
Scientific Annals of Computer Science vol. 22 (1), 2012, pp. 105–145

DOI: 10.7561/SACS.2012.1.105

Structured Operational Semantics for
Graph Rewriting1

Andrei DORMAN2, Tobias HEINDEL3, Barbara KÖNIG4

Abstract

Process calculi and graph transformation systems provide models
of reactive systems with labelled transition semantics (LTS). While
the semantics for process calculi is compositional, this is not the case
for graph transformation systems, in general. Hence, the goal of this
article is to obtain a compositional semantics for graph transformation
system in analogy to the structural operational semantics (SOS) for
Milner’s Calculus of Communicating Systems (CCS).

The paper introduces an SOS style axiomatization of the standard
labelled transition semantics for graph transformation systems that is
based on the idea of minimal reaction contexts as labels, due to Leifer
and Milner. In comparison to previous work on inductive definitions of
similarly derived LTSs, the main feature of the proposed axiomatization
is a composition rule that captures the communication of sub-systems
so that it can feature as a counterpart to the communication rule of
CCS.

Keywords: process calculi, graph transformation, structural opera-
tional semantics, compositional methods

1This work was partially supported by grants from Agence Nationale de la Recherche, ref.
ANR-08-BLANC-0211-01 (COMPLICE project) and ref. ANR-09-BLAN-0169 (PANDA
project).

2 LIPN – UMR 7030, Université Paris 13, 99, avenue Jean-Baptiste Clément, 93430
Villetaneuse, France. Email: andrei.dorman@lipn.univ-paris13.fr

3 CEA LIST, Institut CARNOT CEA LIST, DILS/LMEASI, Point Courrier 174, 91191
Gif-sur-Yvette CEDEX, France. Email: tobias.heindel@cea.fr

4 Abteilung für Informatik und Angewandte Kognitionswissenschaft, Fachbereich The-
oretische Informatik, Universität Duisburg-Essen, Campus Duisburg, Fakultät für Inge-
nieurwissenschaften, D-47048 Duisburg, Germany. Email: barbara koenig@uni-due.de

106 A. Dorman, T. Heindel, B. König

1 Introduction

Process calculi remain one of the central tools for the description of interactive
systems. The archetypal examples of process calculi are Milner’s π-calculus
and the even more basic calculus of communication systems (ccs). The
semantics of these calculi is given by labelled transition systems (lts), which
can be given as structural operational semantics (sos). An advantage of
sos is their potential for combination with compositional methods for the
verification of systems (see e.g. [27]).

Fruitful inspiration for the development of lts semantics for other “non-
standard” process calculi originates from the area of graph transformation
where techniques for the derivation of lts semantics from “reaction rules”
have been developed [24, 10]. The strongest point of these techniques is
the context independence of the resulting behavioural equivalences, i.e. they
are congruences. Moreover, label derivation techniques lead to original lts-
semantics for the ambient calculus [22, 3], which are also given as sos
systems. Already in the special case of ambients, the sos-style presentation
goes beyond the standard techniques of label derivation in [24, 10]. An open
research challenge is the development of a general technique for the canonical
derivation of sos-style lts-semantics. We shall address the problem of the
“monolithic” character of the standard lts for graph transformation systems.

In the present paper, we provide the basic results for a solution to the
problem. In particular we describe a ccs-like labelled transition semantics
for graph transformation systems. The main guiding idea is a “formal”
analogy to ccs and the crucial point is the quest for a suitable counterpart
of the communication rule of ccs.

The focus on the communication rule of ccs is the main feature that
distinguishes the present paper from previous work on graph transformation
systems that has been inspired by structural operational semantics. As a
further delineation, we only consider labelled transition semantics for graph
transformation systems that use the idea of “minimal” reaction contexts as
labels. The idea of a “minimal” context has been formalized by Leifer and
Milner as relative pushout in the seminal work [18]; for the concrete case of
hypergraph transformation, the Borrowed Context technique [10] is a more
direct, equivalent approach. Within this research field on system behaviour
that is based on minimal contexts as actions, the focus on a counterpart of
the communication rule of ccs is the main novelty. It is the distinguishing
feature in comparison to the graphical encoding of the ambient calculus that
has been studied in [3]. Both the latter work and the present paper work

Structured Operational Semantics for Graph Rewriting 107

with graph transformation systems instead of the term based approach that
has been used in [22]. The exploration of the subtle differences between term
based and graphical techniques in general is however beyond the scope of
the present paper.

