordered tree with
the additional property mentioned above. The depth of t is d(t) := max{‖p‖ |
p ∈ Pos(t)} where ‖p‖ denotes the length of p as sequence of numbers. The
size sz(t) of t is the number of elements of the set {p ∈ Pos(t) | ‖p‖ 6= d(t)},
that is, the number of internal nodes of t.

The subterm t|p of a term t at position p ∈ Pos(t) is defined by the
following: Pos(t|p) := {i | pi ∈ Pos(t)}, and t|p(p′) := t(pp′) for all p′ ∈
Pos(t|p). We denote by t[u]p the term obtained by replacing in t the subterm
t|p with u, that is: Pos(t[u]p) = (Pos(t) − {pp′ | p′ ∈ Pos(t|p)}) ∪ {pp′′ |
p′′ ∈ Pos(u)}, and

t[u]p(p
′) :=

{
u(p′′) if p′ = pp′′ with p′′ ∈ Pos(u),
t(p′) otherwise.

The set C(F) of contexts over F is the set of terms over F ∪ {•}, where:

- • is a distinguished fresh symbol with ar(•) = {0}, called hole,

- rk(F ∪ {•}) = rk(F) ∪ {(•, 0)}, and

- every element C ∈ C(F) contains only one occurrence of •. This is the
same as saying that {p ∈ Pos(C) | C|p = •} is a singleton set.

If C ∈ C(F) and u ∈ C(F) ∪ T (F) then C[u] stands for the context or
term C[u]p, where C|p = •. The hole depth of a context C ∈ C(F) is
d•(C) := ‖p‖ where p is the unique position of C such that C|p = •. From
now on, whenever M is a set of terms, P is a set of contexts, and m is a
non-negative integer, we define the sets M[m] := {t ∈ M | d(t) ≤ m} and
P〈m〉 := {C ∈ P | d•(C) ≤ m}. Thus, if A is a set of terms and/or contexts,
the subscript [m] of A indicates that its elements have depth at most m,
and the subscript 〈m〉 of A indicates that its elements are contexts with hole
depth at most m.

We assume that the reader is acquainted with the notions of CFG and
the context-free language L(G) generated by a CFG G, see, e.g., [13]. A
CFG is ε-free if it has no productions of the form X → ε. It is well known [7]
that every ε-free context-free language L (that is, ε 6∈ L) is generated by
an ε-free CFG. The derivation trees of an ε-free CFG G = (N,Σ, P, S)
correspond to terms from T (N ∪ Σ) with ar(a) = {0} for al a ∈ Σ and

Learning Cover Context-Free Grammars from
Structural Data 257

ar(X) = {m | ∃(X → α) ∈ P with ‖α‖ = m} for all X ∈ N . The sets
DG(U) of derivation trees issued from U ∈ N ∪ Σ and D(G) of derivation
trees of G are defined recursively as follows:

DG(a) := {a} if a ∈ Σ,

DG(X) :=
⋃

(X→U1...Um)∈P

{X(t1, . . . , tm) | t1 ∈ DG(U1) ∧ . . . ∧ tm ∈ DG(Um)},

D(G) := DG(S). Note that L(G) = {yield(t) | t ∈ D(G)}.

Structural Descriptions and Cover Context-free Grammars

A skeletal alphabet is a ranked alphabet Sk = {σ}, where σ is a special
symbol with ar(σ) a finite subset of N \ {0}, and a skeletal set is a ranked
alphabet Sk ∪A where Sk ∩A = ∅ and ar(a) = {0} for all a ∈ A. Skeletal
alphabets are intended to describe the structures of the derivation trees of
ε-free CFGs. For an ε-free CFG G = (N,Σ, P, S) we consider the skeletal
alphabet Sk with ar(σ) := {‖α‖ | (X → α) ∈ P}, and the skeletal set Sk∪Σ.
The skeletal (or structural) description of a derivation tree t ∈ DG(U) is the
term sk(t) ∈ T (Sk ∪ Σ) where

sk(t) :=

{
a if t = a ∈ Σ,
σ(sk(t1), . . . , sk(tm)) if t = X(t1, . . . , tm) with m > 0.

For example, if G is the grammar ({S, A}, {a, b}, {S → A, A → aAb, A →
ab}, S) then t = S(A(a, A(a, b), b)) ∈ DG(S) and sk(t) = σ(σ(a, σ(a, b), b)) ∈
T ({σ, a, b}), where ar(σ) = {1, 2, 3} and ar(a) = ar(b) = {0}. Graphically,
we have

t =

S

A

a A

a b

b ⇒ sk(t) =

σ

σ

a σ

a b

b

If M is a set of ranked trees, then the set of its structural descriptions is
K(M) := {sk(t) | t ∈ M}. Two context-free grammars G1 and G2 over
the same alphabet of terminals are structurally equivalent if K(D(G1)) =
K(D(G2)).

Definition 1 (cover CFG). Let ` be a positive integer and GU be an ε-free
CFG of a language U ⊆ Σ∗. A cover context-free grammar of GU with

258 M. Marin, G. Istrate

respect to ` is an ε-free context-free grammar G′ such that K(D(G′))[`] =
K(D(GU))[`].

Tree Automata

The definition of a tree automaton presented here is equivalent with that
given in [12]. It is non-standard in the sense that it cannot accept any tree
of depth 0.

Definition 2. A nondeterministic (bottom-up) finite tree automaton (NFTA)
over F is a quadruple A = (Q,F ,Qf,∆) where Q is a finite set of states,
Qf ⊆ Q is the set of final states, and ∆ is a set of transition rules of the
form f(q1, . . . , qm) → q where m ≥ 1, f ∈ Fm, q1, . . . , qm ∈ F0 ∪ Q, and
q ∈ Q.

Such an automaton A induces a move relation →A on the set of terms
T (F ∪Q) where ar(q) = {0} for all q ∈ Q, as follows:

t→A t′ if there exist C ∈ C(F ∪ Q) and f(q1, . . . , qm)→ q ∈ ∆ such
that t = C[f(q1, . . . , qm)] and t′ = C[q].

The language accepted by A is L(A) := {t ∈ T (F) | t→∗A q for some q ∈ Qf}
where →∗A is the reflexive-transitive closure of →A. In this paper, a regular
tree language is a language accepted by such an NFTA. Two NFTAs are
equivalent if they accept the same language.

A = (Q,F ,Qf,∆) is deterministic (DFTA) if the transition rules of ∆
describe a mapping δ which assigns to every m ∈ ar(F) \ {0} a function
δm : Fm → (F0 ∪ Q)m → Q such that f(q1, . . . , qm) → q ∈ ∆ if and only
if δm(f)(q1, . . . , qm) = q. The extension δ∗ of {δm | m ∈ ar(F) \ {0}} to
T (F) is defined as expected: δ∗(f(t1, . . . , tm)) := δm(f)(δ∗(t1), . . . , δ∗(tm)) if
m > 0, and δ∗(a) = a if a ∈ F0. Note that L(A) = {t ∈ T (F) | δ∗(t) ∈ Qf}.

Two DFTAs A1 = (Q,F ,Qf,∆) and A2 = (Q′,F ,Q′f,∆′) are isomor-
phic if there exists a bijection ϕ : Q∪ F0 → Q′ ∪ F0 such that ϕ(Qf) = Q′f,
ϕ(a) = a for all a ∈ F0, and for every f ∈ Fm (m > 0), q1, . . . , qm ∈ F0 ∪Q,
ϕ(δm(f)(q1, . . . , qm)) = δ′m(f)(ϕ(q1), . . . , ϕ(qm)). A minimal DFTA of a reg-
ular tree language L ⊆ T (F) \ F0 is a DFTA A with the minimal number
of states such that L(A) = L.

There is a strong correspondence between tree automata and ε-free
CFGs. The NFTA corresponding to an ε-free CFG G = (N,Σ, P, S) is
NA(G) = (N,Sk ∪ Σ, {S},∆) with ∆ := {σ(U1, . . . , Um) → X | (X →
U1 . . . Um) ∈ P}. Conversely, the ε-free CFG corresponding to an NFTA A =

Learning Cover Context-Free Grammars from
Structural Data 259

(Q, Sk ∪ Σ,Qf,∆) over the skeletal set Sk ∪ Σ is G(A) = (Q∪ {S},Σ, P, S)
where S is a fresh symbol and P := {q → q1 . . . qm | (σ(q1, . . . , qm) →
q) ∈ ∆} ∪ {S → q1 . . . qm | (σ(q1, . . . , qm) → q) ∈ ∆ with q ∈ Qf}. These
constructs are dual to each other, in the following sense:

(A1) If G is an ε-free CFG then L(NA(G)) = K(D(G)). [12, Prop. 3.4]

(A2) If A = (Q, Sk ∪Σ,Qf,∆) is an NFTA for the skeletal set Sk ∪Σ then
K(D(G(A))) = L(A). That is, the set of structural descriptions of
G(A) coincides with the set of trees accepted by A. [12, Prop. 3.6]

We recall the following well-known results: every NFTA is equivalent to an
DFTA [10], and every two minimal DFTAs are isomorphic [3].

Cover Tree Automata

Definition 3 (determinstic DCTA). Let ` ∈ N+ and A be a tree language
over the ranked alphabet F . A deterministic cover tree automaton (DCTA)
of A with respect to ` is a DFTA A over a skeletal set Sk ∪ F0 such that
L(A)[`] = K(A)[`].

The correspondence between tree automata and ε-free CFGs is carried
over to a correspondence between cover tree automata and cover CFGs.
More precisely, it can be shown that if GU is an ε-free CFG, then a DFTA
A is a DCTA of K(D(GU)) w.r.t. ` if and only if G(A) is a cover CFG of
GU w.r.t. `.

3 Learning Context-free Grammars

In [12], Sakakibara assumes a learner eager to learn a CFG which is struc-
turally equivalent with the CFG GU of an unknown context-free language
U ⊆ Σ∗ by asking questions to a teacher. We assume that the learner and
the teacher share the skeletal set Sk ∪ Σ for the structural descriptions in
K(D(GU)). The learner can pose the following types of queries:

1. Structural membership queries: the learner asks if some s ∈ T (Sk ∪Σ)
is in K(D(GU)). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′ and
asks whether G′ is structurally equivalent to GU . If the answer is
yes, the process stops with the learned answer G′. Otherwise, the

260 M. Marin, G. Istrate

teacher provides a counterexample s from the symmetric set difference
K(D(G′))4K(D(GU)).