The general direction of our work is towards formal results that support
the slogan that graph transformation and process calculi have essentially
the same descriptive power (as witnessed by several encodings of process
calculi as graph transformation systems). This slogan is well-established
for reduction semantics of closed systems and calls for an extension to
open systems. On the way, we also expect to gain insight on the subtle
differences between the “flat” world of graphs, and the term based world of
process calculi. The potential advantage of graph transformation over process
calculi is their inherent generality, as one will seldom study a particular
graph transformation system for its own sake; the results hold for graph
transformation systems in general. In this paper, we provide basic results on
interaction in graph transformation systems that are meant to facilitate the
“importation” of the usual structural operational semantics from the world
of process calculi.

Structure and contents of the paper We first recall the basic defini-
tions and concepts for the concrete case of hypergraphs in Section 2; in
particular we give a brief review of the Borrowed Context technique. In
Section 3, we provide a reformulation of the Borrowed Context technique in
analogy to Milner’s ccs; however, this analogy is imperfect as there is no
need for a counterpart of the communication rule. This issue is addressed
in Section 4, where we present our main results, which allow to define a
graph transformation counterpart of a communication rule. These results
are applied in Section 5 to obtain a satisfactory sos like reformulation of
the Borrowed Context technique. We conclude with a discussion of future
and related work.

2 Preliminaries

We first recall the standard definition of (hyper-)graphs and a formalism of
transformation of hypergraphs (following the double pushout approach). We
also present the labelled transition semantics for hypergraph transformation
systems that has been proposed in [10]. In the present paper, the more
general case of categories of graph-like structures is not of central importance.

108 A. Dorman, T. Heindel, B. König

We avoid category theoretical jargon and present all necessary concepts
concretely for hypergraphs.

2.1 Hypergraphs

Definition 1 (Hypergraph). Let Λ be a set of labels with associated ar-
ity function ar : Λ → N. A (Λ-labelled hyper-) graph is a tuple G =
(E, V, `, cnct) where E is a set of (hyper-) edges, V is a set of vertices
or nodes, ` : E → Λ is the labelling function, and cnct is the connection
function, which assigns to each edge e ∈ E a finite sequence of vertices
cnct(e) = v1 · · · vn where ar(`(e)) = n, i.e. cnct(e) is a function from
{i | 0 < i ≤ ar(`(e))} to V . For a given edge e ∈ E, the set of all e-
adjacent vertices is adj(e) = {cnct(e)(i) | 0 < i ≤ ar(`(e))} and for a given
node v ∈ V , the set of edges incident to it is inc(v) = {e ∈ E | v ∈ adj(e)}.
The degree of a node v ∈ V , written deg(v), is the number of edges incident
to it, i.e. deg(v) = | inc(v)| (where for any finite set M , the number of
elements of M is |M |). We also write v ∈ G and e ∈ G if v ∈ V and e ∈ E
to avoid clutter.

Example 2.1 (Hypergraph). An example of an {α, β, γ}-labelled hypergraph
is illustrated in the grey box in the display below.

u
v

v’
u’

β

α γ

The arities of α, β and γ are 2, 3 and 1, respectively. The graph has
hyperedges of each “type”, which are depicted as rounded boxes with the
respective label inside; moreover, the graph has four nodes. The order of the
nodes that are connected to an hyperedge is usually not important (but could
be fixed easily by counting counter-clockwise from the bottom left corner of
the edge).

We usually do not discern isomorphic graphs (which roughly corresponds
to the practice to consider terms of process calculi up to structural congru-
ence); thus, we usually do not mention the “names” of nodes and edges. The
full details of the above graph would be ({e, e′, d}, {u, v, u′, v′}, `, cnct) where
` = {e 7→ α, e′ 7→ β, d 7→ γ} and cnct = {e 7→ uv, e′ 7→ v′vu′, d 7→ v}.

For completeness’ sake, we recall the standard definitions of hypergraph
morphism, sub-graph and isomorphism. However, usually, inclusions of

Structured Operational Semantics for Graph Rewriting 109

sub-graphs in illustrations are the obvious ones that preserve the (relative)
positioning of nodes and edges.