This learning protocol is based on what is called minimal adequate teacher
in [1]. Ultimately, the learner constructs a minimal DFTA A of K(D(GU))
from which it can infer immediately the CFG G′ = G(A) which is structurally
equivalent to GU , that is, K(D(G′)) = K(D(GU)). In order to understand
how A gets constructed, we shall introduce a few auxiliary notions.

For any subset S of T (Sk ∪ Σ), we define the sets

σ•〈S〉 :=
⋃

m∈ar(σ)

m⋃
i=1

{σ(s1, . . . , sm)[•]i | s1, . . . , sm ∈ S ∪ Σ},

X(S) := {C1[s] | C1 ∈ σ•〈S〉, s ∈ S ∪ Σ} \ S.

Note that σ•〈S〉 = {C ∈ C(Sk ∪ Σ) \ {•} | C|p ∈ S ∪ Σ ∪ {•} for all
p ∈ Pos(C) ∩ N}.

Definition 4. A subset E of C(Sk ∪ Σ) is •-prefix closed with respect to
a set S ⊆ T (Sk ∪ Σ) if C ∈ E \ {•} implies the existence of C ′ ∈ E and
C1 ∈ σ•〈S〉 such that C = C ′[C1]. If E ⊆ C(Sk ∪ Σ) and S ⊆ T (Sk ∪ Σ)
then E[S] denotes the set of structural descriptions defined by E[S] = {C[s] |
C ∈ E, s ∈ S}.

We say that S ⊆ T (Sk ∪ Σ) is subterm closed if d(s) ≥ 1 for all
s ∈ S, and s′ ∈ S whenever s′ is a subterm of some s ∈ S with d(s′) ≥ 1.

An observation table for K(D(GU)), denoted by (S,E, T), is a tabular
representation of the finitary function T : E[S ∪X(S)]→ {0, 1} defined by
T (t) := 1 if t ∈ K(D(GU)), and 0 otherwise, where S is a finite nonempty
subterm closed subset of T (Sk ∪ Σ), and E is a finite nonempty subset of
C(Sk ∪ Σ) which is •-prefix closed with respect to S. Such an observation
table is visualised as a matrix with rows labeled by elements from S ∪X(S),
columns labeled by elements from E, and the entry for the row of s and
the column of C equal to T (C[s]). If we fix a listing 〈C1, . . . , Cr〉 of all
elements of E, then the row of values of some s ∈ S ∪ X(S) corresponds
to the vector row(s) = 〈T (C1[s]), . . . , T (Cr[s])〉. In fact, for every such s,
row(s) is a finitary representation of the function fs : E → {0, 1} defined by
fs(C) = T (C[s]).

The observation table (S,E, T) is closed if every row(x) with x ∈ X(S)
is identical to some row(s) of s ∈ S. It is consistent if whenever s1, s2 ∈ S

Learning Cover Context-Free Grammars from
Structural Data 261

such that row(s1) = row(s2), we have row(C1[s1]) = row(C1[s2]) for all
C1 ∈ σ•〈S〉.

The DFTA corresponding to a closed and consistent observation table
(S,E, T) is A(S,E, T) = (Q, Sk ∪ Σ,Qf, δ) where

Q := {row(s) | s ∈ S}, Qf := {row(s) | s ∈ S and T (s) = 1},

and δ is uniquely defined by

δm(σ)(q1, . . . , qm) := row(σ(r1, . . . , rm)) for all m ∈ ar(σ),

where ri := a if qi = a ∈ Σ, and ri := si if qi = row(si) ∈ Q.

It is easy to check that, under these assumptions, A(S,E, T) is well-defined,
and that δ∗(s) = row(s). Furthermore, Sakakibara proved that the following
properties hold whenever (S,E, T) is a closed and consistent observation
table:

1. A(S,E, T) is consistent with T , that is, for all s ∈ S∪X(S) and C ∈ E
we have δ∗(C[s]) ∈ Qf iff T (C[s]) = 1. [12, Lemma 4.2]

2. If A(S,E, T) = (Q, Sk ∪ Σ,Qf, δ) has n states, and A′ = (Q′, Sk ∪
Σ,Q′f, δ′) is any DFTA consistent with T that has n or fewer states,
then A′ is isomorphic to A(S,E, T). [12, Lemma 4.3]

The LA Algorithm

In this subsection we briefly recall Sakakibara’s algorithm LA whose pseu-
docode is shown in Figure 1. LA extends the observation table whenever one
of the following situations occurs: the table is not consistent, the table is not
closed, or the table is both consistent and closed but the CFG corresponding
to the resulting automaton A(S,E, T) is not structurally equivalent to GU
(in which case a counterexample is produced). The first two situations trigger
an extension of the observation table with one distinct row. From properties
(A1) and (A2), if n is the number of states of the minimal DFTA for the
structural descriptions of GU , then the number of unsuccessful consistency
and closedness checks during the whole run of this algorithm is at most
n− 1. For each counterexample of size at most m returned by a structural
equivalence query, at most m subtrees are added to S. Since the algorithm
encounters at most n counterexamples, the total number of elements in S
cannot exceed n+m · n, thus LA must terminate. It also follows that the

262 M. Marin, G. Istrate

Set S = ∅ and E = {•}
let G′ := ({S},Σ, ∅, S)
check if G′ is structurally equivalent with GU
if answer is yes then halt and output G′

if answer is no with counterexample t then
add t and all its subterms with depth at least 1 to S
construct the observation table (S,E, T) using structural membership queries
repeat

while (S,E, T) is not closed or not consistent
if (S,E, T) is not consistent then

find s1, s2 ∈ S,C ∈ E, and C1 ∈ σ•〈S〉 such that
row(s1) = row(s2) and T (C[C1[s1]]) 6= T (C[C1[s2]])

add C[C1] to E
extend T to E[S ∪X(S)] using structural membership queries

if (S,E, T) is not closed then
find s1 ∈ X(S) such that row(s1) 6= row(s) for all s ∈ S
add s1 to S
extend T to E[S ∪X(S)] using structural membership queries

/* (S,E, T) is now closed and consistent */
let G′ := G(A(S,E, T))
make the structural equivalence query between G′ and GU
if the reply is no with a counterexample t then

add t and all its subterms with depth at least 1 to S
extend T to E[S ∪X(S)] using structural membership queries

until the reply is yes to the structural equivalence query between G′ and GU
halt and output G′.

Figure 1: Sakakibara’s algorithm

Learning Cover Context-Free Grammars from
Structural Data 263

number of elements of the domain E[S ∪X(S)] of the function T is at most
(n+m · n+ (l +m · n+ p)d) · n = O(md · nd+1), where l is the number of
distinct ranks of σ ∈ Sk, p is the cardinal of F0, and d is the maximum rank
of a symbol in Sk. A careful analysis of LA reveals that its time complexity
is indeed bounded by a polynomial in m and n [12, Thm. 5.3].

4 Learning Cover Context-free Grammars

We assume we are given a teacher who knows an ε-free CFG GU for a
language U ⊆ Σ∗, and a learner who knows the skeletal set Sk ∪ Σ for
K(D(GU)). The teacher and learner both know a positive integer `, and the
learner is interested to learn a cover CFG G′ of GU w.r.t. ` or, equivalently,
a cover DCTA of K(D(GU)) w.r.t. `. The learner is allowed to pose the
following types of questions:

1. Structural membership queries: the learner asks if some s ∈ T (Sk∪Σ)[`]
is in K(D(GU)). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′, and
asks if G′ is a cover CFG of GU w.r.t. `. If the answer is yes, the
process stops with the learned answer G′. Otherwise, the teacher
provides a counterexample from the set K(D(GU))[`]4K(D(G′)).

We will describe an algorithm LA` that learns a cover CFG of GU with
respect to ` in time that is polynomial in the number of states of a minimal
DCTA of the regular tree language K(D(GU)).

4.1 The Observation Table

LA` is a generalisation of the learning algorithm L` proposed by Ipate [8].
Ipate’s algorithm is designed to learn a minimal finite cover automaton of
an unknown finite language of words in polynomial time, using membership
queries and language equivalence queries that refer to words and languages
of words with length at most `. Similarly, LA` is designed to learn a minimal
DCTA A′ for K(D(GU)) with respect to ` by maintaining an observation
table (S,E, T, `) for K(D(GU)) which differs from the observation table of
LA in the following respects:

1. S is a finite nonempty subterm closed subset of T (Sk ∪ Σ)[`].

264 M. Marin, G. Istrate

2. E is a finite nonempty subset of C(Sk ∪Σ)〈`−1〉 ∩ C(Sk ∪Σ)[`] which is
•-prefix closed with respect to S.

3. T : E[S ∪X(S)[`]]→ {1, 0,−1} is defined by

T (t) :=


1 if t ∈ K(D(GU))[`],

0 if t ∈ T (Sk ∪ Σ)[`] \K(D(GU)),

−1 if t 6∈ T (Sk ∪ Σ)[`].

In a tabular representation, the observation table (S,E, T, `) is a two-
dimensional matrix with rows labeled by elements from S ∪X(S)[`], columns
labeled by elements from E, and the entry corresponding to the row of t and
column of C equal to T (C[t]). If we fix a listing 〈C1, . . . , Ck〉 of all elements
from E, then the row of t in the observation table is described by the vector
〈T (C1[t]), . . . , T (Ck[t])〉 of values from {−1, 0, 1}. The rows of an observation
table are used to identify the states of a minimal DCTA for K(D(GU)) with
respect to `. But, like Ipate [8], we do not compare rows by equality but by
a similarity relation.

4.2 The Similarity Relation

This time, the rows in the observation table correspond to terms from
S ∪X(S)[`], and the comparison of rows should take into account only terms
of depth at most `. For this purpose, we define a relation ∼k of k-similarity,
which is a generalisation to terms of Ipate’s relation of k-similarity on strings
[8].

Definition 5 (k-similarity). For 1 ≤ k ≤ ` we define the relation ∼k on the
elements of the set S ∪X(S) of an observation table (S,E, T, `) as follows:

s ∼k t if, for every C ∈ E〈k−max{d(s),d(t)}〉, T (C[s]) = T (C[t]).

When the relation ∼k does not hold between two terms s, t ∈ S ∪X(S), we
write s �k t and say that s and t are k-dissimilar. When k = ` we simply say
that s and t are similar or dissimilar and write s ∼ t or s � t, respectively.