Definition 2 (Hypergraph morphisms, inclusions, isomorphisms). Let Gi =
(Ei, Vi, `i, cncti) (i ∈ {1, 2}) be hypergraphs; a hypergraph morphism from
G1 to G2, written f : G1 → G2, is a pair of functions f = (fE : E1 →
E2, fV : V1 → V2) that preserves labels and connectivity of edges: The equality
`2 ◦ fE = `1 holds and we have fV (cnct1(e)(i)) = cnct2(fE(e))(i) for each
edge e ∈ E1 and every i ∈ N such that 0 < i ≤ ar(`(e)).

A hypergraph morphism f = (fE , fV) : G1 → G2 is injective (an isomor-
phism) if both fE and fV are injective (bijective); it is the inclusion (of G1

into G2) if both fE(e) = e and fV (v) = v hold for all e ∈ E1 and v ∈ V1 and
then G1 is a sub-graph of G2. As usual, we write G1

∼= G2 if there is an
isomorphism f : G1 → G2. We write G1 ↪→ G2 or G2 ←↩ G1 (and very often
just G1 → G2 or G2 ← G1) if G1 is a sub-graph of G2.

In this subsection we have recalled the basic terminology for hypergraphs;
next we shall review a standard approach to graph transformation.

2.2 Standard Graph Transformation

The most established approach to graph transformation is double pushout
rewriting. It is most succinctly defined using the basic category theoretical
notion of pushout, which makes it a uniform approach for arbitrary graph-
like structures. However, for the particular case that we are interested in,
pushouts can be understood as a variation of the disjoint union of hyper-
graphs. In the next definition, we also cover the particular case of pullbacks
that we shall need to properly present the Borrowed Context technique [10]
in Section 2.3 without a purely category theoretical perspective.

Definition 3 (Pullbacks & pushouts of inclusions). Let Gi = (Ei, Vi, `i, cncti)
(i ∈ {0, 1, 2, 3}) be hypergraphs and let G1 → G3 ← G2 be inclusions. The
intersection of G1 and G2 is the hypergraph G′ = (E1 ∩ E2, V1 ∩ V2, `′, cnct′)
where `′(e) = `1(e) and cnct′(e) = cnct2(e) for all e ∈ E1∩E2. The pullback
of G1 → G3 ← G2 is the pair of inclusions G1 ← G′ → G2 and the resulting
square is a pullback square (see Figure 1).

Let G1 ← G0 → G2 be inclusions; they are non-overlapping if both
E1 ∩ E2 ⊆ E0 and V1 ∩ V2 ⊆ V0 hold. The pushout of non-overlapping
inclusions G1 ← G0 → G2 is the pair of inclusions G1 → (G1 +G0 G2)← G2

110 A. Dorman, T. Heindel, B. König

where (G1 +G0 G2) = (E1 ∪E2, V1 ∪V2, `′′, cnct′′) is the hypergraph such that

`′′(e) =

{
`1(e) if e ∈ E1

`2(e) if e ∈ E2

and cnct′′(e) =

{
cnct1(e) if e ∈ E1

cnct2(e) if e ∈ E2

hold for all e ∈ E1 ∪E2; often, (G1 +G0 G2) is referred to as the pushout of
G1 and G2 over G0.

Without loss of generality, we shall assume that pairs of inclusions
G1 ← G0 → G2 are always non-overlapping.

G3

G1

G2

G′

G0

G1

G2

G′′

Figure 1: Pullback and pushout square

We are finally ready to introduce graph transformation systems and
their “reduction” semantics.

Definition 4 (Rules and graph transformation systems). A rule is a pair of
inclusions of hypergraphs ρ = (L← I → R). Let A,B be hypergraphs. Now,
ρ transforms A to B if there exists a

diagram as shown to the right in which the two squares are
pushouts, A′ ← I → R is non-overlapping, and A ∼= A′ and
B′ ∼= B. A graph transformation system (gts) is a pair
S = (Λ,R) where Λ is a set of labels and R is a set of rules
(over Λ-labelled hypergraphs).

L I R

A′ D B′

A graph transformation rule can be understood as follows. Whenever
the left hand side L is (isomorphic to) a sub-graph of some graph A then
this sub-graph can be “removed” from A, yielding the graph D. The vacant
place in D is then “replaced” by the right hand side R of the rule. The
middleman I is the memory of the connections that L had with the rest of
the graph in order for R to be attached in exactly the same place. Also note,
that if we remove a node in A, we have also to remove all incident edges
explicitly, i.e. the deleted node has “the same” incident edges in L and A.
Each graph transformation step can also be thought of as a chemical reaction
according to the rule, which features as the reaction law. An example of a
rewriting step is shown in Figure 2. As mentioned before, inclusions are

Structured Operational Semantics for Graph Rewriting 111

α

β

R1

G

α

β

G G

R1

Figure 2: A rewriting step with rule “α/β”.

given implicitly by the spatial arrangement of nodes and edges to keep the
graphical representations clear.

As one might expect, the result of each transformation step is unique
(up to isomorphism). This is a consequence of the following fact.

Fact 1 (Pushout complements). Let G2 ← G1 ← G0 be a
pair of hypergraph inclusions where Gi = (Ei, Vi, `i, cncti)
(i ∈ {0, 1, 2}) and assume that they satisfy the dangling
edge condition: For all v ∈ V1 \ V0 there does not exist
any edge e ∈ E2 \ E1 such that e is incident to v. Then
there exists a unique sub-graph G2 ← D such that (1) is a
pushout square.

G1 G0

G2 D (1)

Definition 5 (Pushout Complement). Let G2 ← G1 ← G0 be a pair of
hypergraph inclusions that satisfy the conditions of Fact 1; the unique com-
pletion G2 ← D ← G0 that yields the pushout square (1) is the pushout
complement of G2 ← G1 ← G0.

We now introduce the example graph transformation system that we
shall use throughout the paper to illustrate the basic ideas. The rule in the
“reaction” in Figure 2 is part of this system.

Example 2.2 (Running Example). The system Sex = (Λ,R) will be the
following one in the sequel: The set of edge-labels is Λ = {α, β, γ, . . . } where
ar(α) = 2, ar(β) = 3 and ar(γ) = 1; moreover, R is the set of rules given
in Figure 3 where the Ri represent different graphs (e.g. edges with labels
Ri).

112 A. Dorman, T. Heindel, B. König

α

β
← → R1

(a) Rule “α/β”

β

α γ
← →

R4

(b) Rule “α/β/γ”

Figure 3: Reaction rules of Sex.

In this subsection, we have presented the double pushout approach as a
model for “reactions” that occur in a system about which one has complete
knowledge. Thus rewriting is similar to the reaction semantics for ccs. Now,
we come to the more recent and central idea that graph transformation
systems “automatically” have an interactive nature, which endows each
graph with a behaviour. This is similar to process calculi where process
terms cannot only react but also exhibit behaviour that depends on possible
interactions with other processes.

2.3 Behaviour as Interaction With the Environment

Finally, we use the Borrowed Context technique [10] to equip each graph
transformation system with a labelled transition semantics that models the
interactive behaviour of systems that are specified as graphs with graph
transformation rules. Each labelled transition will model an interaction of a
graph with an “external” environment; in the world of process calculi, this
environment is formalized as an arbitrary (reactive) context.

Intuitively, one might want to “hide” parts of a graph from the environ-
ment while some portion of the state is directly exposed. Thus, each state
of the labelled transition system (lts) will be a graph with an interface,
which makes part of the graph directly accessible whereas the remainder is
“hidden”; more technically, the interface is also needed to have a meaningful
way to consider the graph within an “external” context. To avoid confusion,
we emphasize here that the labels of transitions in the lts will depend
directly on the rules of the gts (and thus only indirectly on the edge-labels
Λ). We use the standard definition of labelled transition systems, which we
recall here to fix notation.

Definition 6 (Labelled transition system). A labelled transition system
(lts) is a tuple (S,Ξ, R) where S is a set of states, Ξ is a set of labels and

Structured Operational Semantics for Graph Rewriting 113

R ⊆ S × Ξ× S is the transition relation. We write

s
a−→ s′

if (s, a, s′) ∈ R and say that s can evolve to s′ by performing a.

Before we delve into the technical details of the lts semantics for graphs,
we first discuss the main ideas informally. The states will be graphs with
interface J → G. The “larger” part G models the whole “internal” state of
the system while the “smaller” part, the interface J , models the part that is
directly accessible to the environment and allows for (non-trivial) interaction.
As a particularly simple example, one could have a Petri net where the set
of places (with markings) is the complete state and some of the places are
“open” to the environment such that interaction takes place by exchange of
tokens.