We say that a context C `-distinguishes s1 and s2, where s1, s2 ∈ S,
if C ∈ E〈`−max{d(s1),d(s2)}〉 and T (C[s1]) 6= T (C[s2]).

Note that only the contexts C ∈ E〈k−max{d(s),d(t)}〉 with d(C) ≤ ` are
relevant to check whether s ∼k t, because if d(C) > ` then d(C[s]) > ` and
d(C[t]) > `, and therefore T (C[s]) = −1 = T (C[t]). Also, if t ∈ S ∪X(S)

Learning Cover Context-Free Grammars from
Structural Data 265

with d(t) > ` then it must be the case that t ∈ X(S), and then t ∼k s for
all s ∈ S ∪X(S) and 1 ≤ k ≤ ` because E〈k−max{d(t),d(s)}〉 = ∅.

The relation of k-similarity is obviously reflexive and symmetric, but
not transitive. The following example illustrates this fact.

Example 1. Let Σ = {a, b}, k = 1, ` = 2, S = {σ(a), σ(b), σ(σ(a), b)},
E = {•, σ(•, b)}, t1 = σ(a), t2 = σ(σ(a), b), t3 = σ(b), and

GU = ({S, A}, {a, b}, {S→ a, S→ b, S→ Ab, A→ a, A→ Ab}, S).

S is a nonempty subterm closed subset of T (Sk∪Σ)[`], and E is a nonempty
subset of C(Sk ∪ Σ)〈`−1〉 which is •-prefix closed with respect to S. We
have K(D(GU))[`] = {t1, t2, t3}, t1 ∼` t2 because E〈`−max{d(t1),d(t2)}〉 = {•}
and T (•[t1]) = 1 = T (•[t2]), and t2 ∼` t3 because E〈`−max{d(t2),d(t3)}〉 = {•}
and T (•[t2]) = 1 = T (•[t3]), However, t1 �` t3 because C = σ(•, b) ∈
E〈1〉 = E〈`−max{d(t1),d(t3)}〉 and T (C[t1]) = T (σ(σ(a), b)) = T (t2) = 1, but
T (C[t3]) = T (σ(σ(b), b)) = 0. ut

Still, k-similarity has a useful property, captured in the following lemma.

Lemma 1. Let (S,E, T, `) be an observation table. If s, t, x ∈ S ∪ X(S)
such that d(x) ≤ max{d(s), d(t)}, then s ∼k t whenever s ∼k x and x ∼k t.

Proof. Suppose s ∼k x and x ∼k t. By definition of ∼k, we have

T (C[s]) = T (C[x]) for all C ∈ E〈k−max{d(s),d(x)}〉, and

T (C[x]) = T (C[t]) for all C ∈ E〈k−max{d(x),d(t)}〉.

Let m := max{d(s), d(t)}. Since d(x) ≤ m, it follows that for every C ∈
E〈k−m〉 we also have C ∈ E〈k−max{d(s),d(x)}〉 and C ∈ E〈k−max{d(x),d(t)}〉.
Thus T (C[s]) = T (C[x]) = T (C[t]) for all C ∈ E〈k−m〉. Hence s ∼k t. ut

In addition, we will assume a given total order ≺ on the alphabet Σ,
and the following total orders induced by ≺ on T (Sk ∪ Σ) and C(Sk ∪ Σ).

Definition 6. The total order ≺T on T (Sk ∪Σ) induced by a total order ≺
on Σ is defined as follows: s ≺T t if either (a) d(s) < d(t), or (b) d(s) = d(t)
and

1. s, t ∈ Σ and s ≺ t, or

2. s = σ(s1, . . . , sm), t = σ(t1, . . . , tn) and there exists 1 ≤ k ≤ min(m,n)
such that sk ≺T tk and si = ti for all 1 ≤ i < k, or

266 M. Marin, G. Istrate

3. s = σ(s1, . . . , sm) and t = σ(t1, . . . , tn), m < n, and si = ti for
1 ≤ i ≤ m.

The total order ≺C on C(Sk ∪ Σ) induced by a total order ≺ on Σ is defined
as follows: C1 ≺C C2 if either (a) d•(C1) < d•(C2) or (b) d•(C1) = d•(C2)
and C1 ≺T C2 where C1, C2 are interpreted as terms over the signature with
Σ extended with the constant • such that • ≺ a for all a ∈ Σ.

Definition 7 (representative). Let (S,E, T, `) be an observation table and
x ∈ S ∪X(S). We say x has a representative in S if {s ∈ S | s ∼ x} 6= ∅. If
so, the representative of x is r(x) := min≺T{s ∈ S | x ∼ s}.

We will show later that the construction of an observation table (S,E, T, `)
is instrumental to the construction of a cover tree automaton, and the states
of the automaton correspond to representatives of the elements from S∪X(S).
Note that, if (S,E, T, `) is an observation table and x ∈ S∪X(S) has d(x) > `
then x ∈ X(S) and x ∼ s for all s ∈ S. Then s ≺T x because d(s) ≤ ` < d(x)
for all s ∈ S. Thus x has a representative in S, and r(x) = min≺T S. For this
reason, only the rows for elements x ∈ S ∪X(S)[`] are kept in an observation
table.

4.3 Consistency and Closedness

The consistency and closedness of an observation table are defined as follows.

Definition 8 (Consistency). An observation table (S,E, T, `) is consistent
if, for every k ∈ {1, . . . , `}, s1, s2 ∈ S, and C1 ∈ σ•〈S〉, the following
implication holds: If s1 ∼k s2 then C1[s1] ∼k C1[s2].

The following lemma captures a useful property of consistent observation
tables.

Lemma 2. Let (S,E, T, `) be a consistent observation table. Let m ∈ ar(σ),
1 ≤ k ≤ `, and s1, . . . , sm, t1, . . . , tm ∈ S ∪ Σ such that, for all 1 ≤ i ≤ m,
either si = ti ∈ Σ, or si, ti ∈ S, si ∼k ti, and d(si) ≤ d(ti), and s =
σ(s1, . . . , sm), t = σ(t1, . . . , tm). Then s ∼k t.

Proof. Let I = {i1, . . . , ip} = {i ∈ {1, . . . ,m} | si, ti ∈ S}. If I = ∅ then
s = t and the result follows from the reflexivity of ∼k. If I 6= ∅, let x0 := s,
and xj := xj−1[tij]ij for 1 ≤ j ≤ p. For all 1 ≤ j ≤ p we have

sij , tij ∈ S
sij ∼k tij

xj−1[•]ij ∈ σ•〈S〉

⇒ xj−1 = xj−1[sij]ij ∼k xj−1[tij]ij = xj

Learning Cover Context-Free Grammars from
Structural Data 267

because the observation table (S,E, T, `) is consistent. Thus x0 ∼k x1,
. . . , xp−1 ∼k xp, and d(x0) ≤ d(x1) ≤ . . . ≤ d(xp−1) ≤ d(xp). Repeated
applications of Lemma 1 yield x0 ∼k xp. But x0 = s and xp = t, thus
s ∼k t. ut

Definition 9 (Closedness). An observation table (S,E, T, `) is closed if, for
all x ∈ X(S), there exists s ∈ S with d(s) ≤ d(x) such that x ∼ s.

The next five lemmata capture important properties of closed observa-
tion tables:

Lemma 3. If (S,E, T, `) is closed then every x ∈ S ∪X(S) has a represen-
tative, and d(r(x)) ≤ d(x).

Proof. If x ∈ S then x has a representative since {s ∈ S | x ∼ s} 6= ∅.
Then r(x) �T x, which implies d(r(x)) ≤ d(x). If x ∈ X(S) then, since the
observation table is closed, there exists s ∈ S with x ∼ s and d(s) ≤ d(x).
x ∼ s and s ∈ S imply r(x) �T s, hence d(r(x)) ≤ d(s). Thus d(r(x)) ≤ d(x)
because d(s) ≤ d(x). ut

Lemma 4. If (S,E, T, `) is closed, r1, r2 ∈ {r(x) | x ∈ S ∪ X(S)}, and
r1 ∼ r2 then r1 = r2.

Proof. Suppose r1 = r(x1) and r2 = r(x2) for some x1, x2 ∈ S ∪X(S). By
Lemma 3, r1, r2 ∈ S and d(r1) ≤ d(x1) ≤ max{d(x1), d(r2)}. Since x1 ∼ r1
and r1 ∼ r2, Lemma 1 implies x1 ∼ r2, thus r2 ∈ {s ∈ S | x1 ∼ s} and
r1 = min�T{s ∈ S | x1 ∼ s} �T r2. By a similar argument, we learn that
r2 �T r1. From r1 �T r2 and r2 �T r1 we conclude that r1 = r2. ut

Lemma 5. If (S,E, T, `) is closed and r ∈ {r(x) | x ∈ S ∪ X(S)}, then
r(r) = r.

Proof. Let r1 = r(r). Then r1 ∼ r and r1, r ∈ {r(x) | x ∈ S ∪X(S)}. By
Lemma 4, r = r1. ut

Lemma 6. If (S,E, T, `) is closed, then for every x ∈ S ∪X(S) and C1 ∈
σ•〈S〉, there exists s ∈ S such that r(C1[r(x)]) = r(s).

Proof. Let x ∈ S∪X(S) and C1 ∈ σ•〈S〉. The fact that (S,E, T, `) is closed
implies r(x) ∈ S, thus C1(r(x)) ∈ S ∪X(S) and therefore r(C1[r(x)]) ∈ S.
We can choose s := r(C1[r(x)]) ∈ S for which r(s) = s, by Lemma 5. ut

Lemma 7. Let (S,E, T, `) be closed, r ∈ {r(x) | x ∈ S∪X(S)}, C1 ∈ σ•〈S〉,
and s ∈ S. If C1[s] ∼ r then d(r) ≤ d(C1[s]).

268 M. Marin, G. Istrate

Proof. We provide a proof by contradiction. Assume d(r) > d(C1[s]). Since
C1[s] ∈ S ∪ X(S) and (S,E, T, `) is closed, r(C1[s]) ∈ S, d(r(C1[s])) ≤
d(C1[s]) (by Lemma 3), r(C1[s]) ∼ C1[s], and C1[s] ∼ r. Thus r(C1[s]) ∼ r
by Lemma 1. Since r, r(C1[s]) ∈ {r(x) | x ∈ S ∪ X(S)}, we have r =
r(C1[s]) by Lemma 4. Thus d(r) = d(r(C1[s])) ≤ d(C1[s]), which yields a
contradiction. ut

The Automaton A(T)

Like L`, our algorithm relies on the construction of a consistent and closed
observation table of the unknown context-free grammar. The table is used
to build an automaton which, in the end, turns out to be a minimal DCTA
for the structural descriptions of the unknown grammar.