More generally, the addition of agents/resources from the environment
to (the interface of) a state might result in “new” reactions, which have not
been possible before. In the Petri net scenario, extra tokens might enable
transitions that could not be fired before. The idea of the lts semantics for
graph transformation is to consider as labels “minimal” contexts that trigger
“new” reactions (by providing extra agents/resources). For a more formal
treatment of this intuition, see [25]. A direct definition of the lts semantics
for graph transformation can be given in terms of so-called borrowed context
diagrams.

Definition 7 (DPOBC). Let S = (Λ,R) be a graph
transformation system. Its lts has all inclusions of
hypergraphs J → G as states where J is called the
interface. Labels are pairs of inclusions J → F ← K.
A state J → G evolves to another one K → H if there
is a diagram as shown to the right, which is called a
dpobc-diagram or just a bc-diagram: All morphisms
are injective and the squares are pullbacks or pushouts
as marked. In such a bc-diagram, G ← D → L is
called the partial match of L (in G).

D L I R

G Gc C H

J F K

We often speak of the graph D as the partial match for a transition; in
fact, the whole bc-diagram is determined by the rule and the partial match
(up to isomorphism).

Example 2.3. An example of a dpobc-diagram is given in Figure 4. The
original state J → G contains a hyperedge α. The partial match D is exactly

114 A. Dorman, T. Heindel, B. König

α
α

β

R1

G

α

G

α

β

G G

R1

β

Figure 4: An example of a bc-diagram that uses the rule “α/β”.

this edge. The state can therefore evolve using rule α/β, provided that it
borrows β from the environment.

The bigger graph Gc contains G but is also completed with what is
missing such that the left-hand side of the rule can be embedded into it.
It can thus be rewritten, as shown in Figure 2. The last row shows the

“evolution of the interface during the rewriting”: First, we have the original
interface; then the missing part is added; finally, some elements from the
interface have to be removed if they have been deleted by application of the
rule.

That the label J → F ← K in Definition 7 is “minimal” is captured by
the two leftmost squares in the bc diagram above: The “addition” J → F is
“just enough” to complete the partial match of the left hand side of the rule
L← I → R. That the interaction with the environment involves a reaction
is captured by the other two squares in the upper row in the bc-diagram.
During this reaction, some agents might disappear or some resources might
be used (depending on the preferred metaphor) and new ones might come
into play. Finally the bottom left pullback square in the bc-diagram restricts
the changes to obtain the new interface into the resulting state.

Different rules might result in different deletion effects that are “visible”

Structured Operational Semantics for Graph Rewriting 115

to the environment. Thus, the full label of each such “new” reaction is the
“trigger” J → F together with the “observable” change F ← K (with state
K → H after interaction). Note that more recent process calculi also have
several reaction rules (as for example the ambient calculus) while ccs has
only a single one.

3 A Process Calculus Perspective on Borrowed
Contexts

We begin with a reformulation of the Borrowed Context technique that
breaks the “monolithic” bc-steps into axioms and rules. We only assume
familiarity with process calculi and in particular do not require knowledge
of the Borrowed Context technique (beyond the definition in the previous
section). This section should also clarify the purpose and relevance of the
main results in Section 4 and Section 5.

We begin with an informal motivation by developing an analogy with
the axioms and rules of ccs. The axioms will provide basic actions, which
can be seen as a generalization of transitions of the form α.P −α� P in ccs.
After a quick review of how contexts are formalized in graph transformation,
we shall give rules that allow to “embed” transitions into contexts; these
rules are similar to the rule that allows to infer P ‖ Q −α� P ′ ‖ Q from
P −α� P ′ in ccs because [·] ‖ Q is a “non-interfering” context. Finally, we
show formally that axioms for basic actions with two “contextualization”
rules exactly capture the Borrowed Context technique.

3.1 The analogy with CCS

The axioms of our system will be similar to the axioms of ccs, where
the process α.P can perform the action α and then behaves as P ; this is
usually written α.P −α� P where α ranges over the actions a, a (and τ). In
particular, a and a are co-actions of each other, which are consumed during
the reaction of a.P and a.P in the combined process a.P and a.P .

In the case of graphs, each rule L← I → R gives rise to a whole family
of such actions – one for each subgraph of L. More precisely, each subgraph
D of L can be seen as an “action”; each such action has a co-action D̂L → L
such that L is the union of D and D̂L (and D̂L is the minimal sub-graph
with this property). For example, in the rule α/β, both edges α and β yield
(complementary) basic actions. Indeed, to make the analogy closer, the

116 A. Dorman, T. Heindel, B. König

common node between the two edges in the left hand side of the rule α/β
is the analogue of a channel; one of the edges performs the input and the
other the output “on” the common node.

Formally, in Table 1, we have the family of Basic Action axioms. It
essentially represents all the possible uses of a transformation rule. In (an
encoding of) ccs, the left hand side would be a pair of unary edges a and a,
which both disappear during reaction. Now, if only a is present “within” the
system, it needs a to perform a reaction; thus, the part a of the left hand side
induces the (inter-)action that consists in “borrowing” a and deleting both
edges (and similarly for a). In general, e.g. in the rule α/β/γ, there might
be more than two edges that are involved in a reaction and thus we have
a whole family of actions. More precisely, each portion of a left hand side
induces the action that consists in borrowing the missing part to perform the
reaction (thus obtaining the complete left hand side), followed by applying
the changes that are described by the rule.

Next, we shall describe counterparts for the two ccs-rules that allow to
perform a given action in parallel to another process and under a restriction;
the respective forms of contexts in which actions can be performed are
“parallel contexts” [·] ‖ Q and “restriction contexts” (νb)[·]. More precisely,
whenever we have the transition P −α� P ′ in ccs and another process
Q, then there is also a transition P ‖ Q −α� P ′ ‖ Q; similarly, we also
have (νb)P −α� (νb)P ′ whenever α /∈ {b, b}. More abstractly, actions are
preserved by certain contexts and not by others; for example a.[·] does block
all actions.

In the case of graph transformation, there is a natural counterpart for
process contexts C[·] such as P ‖ [·] and (νb)[·]. The only complication is
that graphs have arbitrary interfaces J → G (see also Definition 7) while
processes have a sacrosanct “interface”, viz. their free names. Thus, graph
contexts have a “type”, which is an interface graph J ; only states with
interface J can be put into a context of this “type”. The result is called the
composition5 of the state with the context.

Definition 8 (Context and composition). Let J → G be a state. A context
(of type J) is a pair of inclusions C = J → E ← J ′. The composition of
J → G with the context C, written C[J → G], is the inclusion of J ′ into
the pushout of E ← J → G as illustrated in the following display (with the

5The reason for this is that the construction in Definition 8 is essentially the composition
of co-spans.

Structured Operational Semantics for Graph Rewriting 117

assumption that C is free for J → G).

state context
pushout
construction

composition
(C[J → G])

J

G

(J E J ′)C = J

G

E J ′

G

J ′

G

The left inclusion of the context, i.e. J → E in the definition, can
also be seen as a state with the same interface. The pushout then gives
the result of “gluing” E to the original G at its interface J ; the second
inclusion J ′ → E models a new interface, which possibly contains part of J
and additional “new” entities in E.

The idea of our stratified presentation of the Borrowed Context tech-
nique is based on the observation that each bc-transition

(J → G)
J→F←K−−−−−−→ (K → H),

which might be a basic action or not, remains roughly unchanged in contexts
of a certain form; in other words, some contexts C allow C[J → G] to
perform “the same” action as J → G.

With this observation in mind, we shall first characterize two classes of
contexts that are non-interfering in the described sense. These two classes
roughly correspond to ccs contexts of the form P ‖ [·] and (νb)[·]. However,
even though “non-interfering” contexts have no substantial influence on
actions, we will have to keep track on what they add and how they change
interfaces. Finally, at the end of this section, we show that axioms for
basic actions together with the two natural contextualization rules for non-
interfering contexts yield a sound a complete description of the Borrowed
Context technique.

3.2 Borrowed Contexts in Three Layers

In this subsection we shall provide the formal details of a process calculus like
presentation of the Borrowed Context technique. We have already discussed
the idea of basic actions and non-interfering contexts. We fix now a graph
transformation system S = (Λ,R) and – relative to this parameter – define
the system l.

118 A. Dorman, T. Heindel, B. König

Basic Actions We start with the axioms of the system. They derive the
basic actions as discussed above; and example of a basic action is given in
Figure 5.

α

α

α
α

β

R1

Figure 5: An example of a basic action.

Definition 9 (Basic Action axioms). Let (L← I → R) ∈ R be a rule and
let D → L be a sub-graph. Then

(D → D)
D→L←I−−−−−→ (I → R)

is a Basic Action Axiom of l.