Definition 10. Suppose T = (S,E, T, `) is a closed and consistent obser-
vation table. The automaton corresponding to this table, denoted by A(T),
is the DFTA (Q, Sk ∪ Σ,Qf, δ) where Q := {r(s) | s ∈ S}, Qf = {q ∈ Q |
T (q) = 1}, and δ is uniquely defined by δm(σ)(q1, . . . , qm) := r(σ(q1, . . . , qm))
for all m ∈ ar(σ).

The transition function δ is well defined because, for all m ∈ ar(σ)
and q1, . . . , qm from Q, C1 := σ(•, q2, . . . , qm) ∈ σ•〈S〉, thus σ(q1, . . . , qm) =
C1[q1] ∈ S ∪ X(S) and r(C1[q1]) = r(s) for some s ∈ S, by Lemma 6.
Hence, r(σ(q1, . . . , qm)) ∈ Q. Also, the set Qf can be read off directly
from the observation table because • ∈ E (since E is •-prefix closed), thus
q = •[q] ∈ E[(S ∪ X(S)[`]] for all q ∈ Q, and we can read off from the
observation table all q ∈ Q with T (q) = 1.

In the rest of this subsection we assume that T = (S,E, T, `) is closed
and consistent, and δ is the transition function of the corresponding DFTA
A(T).

Lemma 8. δ∗(x) ∼ x and d(δ∗(x)) ≤ d(x) for every x ∈ S ∪X(S).

Proof. By induction on the depth of x. If d(x) = 1 then δ∗(x) = r(x) ∼ x
and d(δ∗(x)) = d(r(x)) ≤ d(x) by Lemma 3.

If d(x) > 1 then x = σ(s1, . . . , sm) with s1, . . . , sm ∈ S∪Σ, and δ∗(x) =
r(σ(q1, . . . , qm)), where qi = δ∗(si) for 1 ≤ i ≤ m. Let I := {i | si 6∈ Σ}.
Then, by induction hypothesis for all i ∈ I, qi ∼ si and d(qi) ≤ d(si). Thus

∀i ∈ I, d(qi) ≤ d(si)
∀i ∈ {1, . . . ,m} \ I, qi = si

}
⇒ d(σ(q1, . . . , qm)) ≤ d(σ(s1, . . . , sm)) = d(x),

δ∗(x) = r(σ(q1, . . . , qm)) ⇒ d(δ∗(x)) ≤ d(σ(q1, . . . , qm)), by Lemma 2.

Learning Cover Context-Free Grammars from
Structural Data 269

Hence d(δ∗(x)) ≤ d(x) follows from d(δ∗(x)) ≤ d(σ(q1, . . . , qm)) ≤ d(x).
To prove δ∗(x) ∼ x, we notice that x = σ(s1, . . . , sm) ∼ σ(q1, . . . , qm)

follows from Lemma 2. Thus

δ∗(x) = r(σ(q1, . . . , qm)) ∼ σ(q1, . . . , qm),
σ(q1, . . . , qm) ∼ x,
d(σ(q1, . . . , qm)) ≤ d(x) ≤ max{d(x), d(δ∗(x))}

⇒ δ∗(x) ∼ x by Lemma 1.

ut

Corollary 1. δ∗(x) = x for all x ∈ {r(s) | s ∈ S ∪X(S)}.

Proof. By Lemma 8, x ∼ δ∗(x). Since both δ∗(x) and x belong to the set
of representatives {r(s) | s ∈ X ∪X(S)}, x = δ∗(x) by Lemma 4. ut

The following theorem shows that the DFTA of a closed and consistent
observation table is consistent with the function T on terms of depth at
most `.

Theorem 1. Let T = (S,E, T, `) be a closed and consistent observation
table. For every s ∈ S ∪X(S) and C ∈ E such that d(C[s]) ≤ ` we have
δ∗(C[s]) ∈ Qf if and only if T (C[s]) = 1.

Proof. Let s ∈ S ∪X(S) and C ∈ E such that d(C[s]) ≤ `. We proceed by
induction on the hole depth of C. If d•(C) = 0 then C = • and C[s] = s has
d(s) ≤ `. By Lemma 8, δ∗(s) ∼ s and d(δ∗(s)) ≤ d(s). Thus, since • ∈ E
and d(s) ≤ `, T (δ∗(s)) = 1 if and only if T (s) = 1. By definition of A(T),
δ∗(s) ∈ Qf if and only if T (δ∗(s)) = 1. Hence δ∗(s) ∈ Qf if and only if
T (s) = 1.

If d•(C) = m > 0 then d(C[s]) ≤ ` implies m ≤ `− d(s) and C ∈ E〈m〉.
Since E is •-prefix closed, there exist C ′ ∈ E〈m−1〉 and C1 ∈ σ•〈S〉 such that
C = C ′[C1] ∈ E〈m〉. Let t = δ∗(C1[s]). Then d(t) ≤ d(C1[s]) by Lemma 8,
thus d(C ′[t]) ≤ d(C ′[C1[s]]) = d(C[s]) ≤ `, and we learn from the induction
hypothesis for C ′ that δ∗(C ′[t]) ∈ Qf if and only if T (C ′[t]) = 1. Since

δ∗(t) = t by Corollary 1
t = δ∗(C1[s]) by definition

}
⇒ δ∗(C ′[t]) = δ∗(C ′[C1[s]]) = δ∗(C[s]),

we have δ∗(C[s]) ∈ Qf ⇔ δ∗(C ′[t]) ∈ Qf ⇔ T (C ′[t]) = 1. Therefore, it
suffices to show that T (C ′[t]) = 1 if and only if T (C[s]) = 1. By Lemma
8, t ∼ C1[s] and d(t) ≤ d(C1[s]), thus d(C ′[t]) ≤ d(C ′[C1[s]]) = d(C[s]) ≤ `.
Hence, since C ′ ∈ E and t ∼ C1[s], T (C ′[t]) = 1 if and only if T (C ′[C1[s]]) =
1. ut

270 M. Marin, G. Istrate

Theorem 2. Let T = (S,E, T, `) be a closed and consistent observation
table, and N be the number of states of A(T). If A′ is any other DFTA with
N or fewer states, that is consistent with T on terms of depth at most `,
then A′ has exactly N states and L(A(T))[`] = L(A′)[`].

Proof. Let A′ = (Q′, Sk∪Σ,Q′f, δ′) and f : Q → Q′ defined by f(q) = δ′∗(q)
for all q ∈ Q. We show that f is injective. If q1, q2 ∈ Q such that q1 6= q2
then T (C[q1]) 6= T (C[q2]) for some C ∈ E〈`−max{d(q1),d(q2)}〉. Since A′ is
consistent with T , exactly one of δ′∗(C[q1]) and δ′∗(C[q2]) is in Q′f. Hence
f(q1) 6= f(q2). Since f is injective and Q′ has at most the same number of
states as Q, f is bijective. Thus Q′ = f(Q) = {δ′∗(q) | q ∈ Q}.

Next, we show that Q′f = {f(q) | q ∈ Qf}. By Theorem 1, δ∗(q) ∈ Qf

if and only if T (q) = 1. By Corollary 1, δ∗(q) = q for all q ∈ Q. Thus
Qf = {q ∈ Q | T (q) = 1}. Similarly, since A′ is consistent with T , for every
q ∈ Q, T (q) = 1 if and only if δ′∗(q) ∈ Q′f. By definition, δ′∗(q) = f(q). Thus,
Q′f = {δ′∗(q) | q ∈ Q and T (q) = 1} = {f(q) | q ∈ Qf}.

We prove by induction on the depth of x ∈ T (Sk ∪ Σ)[`] \ Σ that, if
δ∗(x) = q and δ′∗(x) = f(q′) then the following statements hold:

1. d(q) ≤ d(x),

2. d(q′) ≤ d(x),

3. if m = `− d(x) + max{d(q), d(q′)}, then q ∼m q′.

In the base case, d(x) = 1 and q = r(x). By Lemma 3, q ∼ x and d(q) ≤ d(x),
thus d(q) can only be 1. δ′∗(x) = f(q′) implies δ′∗(C[x]) = δ′∗(C[q′]) for all
C ∈ E〈`−max{d(q′),d(x)}〉. Since A′ is consistent with T on T (Sk ∪ Σ)[`], this
implies T (C[x]) = 1 if and only if T (C[q′]) = 1. Therefore x ∼ q′. From
r(x) ∼ x, x ∼ q′, and d(x) = 1 ≤ max{r(x), q′}, we learn by Lemma 1 that
q′ ∼ r(x) = q. Then q = q′ by Lemma 4, because q, q′ ∈ Q = {r(s) | s ∈ S}
and q ∼ q′. Thus d(q′) = d(q) ≤ d(x). In this case, m = ` and statement 3
obviously holds because ∼` is reflexive.

In the induction step, we assume that all three statements hold for
all terms s ∈ T (Sk ∪ Σ)[k] \ Σ with k ≥ 1. Let x ∈ T (Sk ∪ Σ)[`] with
d(x) = k + 1. Then x = σ(x1, . . . , xp) with d(xi) ≤ k for 1 ≤ i ≤ p. Let
I := {i | 1 ≤ i ≤ p and xi 6∈ Σ}, and q, q′, qi, q

′
i ∈ Q such that δ∗(x) = q,

δ′∗(x) = f(q′), and qi = δ∗(xi), δ
′∗(xi) = f(q′i) for all i ∈ I.

Let y := σ(s1, . . . , sp) where si := xi if xi ∈ Σ and si := qi otherwise.
Then y ∈ S ∪X(S) and q = r(y), thus q ∼ y and d(q) ≤ d(y) by Lemma 3.
Also d(y) ≤ d(x) because y = σ(s1, . . . , sp), x = σ(x1, . . . , xp), and

Learning Cover Context-Free Grammars from
Structural Data 271

- d(si) = d(qi) ≤ d(xi) for all i ∈ I, by induction hypothesis,

- si = xi for all i ∈ {1, . . . , p} \ I, hence d(si) = d(xi) for all i ∈
{1, . . . , p} \ I.

Thus d(q) ≤ d(x) follows from d(q) ≤ d(y) and d(y) ≤ d(x).
To show d(q′) ≤ d(x), we reason as follows. δ′∗(q′) = f(q′) = δ′∗(x) =

δ′p(σ)(δ′∗(x1), . . . , δ′∗(xp)). Since δ′∗(xi) = δ′∗(q′i) for all i ∈ I, and δ′∗(xi) =
xi for all i ∈ {1, . . . , p} \ I, we learn that δ′∗(q′) = δ′∗(z) where z =
σ(t1, . . . , tp) with ti := q′i if i ∈ I and ti := xi if i ∈ {1, . . . , p} \ I. Note that
z ∈ S ∪X(S) and δ′∗(C[q′]) = δ′∗(C[z]) for all C ∈ E〈`−max{d(q′),d(z)}〉. Thus
T (C[q′]) = 1 if and only if T (C[z]) = 1 because A′ is consistent with T on
T (Sk ∪ Σ)[`]. Therefore q′ ∼ z, and since z = Ci[q

′
i] with Ci = z[•]i ∈ σ•〈S〉

and q′i ∈ S for any i ∈ I, we can apply Lemma 7 to learn that d(q′) ≤ d(z).
Also

- for all i ∈ I, d(ti) = d(q′i) ≤ d(xi) by induction hypothesis, and

- for all i ∈ {1, . . . , p} \ I, ti = xi, thus d(ti) = d(xi),

therefore d(z) = d(σ(t1, . . . , tp)) ≤ d(σ(x1, . . . , xp)) = d(x). From d(q′) ≤
d(z) and d(z) ≤ d(x) we learn d(q′) ≤ d(x).

Let m = `−d(x)+max{d(q), d(q′)}. We prove q ∼m q′ by contradiction.
If q �m q′ there exists C ∈ E〈`−d(x)〉 such that T (C[q]) 6= T (C[q′]). Then
q ∼ y and d(q) ≤ d(y) ≤ d(x), thus d(C[q]) ≤ d(C[y]) ≤ d(C[x]) ≤ `
and T (C[q]) = T (C[y]). Also, q′ ∼ z and d(q′) ≤ d(z) ≤ d(x), thus
d(C[q′]) ≤ d(C[z]) ≤ d(C[x]) ≤ ` and T (C[q′]) = T (C[z]). Thus T (C[y]) 6=
T (C[z]). On the other hand, by induction hypothesis, qi ∼mi q

′
i for all i ∈ I,

where mi = ` − d(xi) + max{d(qi), d(q′i)}. Let’s assume I = {i1, . . . , ir},
C1 := y[•]i1 , and Cj+1 := Cj [q

′
ij

][•]ij+1 for all 1 ≤ j < r. Then Cj ∈ σ•〈S〉
and Cj [qij] ∼mij

Cj [q
′
ij

] for all 1 ≤ j ≤ r, because the observation table is

consistent. Therefore T (C ′j [Cj [qij]]) = T (C ′j [Cj [q
′
ij

]]) whenever 1 ≤ j ≤ r

and C ′j ∈ E〈`−d(xij)−1〉. Since d(x) = 1 + max{d(xij) | 1 ≤ j ≤ r}, we have

C ∈ E〈`−d(xij)−1〉, thus T (C[Cj [qij]]) = T (C[Cj [q
′
ij

]]) for all 1 ≤ k ≤ r. Note

that

T (C[y]) = T (C[C1[qi1]]) = T (C[C1[q
′
i1]]) = T (C[C2[qi2]]) = T (C[C2[q

′
i2]]) = . . .

= T (C[Cr[qir]]) = T (C[Cr[q
′
ir]]) = T (C[z])

which yields a contradiction.

272 M. Marin, G. Istrate

Finally, we prove that L(A(T))[`] = L(A′)[`]. Let x ∈ T (Sk ∪ Σ)[`]
and q, q′ ∈ Q such that δ∗(x) = q and δ′∗(x) = δ′∗(q′). Then q ∼m q′

where m = `− d(x) + max{d(q), d(q′)}. Since d(x) ≥ max{d(q), d(q′)} and
• ∈ E, T (q) = T (q′) ∈ {0, 1}. A(T) is consistent with T on T (Sk ∪Σ)[`] and
δ∗(q) = q, thus q ∈ Qf if and only if T (q) = 1. A′ is also consistent with T on
T (Sk ∪ Σ)[`], thus δ′∗(q′) ∈ Q′f if and only if T (q′) = 1. Since T (q) = T (q′),
we have q ∈ Qf if and only if f(q′) ∈ Q′f. Thus δ∗(x) ∈ Qf if and only if
δ′∗(x) ∈ Q′f. That is, x ∈ L(A(T))[`] if and only if x ∈ L(A′)[`]. ut

Corollary 2. Let A be the automaton corresponding to a closed and con-
sistent observation table (S,E, T, `) of the skeletons of a CFG GU of an
unknown language U , and N be its number of states. Let n be the number of
states of a minimal DCTA of K(D(GU)) with respect to `. If N ≥ n then
N = n and A is a minimal DCTA of K(D(GU)) with respect to `.

Proof. Let A′ be a minimal DCTA of K(D(GU)) with respect to `. Then
A′ is consistent with T on T (Sk ∪ Σ)[`] and has n states. Since n ≤ N ,
by Theorem 2, n = N and L(A)[`] = L(A′)[`] = K(D(GU))[`]. Thus A is a
minimal DCTA of K(D(GU)) with respect to `. ut

The LA` Algorithm

The algorithm LA` extends the observation table T = (S,E, T, `) whenever
one of the following situations occurs: the table is not consistent, the table
is not closed, or the table is both consistent and closed but the resulting
automaton A(T) is not a cover tree automaton of K(D(GU)) with respect
to `.

The pseudocode of the algorithm is shown in Figure 2. Consistency
is checked by searching for C ∈ E and C1 ∈ σ•〈S〉 such that C[C1] will
`-distinguish two terms s1, s2 ∈ S not distinguished by any other context
C ′ ∈ E with d•(C

′) ≤ d•(C[C1]). Whenever such a pair of contexts (C,C1) is
found, C[C1] is added to E. Note that C[C1] ∈ C(Sk∪Σ)〈`−1〉 ∩C(Sk∪Σ)[`]
because only such contexts can distinguish terms from S, and the addition
of C[C1] to E yields a •-prefix closed subset of C(Sk ∪Σ)〈`−1〉 ∩ C(Sk ∪Σ)[`].

The search of such a pair of contexts (C,C1) is repeated in increasing
order of the hole depth of C, until all contexts from E have been processed.
Therefore, any context C[C1] with C ∈ E and C1 ∈ σ•〈S〉 that was added to
E because of a failed consistency check will be processed itself in the same
for loop.

Learning Cover Context-Free Grammars from
Structural Data 273

ask if ({S},Σ, ∅, S) is a cover CFG of GU w.r.t. `
if answer is yes then halt and output the CFG ({S},Σ, ∅, S)
if answer is no with counterexample t then

set S := {s | s is a subterm of t with depth at least 1} and E = {•}
construct the table T = (S,E, T, `) using structural membership queries
repeat

repeat
/* check consistency */
for every C ∈ E, in increasing order of i = d•(C) do

search for s1, s2 ∈ S with d(s1), d(s2) ≤ `− i− 1 and C1 ∈ σ•〈S〉
such that C[C1[s1]]), C[C1[s2]] ∈ T (Sk ∪ Σ)[`],

s1 ∼k s2 where k = max{d(s1), d(s2)}+ i+ 1,
and T (C[C1[s1]]) 6= T (C[C1[s2]])

if found then
add C[C1] to E
extend T to E[S ∪X(S)[`]] using structural membership queries

/* check closedness */
new row added := false

repeat for every s ∈ S, in increasing order of d(s)
search for C1 ∈ σ•〈S〉 such that C1[s] � t for all t ∈ S[d(C1[s])]

if found then
add C1[s] to S
extend T to E[S ∪X(S)[`]] using structural membership queries

new row added := true

until new row added = true or all elements of S have been processed
until new row added = false

/* T is now closed and consistent */
make the query whether G(A(T)) is a cover CFG of GU w.r.t. `
if the reply is no with a counterexample t then

add to S all subterms of t, including t, with depth at least 1,
in the increasing order given by ≺T

extend T to E[S ∪X(S)[`]] using structural membership queries

until the reply is yes to the query if G(A(T)) is a cover CFG of GU w.r.t. `
halt and output G(A(T)).

Figure 2: Algorithm LA`

274 M. Marin, G. Istrate

The algorithm checks closedness by searching for s ∈ S and C1 ∈ σ•〈S〉
such that C1[s] � t for all t ∈ S for which d(t) ≤ d(C1[s]). The search is
performed in increasing order of the depth of s. If s and C1 are found, C1[s]
is added to the S component of the observation table, and the algorithm
checks again consistency. Note that adding C1[s] to S yields a subterm
closed subset of T (Sk ∪Σ)[`]. Also, closedness checks are performed only on
consistent observation tables.

When the observation table is both consistent and closed, the cor-
responding DFTA is constructed and it is checked whether the language
accepted by the constructed automaton coincides with the set of skeletal
descriptions of the unknown context-free grammar GU (this is called a
structural equivalence query). If this query fails, a counterexample from
L(A(T))[`]4K(D(GU))[`] is produced, the component S of the observation
table is expanded to include t and all its subterms with depth at least 1,
and the consistency and closedness checks are performed once more. At the
end of this step, the component S of the observation table is subterm closed,
and E is unchanged, thus •-prefix closed.

Thus, at any time during the execution of algorithm LA`, the defining
properties of an observation table are preserved: the component S is a
subterm closed subset of T (Sk ∪ Σ)[`], and the component E is a •-prefix
closed subset of C(Sk ∪ Σ)〈`−1〉 ∩ C(Sk ∪ Σ)[`].

5 Algorithm Analysis

We notice that the number of states of the DFTA constructed by algorithm
LA` will always increase between two successive structural equivalence
queries. When this number of states reaches the number of states of a
minimal DCTA of K(D(GU)), the constructed DFTA is actually a minimal
DCTA of K(D(GU)) (Corollary 2) and the algorithm terminates.

From now on we assume implicitly that n is the number of states of
a minimal DCTA of K(D(GU)) with respect to `, and that T(t) is the
observation table (St, Et, T, `) before execution step t of the algorithm. By
Corollary 2, Qt will always have between 1 and n elements. Note that the
representative of an element s ∈ S in Qt is a notion that depends on the
observation table T(t). Therefore, we will use the notation rt(s) to refer
to the representative of s ∈ St in the observation table T(t). With this
notation, Qt = {rt(s) | s ∈ St}.

Note that the execution of algorithm LA` is a sequence of steps char-

Learning Cover Context-Free Grammars from
Structural Data 275

acterised by the detection of three kinds of failure: closedness, consistency,
and structural equivalence query. The t-th execution step is

1. a failed closedness check when the algorithm finds C1 ∈ σ•〈St〉 and
s ∈ St such that C1[s] � t for all t ∈ St with d(t) ≤ d(C1[s]),

2. a failed consistency check when the algorithm finds C ∈ Et with
d•(C) = i, s1, s2 ∈ St with d(s1), d(s2) ≤ `− i− 1, and C1 ∈ σ•〈St〉,
such that C[C1[s1]], C[C1[s2]] ∈ T (Sk ∪ Σ)[`], s1 ∼k s2 where k =
max{d(s1), d(s2)}+ i+ 1, and T (C[C1[s1]]) 6= T (C[C1[s2]]),

3. a failed structural equivalence query when the observation table T(t)
is closed and consistent, and the learning algorithm receives from the
teacher a counterexample t ∈ T (Sk ∪ Σ)[`] as answer to the structural
equivalence query with the grammar G(A(St, Et, T, `)).

In the following subsections we perform a complexity analysis of the algorithm
by identifying upper bound estimates to the computations due to failed
consistency checks, failed closeness checks, and failed structural equivalence
queries.

5.1 Failed Closedness Checks

We recall that the t-th execution step is a failed closedness check if the
algorithm finds a context C1 ∈ σ•〈S〉 and a term s ∈ St such that C1[s] � t
for all t ∈ St with d(t) ≤ d(C1[s]). We will show that the number of failed
closedness checks performed by algorithm LA` has an upper bound which is
a polynomial in n. To prove this fact, we will rely on the following auxiliary
notions:

- For r, r′ ∈ Qt, we define r ≺t
T r
′ if either d(r) < d(r′) or d(r) = d(r′)

and there exists t′ < t such that r ∈ Qt′ but r′ 6∈ Qt′ (that is, r
became a representative in the observation table before r′).

- To every set of representatives Qt = {r1, . . . , rm} with r1 ≺t
T . . . ≺t

T rm
we associate the tuple tpl(Qt) := (d1, . . . , dn) ∈ {1, . . . , `+ 1}n where
di := d(ri) if 1 ≤ i ≤ m, and di := `+ 1 if m < i ≤ n.

- We consider the following partial order on Nn: (x1, . . . , xn) < (x′1, . . . , x
′
n)

iff there exists i ∈ {1, . . . , n} such that xi < x′i and xj ≤ x′j for all
1 ≤ j ≤ n.

276 M. Marin, G. Istrate

- We denote by stt(i) the i-th component of Qt in the order given by
≺t

T.

Lemma 9. Suppose s has been introduced in St+1 as a result of a failed
closedness check. There exists p ∈ Pos(s) such that ‖p‖ = d(s) and for every
prefix p′ of p different from p, d(rt+1(s|p′)) = d(s|p′).

Proof. We prove by induction on i that for every i ∈ {0, . . . , d(s)− 1} there
exists a sequence of positions p0 < p1 < . . . < pi from Pos(s) such that, for
all 0 ≤ j ≤ i, the following statements hold:

(L1): ‖pj‖ = j and d(s|pj) = d(s)− j,

(L2): d(rt+1(s|pj)) = d(s|pj).

For i = 0 we reason as follows: Since s has been introduced in St+1 as a
result of a failed closedness check, s � t for all t ∈ St with d(t) ≤ d(s). Then
s becomes a new element of the set Qt+1, rt+1(s) = s and, if we choose
p0 = ε, the sequence of positions p0 fulfils requirements (L1) and (L2).

For the inductive step, assume the condition holds for 0 ≤ i < d(s)− 1,
that is, there exists a sequence of positions p0 < . . . < pi from Pos(s)
which fulfils requirements (L1) and (L2) for all 0 ≤ j ≤ i. We show
that this sequence can be extended with a position pi+1 ∈ Pos(s) such
that requirements (L1) and (L2) hold for j = i + 1. Let x := s|pi . Then
d(rt+1(x)) = d(x) and, since d(x) = d(s) − i and i < d(s) − 1, we have
d(x) > 1. Therefore, we can write x = σ(x1, . . . , xm) such that I := {j ∈
{1, . . . ,m} | d(xj) ≥ 1} 6= ∅.

Assume, by contradiction, that no such position pi+1 exists. Let qj :=
rt+1(xj) for all j ∈ I, and y = σ(y1, . . . , ym) where yj := qj if j ∈ I and
yj := xj otherwise. Then y ∈ St+1 ∪X(St+1), qj ∼ xj and d(qj) < d(xj)
for all j ∈ I. It follows that d(y) < d(x), and x ∼ y in T(t + 1), by Lemma
2. We distinguish two cases:

1. y ∈ St+1. Then d(rt+1(x)) ≤ d(y) < d(x), which is a contradiction.

2. y ∈ X(St+1). Then y � z for all z ∈ St+1 with d(z) ≤ d(y), because:

If there exists z ∈ St+1 with d(z) ≤ d(y) such that y ∼ z,
then x ∼ z (by Lemma 1) and d(z) < d(x), which contradicts
d(rt+1(x)) = d(x).

Learning Cover Context-Free Grammars from
Structural Data 277

As d(y) < d(x) = d(s|pi) ≤ d(s), y would be introduced in St+1 instead
of s as the result of a failed closedness check. This also provides a
contradiction.

Thus, there exists a sequence of positions p0 < . . . < pd(s)−1 from Pos(s)
such that requirements (L1) and (L2) hold for all j ∈ {0, 1, . . . , d(s)− 1}. It
follows that the statement of this lemma holds for p = pd(s)−1. ut

Corollary 3. Whenever the t-th execution step is a failed closedness check,
the term introduced in St+1 is in Qt+1 \ Qt and its depth is at most j,
where j is the position in Qt+1 of the newly introduced element according to
ordering ≺t+1

T .

Proof. If s is introduced in St+1 by a failed closedness check then s � t for
all t ∈ St with d(t) ≤ d(s). Therefore, s ∈ Qt+1 \ Qt. Furthermore, from
the proof of the previous lemma we know there exists a sequence

p0 < p1 < . . . < pd(s)−1

of positions from Pos(s) with d(rt+1(s|pj)) = j for all 0 ≤ j < d(s). Since
rt+1(s|pj) ∈ Qt+1 for all 0 ≤ j < d(s) and rt+1(s) = s, we have

rt+1(s|pd(s)−1
) ≺t+1

T . . . ≺t+1
T rt+1(s|p1) ≺t+1

T rt+1(s|p0)︸ ︷︷ ︸
d(s) elements

= s

we conclude that, if s = stt+1(j), then d(s) ≤ j. ut

Corollary 4. d(s) ≤ n for all s ∈ St which were introduced in the table by
a failed closedness check.

Proof. d(s) ≤ j by Cor. 3, and j ≤ n because |Qt| ≤ n for all t. Thus
d(s) ≤ n.

Lemma 10. Let j be the position of the element introduced in Qt+1 by
a failed closedness check. Then tpl(Qt+1) < tpl(Qt) and d(stt+1(j)) <
d(stt(j)).

Proof. Let r be the representative newly introduced in Qt+1 at position j
(that is, r = stt+1(j)), k := d(r), and i′ := max{i | d(stt(i)) ≤ k}. Then
j = i′ + 1 and we distinguish two situations.

1. If r replaces a representative with depth k′ at position j′ in Qt then
k < k′, i′ < j′ and j = i′ + 1. Thus j ≤ j′ and

278 M. Marin, G. Istrate

- if 1 ≤ i < j then stt(i) = stt+1(i),

- d(stt(j)) > k = d(stt+1(j)),

- if j < i ≤ j′ then d(stt(i)) ≥ d(stt(i− 1)) = d(stt+1(i)),

- if j′ < i ≤ n then stt(i) = stt+1(i).

Hence tpl(Qt+1) < tpl(Qt).

2. Otherwise, r is newly introduced at position j = i′ + 1 in Qt+1 and all
elements of Qt are preserved in Qt+1. If |Qt| = m then

- if 1 ≤ i < j then stt(i) = stt+1(i),

- d(stt(j)) > k = d(stt+1(j)),

- if j < i ≤ m then d(stt(i)) ≥ d(stt(i− 1)) = d(stt+1(i)),

- d(stt(m+ 1)) = `+ 1 > d(stt+1(m+ 1))

which, again, implies tpl(Qt+1) < tpl(Qt). ut

Theorem 3. The number of failed closedness checks performed during the
entire run of LA` is at most n(n+ 1)/2.

Proof. By Corollary 4, tpl(Qt) is always a tuple of the form (d1, . . . , dn)
with di ∈ {1, 2, . . . , n} ∪ {`+ 1}. Also, by Lemma 10, tpl(Qt) > tpl(Qt+1)
and d(stt+1(j)) ≤ j whenever stt+1(j) is the state introduced in Qt+1 by
a failed closedness check. It is also easy to see that tpl(Qt) ≥ tpl(Qt+1)
always holds. Since tpl(Q0) = (`+ 1, . . . , `+ 1), and every j-th component
of the tuples tpl(Qt) can be changed by a failed closedness check at most
j times (if the first change is to value j, and the other are decrements by
1 down to minimum value 1), we conclude that the maximum number of
failed closedness checks in any sequence

tpl(Q0) ≥ tpl(Q1) ≥ . . . ≥ tpl(Qt)

is at most
∑n

j=1 j = n(n+ 1)/2. ut

5.2 Failed Consistency Checks

The t-th execution step is a failed consistency check if the algorithm finds
C ∈ Et with d•(C) = i, s1, s2 ∈ St with d(s1), d(s2) ≤ ` − i − 1, and
C1 ∈ σ•〈St〉, such that C[C1[s1]], C[C1[s2]] ∈ T (Sk ∪ Σ)[`], s1 ∼k s2 where
k = max{d(s1), d(s2)} + i + 1, and T (C[C1[s1]]) 6= T (C[C1[s2]]). In this

Learning Cover Context-Free Grammars from
Structural Data 279

case, the context C[C1] is newly introduced in the component Et+1 of the
observation table T(t + 1).

We will show that the number of failed consistency checks performed
by the learning algorithm LA` has an upper bound which is a polynomial in
n. To prove this fact, we rely on the following auxiliary notions:

- For C,C ′ ∈ Et, we define C ≺t
C C
′ if either d•(C) < d•(C

′) or d•(C) =
d•(C

′) and there exists t′ < t such that C ∈ Et′ but C ′ 6∈ Et′ (that
is, C became an experiment in the observation table before C ′).

- We define δt(s1, s2) := min≺C{C ∈ Et | C `-distinguishes s1 and s2}
for every s1, s2 ∈ St such that s1 � s2.

- A nonempty subset U of Et induces a partition of a subset R of St into
equivalence classes Q1, . . . , Qm if the following conditions are satisfied:

1.
⋃m
j=1Qj = R and Qi ∩Qj = ∅ whenever 1 ≤ i 6= j ≤ m,

2. Whenever 1 ≤ i 6= j ≤ m, s1 ∈ Qi, and s2 ∈ Qj , there exists
C ∈ U that `-distinguishes s1 and s2.

3. Whenever s1, s2 ∈ Qj for some 1 ≤ j ≤ m, there is no C ∈ U
that `-distinguishes s1 and s2.

Let Et := {δt(s1, s2) | s1, s2 ∈ St, s1 � s2}. Since ∼ is not an equivalence,
not every subset of Et induces a partition of St into equivalence classes.
However, the next lemma shows that Et induces a partition of Qt into at
least |Et| classes.

Theorem 4. If Et = {C1, . . . , Ck} with C1 ≺C . . . ≺C Ck then, for every
1 ≤ i ≤ k, {C1, . . . , Ci} induces a partition of Qt into at least i classes.

Proof. First, we prove by induction on i, 1 ≤ i ≤ k, that {C1, . . . , Ci}
induces a partition ofQt. In the base case, i = 1, {C1, . . . , Ci} = {C1} = {•},
and the statement of the lemma is obviously true. In the induction step,
we assume that {C1, . . . , Ci} induces a partition Q1, . . . , Qm of Qt. Let
M2 := {Qi | |Qi| > 1}, and M :=

⋃
Qi∈M2

Qi. As all pairs of elements in M
are `-distinguished by some element of Ci+1, . . . , Ck and d•(Ci+1) ≤ d•(Cj)
for all i < j ≤ k, the depth of any term contained inM is at most `−d•(Ci+1).
Thus T (Ci+1[t]) ∈ {0, 1} for all t ∈ M , and therefore {C1, . . . , Ci, Ci+1}
induces a partition of Qt.

Let Ci1 , . . . , Cik be the order in which the contexts were added to E by
failed consistency checks. Because every Cip+1 `-distinguishes some elements

280 M. Marin, G. Istrate

of Qt that were not `-distinguished by any of Cij with 1 ≤ j ≤ p, we conclude
that Et induces a partition of Qt into at least k classes. ut

Corollary 5. For any t, Et has at most n elements.

Proof. Let k be the number of elements of Et, and m be the number of
classes in the partition of Qt induced by Et. By Lemma 4, k ≤ m. Since
m ≤ n, we conclude that k ≤ n. ut

We will compute an upper bound on the number of failed consistency
checks by examining the evolution of Et during the execution of LA`. Initially,
E0 = {•}.

Lemma 11. At any time during the execution of the algorithm, if Qt has
i ≥ 2 elements, then the hole depth of any context in Et is less than or equal
to i− 2.

Proof. The proof is by induction on the execution step t of the algorithm.

In the base case, assume Q0 has i = 2 elements. Then E0 = {•} and
d•(•) = 0 = i− 2. In the induction case, we assume that the result holds at
some step t in the execution of the algorithm, and we prove that the result
holds at the next step t + 1.

If step t is a failed closedness check or a failed structural equivalence
query, then Et+1 = Et, and Qt+1 has at least the same number of elements
as Qt. Therefore, the result will hold at step t + 1.

Otherwise, the execution step t is a failed consistency check. Let
s1, s2 ∈ St, C ∈ Et, and C1 ∈ σ•〈St〉 be the values for which this failed
consistency check is performed. Then Et+1 = Et ∪ {C[C1]}. We distinguish
two cases:

1. s1 and s2 are `-distinguished by some C ′ ∈ Et, but d•(C
′) > d•(C[C1]).

Then d•(C
′′) ≤ max{d•(C ′) | C ′ ∈ Et} for all C ′′ ∈ Et+1. Since

max{d•(C ′) | C ′ ∈ Et} ≤ i − 2 by induction hypothesis, and i =
|Qt| ≤ |Qt+1|, we learn that d•(C

′′) ≤ |Qt+1| − 2 for all C ′′ ∈ Et+1.

2. s1 and s2 are not `-distinguished by any element of Et. If d•(C[C1]) ≤
max{d•(C ′) | C ′ ∈ Et}, the result will hold at step t + 1. Otherwise,
by induction hypothesis d•(C) ≤ i− 2 and thus d•(C[C1]) ≤ i− 1. Let
R := Qt∪{s1, s2}. Since s1 ∼` s2 at step t, at least one of s1 and s2 is
not contained in Qt, thus R will have at least |Qt|+ 1 = i+ 1 elements.
As C[C1] `-distinguishes s1 and s2 and d•(C[C1]) ≤ max{d•(C ′) | C ′ ∈

Learning Cover Context-Free Grammars from
Structural Data 281

Et}, d•(C ′[s1]) ≤ ` and d•(C
′[s2]) ≤ ` for every C ′ ∈ Et. Thus, both

Et and Et+1 will induce a partition of R. As s1 ∼` s2 at step t,
but s1 and s2 are `-distinguished by C[C1] at step t + 1, Et+1 will
partition R into at least |Qt|+ 1 classes. Thus, |Qt+1| ≥ i+ 1. Hence
d•(C

′′) ≤ i− 1 = (i+ 1)− 2 ≤ |Qt+1| − 2 for all C ′′ ∈ Et+1. ut

Let Et = {C ′1, . . . , C ′k} before some execution step t of the algorithm
LA`, where C ′1 ≺C . . . ≺C C

′
k. Then k ≤ n by Cor. 5. We associate to every

such Et the n-tuple tpl(Qt) = (y1, . . . , yn) ∈ {0, 1, . . . , n− 1}n, where, for
every 1 ≤ j ≤ n, yj is defined as follows:

- If Qt has at least j+ 1 elements then, if i is the minimum integer such
that {C ′1, . . . , C ′i} partitions Qt into at least j + 1 classes then yj = d•(C

′
j).

Since every {C ′1, . . . , C ′i} partitions Qt into at least i classes (by Lemma
4) and we assume that Et = {C ′1, . . . , C ′k} partitions Qt into |Qt| ≥ j + 1
classes, we conclude that such an i exists.

- otherwise yj = n− 1.

For 1 ≤ j ≤ n we denote the j-th component of tpl(Et) by dht(j).
Note that, for all 1 ≤ i ≤ k, d•(C

′
i) ≤ |Qt| − 2 by Theorem 11, and |Qt| ≤ n,

hence d•(C
′
i) ≤ n− 2. Therefore, we can always distinguish the components

yi of tpl(Qt) that correspond to the defining case (1) from those in case (2).

Lemma 12. dht(j) ≤ j − 1 whenever 2 ≤ j ≤ n and dht(j) 6= n− 1.

Proof. Suppose t′ is the first execution step when dht′(j) 6= n − 1. This
means that t′ is the first execution step from where on we distinguish at least
j+1 representatives in the observation table. Therefore, at the previous step
t′ − 1, |Qt′−1| ≤ j and so, by Lemma 11, d•(C) ≤ j − 2 for all C ∈ Et′−1.
Thus, d•(C

′) ≤ j − 1 for all C ′ ∈ Et′ , and in particular dht′(j) ≤ j − 1.
Since it is obvious that dht(j) ≤ dht′(j) whenever t ≥ t′, we conclude that
dht(j) ≤ j − 1 whenever 2 ≤ j ≤ n and dht(j) 6= n− 1. ut

Theorem 5. If Qt has at least 2 elements then the number of failed consis-
tency checks over the entire run of LA` is at most n(n− 1)/2.

Proof. It is easy to see that tpl(Qt) ≥ tpl(Qt+1) holds for every execution
step t. Moreover, if the t-th execution step is a failed consistency check then
a context C is newly added to Et in order to produce Et+1. The context
C will `-distinguish two elements s1, s2 ∈ St that were not `-distinguished
before or had been `-distinguished by some C ′ ∈ Et with d•(C

′) > d•(C).
Since d(rt+1(s1)) ≤ d(s1) and d(rt+1(s2)) ≤ d(s2), C will `-distinguish two

282 M. Marin, G. Istrate

elements of St that were not `-distinguished before or were `-distinguished
by a context with bigger hole-depth. Therefore tpl(Qt+1) < tpl(Qt) if t is
a failed consistency check.

Note that tpl(Q0) = (0, n − 1, . . . , n − 1) and the minimum possible
value of tpl(At) is (0, 1, . . . , 1). Also, by Lemma 12, dht(j) ≤ j−1 whenever
dht(j) 6= n− 1 for 2 ≤ j ≤ n. Therefore, any run of the algorithm performs
at most

∑n
j=2(j − 1) = n(n− 1)/2 failed consistency checks. ut

5.3 Failed Structural Equivalence Queries

Every failed structural equivalence query yields a counterexample which
increases the number of representatives in Qt. Thus

Theorem 6. The number of failed structural equivalence queries is at most
n.

Proof. Algorithm LA` performs a failed structural equivalence query when
the observation table T(t) is closed, consistent, and has less than n states
(by Corollary 2 of Theorem 1). Suppose the algorithm performed a failed
structural equivalence query for A(T(t)) which rendered the counterexample
t. After extending the S-component of observation table T(t) with all
subterms of t that were not yet there, the algorithm constructs a new
observation table T(t′) which is closed and consistent. Since t ∈ St′ , • ∈ Et′ ,
and T (•[t]) in the table T(t) differs from T (•[t]) in the table T(t′), the
automata A(T(t)) and A(T(t′)) are not equivalent with respect to ` (that is,
L(A(T(t)))[`] 6= L(A(T(t′)))[`]). Therefore, by Theorem 2, the automaton
A(T(t′)) must have at least one more state than A(T(t′)). Since the number
of states is increased by every failed structural equivalence query and can
not exceed n, the number of failed structural equivalence queries performed
by algorithm LA` is at most n. ut

5.4 Space and Time Complexity

We are ready now to express the space and time complexity of LA` in terms
of the following parameters:

- n = the number of states of a minimal DFCA for the language of
structural descriptions of the unknown grammar with respect to `,

- m = the maximum size of a counterexample returned by a failed
structural equivalence query,

- p = the cardinality of the alphabet Σ of terminal symbols, and

Learning Cover Context-Free Grammars from
Structural Data 283

- d = the maximum rank (or arity) of the symbol σ ∈ Sk.

Space complexity. The number of elements in St is initially 0 (i.e., |S0| =
0) and is increased either by a failed closedness check or by a failed structural
membership query. By Theorem 3, the number of failed closedness checks is
at most n(n+ 1)/2, and each of them adds one element to S. By Theorem
6, the number of failed structural equivalence queries is at most n. A failed
structural equivalence query which produces a counterexample t with sz(t) ≤
m, adds at most m terms to St. Thus, |St| ≤ n(n+1)/2+nm = O(mn+n2)
and |St∪Σ| = O(mn+n2 +p), therefore |σ•〈St〉| ≤

∑d−1
j=0(j+1) |St∪Σ|j =

O(d (mn+n2 + p)d−1) and |X(St)| ≤
∑d

j=1 |St ∪Σ|j = O((mn+n2 + p)d).

Thus St ∪X(St)[`] has O((mn+ n2 + p)d) elements. By Theorem 5, there
may be at most n(n − 1)/2 failed consistency checks, and each of them
adds a context to Et. We conclude that both St ∪X(St) and Et have a
polynomial number of elements.

Next, we show that both these sets can be encoded to occupy polynomial
space. St ∪ X(St) is subterm closed, therefore can identify its elements
with the set of nodes of a forest of trees. Because the size of St ∪X(St) is
polynomial, we can represent this forest of trees in polynomial space. This
also implies that the elements of σ•〈St〉 can be represented in polynomial
space.

Et is •-prefix closed with respect to St and d•(C) ≤ n − 1 for all
C ∈ Et (by Lemma 12). This implies that every C ∈ Et is a composition of
at most n− 2 elements from σ•〈St〉, and therefore it can be represented in
polynomial space. Since Et has a polynomial number of elements, we learn
that the space complexity of Et is polynomial.

We conclude that the space complexity observation table T(t) =
(St, Et, T, `) is polynomial.

Time complexity. We examine the time complexity of the algorithm by
looking at the time needed to perform each kind of operation.

Since the consistency checks of the observation table are performed in
a for loop which checks the result produced by s1 ∼k s2 (where s1, s2 ∈ St)
in increasing order of k, the result produced by s1 ∼k s2 can be reused in
checking s1 ∼k+1 s2 and so the corresponding elements in the rows of s1
and s2 are compared only once. Thus, the total time needed to check if the
observation table is consistent involves at most (|St| · (|St|−1)/2) · |Et| · (1 +
|σ•〈St〉|), comparisons. As σ•〈St〉 has O(d (mn+ n2 + p)d−1) elements, a

284 M. Marin, G. Istrate

consistency check of the table takes O((mn+ n2)2n2d (mn+ n2 + p)d−1) =
O(n2d (mn+n2+p)d+1) time. As there are at most (n (n+1)/2+1) (n+1) =
O(n3) consistency checks, the total time needed to check if the table is
consistent is O(n5d (mn+ n2 + p)d+1).

Checking if the observation table is closed takes at most |St|2 · |σ•〈St〉| ·
|Et| time, which is O((mn + n2)2d (mn + n2 + p)d−1n2) = O(n2d (mn +
n2 + p)d+1).

Extending an observation table T(t) with a new element in St+1 requires
the addition of

∑d
k=2(2

k−1 − 1) = 2d − d− 1 contexts to σ•〈St+1〉 \ σ•〈St〉,
thus the addition of at most 2d− d new rows for the new elements of St+1 ∪
X(St+1) in the observation table T(t + 1). This extension requires at most
(2d−d) · |Et| · (1 + |σ•〈St〉|) = O(n2d (2d−d) (mn+n2 +p)d−1) membership
queries. The number of elements of St+1 \St as a result of a failed structural
equivalence query is at most m. As there will be at most n failed structural
equivalence queries and at most n(n + 1)/2 failed closedness checks, the
maximum number of elements of St+1\St is n(n+1)/2+mn = O(mn+n2).
Thus the total time spent on inserting new elements in the S-component
of the observation table is O(n2d (2d − d) (mn + n2)(mn + n2 + p)d−1).
Extending an observation table T(t) with a new context in Et+1 requires
at most |St ∪X(St)[`]| = O((mn + n2 + p)d) membership queries. These
additions are performed only by failed consistency checks, and there are at
most n(n− 1)/2 of them. Thus, the total time spent to insert new contexts
in the E-component of the observation table is O(n2 (mn+ n2 + p)d). We
conclude that the total time spent to add elements to the components S
and E of the observation table is O(n2d (2d − d) (mn+ n2 + p)d), which is
polynomial.

The identification of the representative rt(s) for every s ∈ St can be
done by performing (|St|(|St| − 1)/2) |Et| = O((mn+ n2)2n2) comparisons.

Thus, all DFCAs A(T(t)) corresponding to consistent and closed obser-
vation tables T(t) can be constructed in time polynomial in m and n. Since
the algorithm encounters at most n consistent and closed observation tables,
the total running time of the algorithm is polynomial in m and n.

6 Conclusions and Acknowledgments

We have presented an algorithm, called LA`, for learning cover context-free
grammars from structural descriptions of languages of interest. LA` is an
adaptation of Sakakibara’s algorithm LA for learning context-free grammars

Learning Cover Context-Free Grammars from
Structural Data 285

from structural descriptions, by following a methodology similar to the design
of Ipate’s algorithm L` as a nontrivial adaptation of Angluin’s algorithm L∗.
Like L∗, our algorithm synthesizes a minimal deterministic cover automaton
consistent with an observation table maintained via a learning protocol
based on what is called in the literature a “minimally adequate teacher” [1].
And again, like algorithm L∗, our algorithm is guaranteed to synthesize the
desired automaton in time polynomial in n and m, where n is its number
of states and m is the maximum size of a counterexample to a structural
equivalence query. As the size of a minimal finite cover automaton is usually
much smaller than that of a minimal automaton that accepts that language,
the algorithm LA` is a better choice than algorithm LA for applications
where we are interested only in an accurate characterisation of the structural
descriptions with depth at most `.

This work has been supported by CNCS IDEI Grant PN-II-ID-PCE-
2011-3-0981 “Structure and computational difficulty in combinatorial opti-
mization: an interdisciplinary approach.”

References

[1] Dana Angluin. Learning regular sets from queries and counterex-
amples. Information and Computation, 75(2):87–106, 1987. doi:

10.1016/0890-5401(87)90052-6.

[2] Dana Angluin and Michael Kharitonov. When won’t membership queries
help? Journal of Computer and System Sciences, 50(2):336–355, 1995.
doi:10.1006/jcss.1995.1026.

[3] Walter S. Brainerd. The minimalization of tree automata. Informa-
tion and Control, 13(5):484–491, 1968. doi:10.1016/S0019-9958(68)
90917-0.

[4] Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Minimal cover-
automata for finite languages. Theoretical Computer Science, 267(1–
2):3–16, 2001. Workshop on Implementing Automata ’98. doi:10.

1016/S0304-3975(00)00292-9.

[5] Colin De la Higuera. Grammatical inference: Learning automata and
Grammars. Cambridge University Press, 2010.

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1006/jcss.1995.1026
http://dx.doi.org/10.1016/S0019-9958(68)90917-0
http://dx.doi.org/10.1016/S0019-9958(68)90917-0
http://dx.doi.org/10.1016/S0304-3975(00)00292-9
http://dx.doi.org/10.1016/S0304-3975(00)00292-9

286 M. Marin, G. Istrate

[6] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay,
and Bow-Yaw Wang. Extending automated compositional verification
to the full class of omega-regular languages. In C. R. Ramakrishnan and
Jakob Rehof, editors, Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS 2008), Held as Part of the Joint European Conferences on
Theory and Practice of Software (ETAPS 2008), volume 4963 of Lecture
Notes in Computer Science, pages 2–17. Springer, 2008. doi:10.1007/
978-3-540-78800-3_2.

[7] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Pearson Addison
Wesley, second edition, 2003.

[8] Florentin Ipate. Learning finite cover automata from queries. Journal
of Computer and System Sciences, 78(1):221–244, 2012. doi:10.1016/
j.jcss.2011.04.002.

[9] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Minimization,
learning, and conformance testing of boolean programs. In Christel Baier
and Holger Hermanns, editors, Proceedings of the 17th International
Conference on Concurrency Theory (CONCUR 2006), volume 4137
of Lecture Notes in Computer Science, pages 203–217. Springer, 2006.
doi:10.1007/11817949_14.

[10] Leon S. Levy and Aravind K. Joshi. Skeletal structural descrip-
tions. Information and Control, 39(2):192–211, 1978. doi:10.1016/

S0019-9958(78)90849-5.

[11] Oded Maler and Amir Pnueli. On the learnability of infinitary regular
sets. Information and Computation, 118(2):316–326, 1995. doi:10.

1006/inco.1995.1070.

[12] Yasubumi Sakakibara. Learning context-free grammars from structural
data in polynomial time. Theoretical Computer Science, 76(2-3):223–242,
1990. doi:10.1016/0304-3975(90)90017-C.

[13] Michael Sipser. Introduction to the Theory of Computation. Thomson,
2nd edition, 2006.

c© Scientific Annals of Computer Science 2014

http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://dx.doi.org/10.1016/j.jcss.2011.04.002
http://dx.doi.org/10.1016/j.jcss.2011.04.002
http://dx.doi.org/10.1007/11817949_14
http://dx.doi.org/10.1016/S0019-9958(78)90849-5
http://dx.doi.org/10.1016/S0019-9958(78)90849-5
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1016/0304-3975(90)90017-C

	Introduction
	Preliminaries
	Learning Context-free Grammars
	Learning Cover Context-free Grammars
	The Observation Table
	The Similarity Relation
	Consistency and Closedness

	Algorithm Analysis
	Failed Closedness Checks
	Failed Consistency Checks
	Failed Structural Equivalence Queries
	Space and Time Complexity

	Conclusions and Acknowledgments