Interface Narrowing Next, we address the counterpart of name restric-
tion. This means, we first define the counterpart of ccs-contexts of the form
(νa)[·]; these are just contexts of the form C = J → J ← J ′, which will be
called narrowing contexts. Intuitively, such a context does not interfere with
a transition with label J → F ← K if J ′ is still big enough to glue all new
entities in F . This is in direct analogy to ccs, where the restriction (νa)
preserves only those actions that do not involve a. While we do not have to
adjust labels in ccs, even non-interfering narrowing context “narrows” the
label of the transition while the “proper” action remains untouched. This
is made formal in the following definition and the analogy to ccs is made
more precise afterwards.

Definition 10 (Narrowing). A narrowing context is a pair of inclusions
C = J → J ← J ′ in which only the right inclusion might be proper. Let
J → F ← K be a label. The narrowing context C = J → J ← J ′ does
not interfere with the label if the pushout complement of F ← J ← J ′

exists. If C is non-interfering, then the C-narrowing of the label, written
C〈J → F ← K〉, is the lower row in the following display

J ′C〈J → F ← K〉 :=

J

F ′

F

K ′

K

where C = J → J ← J ′

Structured Operational Semantics for Graph Rewriting 119

where the left square is a pushout and the right one a pullback. Whenever
we write C〈J → F ← K〉, we assume that the relevant pushout complement
exists.

If we think of the interface as the set of free names of a process, then
restricting a name means removing it from the interface. Thus, J ′ plays
the role of the set of all remaining free names. If the pushout complement
F ′ exists, it represents F with the restricted names erased. Finally, since a
pullback here can be seen as an intersection, K ′ is K without the restricted
names. So we finally obtain the “same” label where “irrelevant” names are
not mentioned. It is of course not always possible to narrow the interface.
For instance, one cannot restrict the names that are involved in labelled
transitions of ccs-like process calculi. This impossibility is captured by the
non-existence of the pushout complement.

Narrowing contexts just make interfaces smaller; the remainder of the
involved states is left unchanged. An example of interface narrowing is given

G

α

α

α
α

β

G

R1

G

α β

G

R1

Figure 6: An example of interface narrowing

in Figure 6 where the narrowing context removes the α-labelled edge and
the first of its nodes from the interfaces. Interface narrowing yields the first
rule scheme in the system l.

Definition 11 (Narrowing rule). Let J → F ← K be a label, let C = J →
J ← J ′ be a non-interfering narrowing context, and let J ′ → F ′ ← K ′ =
C〈J → F ← K〉 be the C-narrowing of the label; moreover let J → G and

120 A. Dorman, T. Heindel, B. König

K → H be inclusions. Then

(J → G)
J→F←K−−−−−−→ (K → H)

(J ′ → G)
J ′→F ′←K′−−−−−−−→ (K ′ → H)

is an instance of the narrowing rule of l.

Compatible contexts It remains to define contexts that correspond to
parallel composition with another process P in ccs. In the case of graph
transformation, this case is slightly more involved than one might expect.
The problem is that even the “pure” addition of context potentially interferes
with transitions. For example, if an interaction involves the deletion of an
(isolated) node in the interface, the addition of an edge to this node blocks
the reaction. Thus a context that only adds new entities, which will be called
monotone, interferes if it creates dangling edges. Non-interfering, monotone
contexts are intuitively similar to ccs-contexts of the form P ‖ [·]; they are
called compatible.

Definition 12 (Compatible contexts). Let C = J →
E ← J be a context; it is monotone if J → J . Let
J → F ← K be a label; now C does not interfere with
J → F ← K if it is possible to construct the diagram in
(2) where both squares are pushouts. Finally, a context
J → E ← J is compatible with the label J → F ← K if
it is monotone and does not interfere with the label.

E

J

E1

F

E′

K

(2)

In a label J → F ← K, the left inclusion represents the addition of new
entities that “trigger” a certain reaction. A compatible context is simply a
context that preserves the old interface and adds new entities that do not
block the reaction, i.e. it does not add new edges to nodes that disappear
during the interaction. An illustration of how to embed of a whole transition
into a monotone context is given in Figure 7.

To properly define a rule for monotone contexts, we introduce a partial
operation for the combination of co-spans with a common interface, which
generalizes the narrowing construction.

Definition 13 (Cospan combination). Let C = (J → F ← K) and C =
(J → E ← J) be two co-spans. They are combinable if there exists a diagram
of the following form.

Structured Operational Semantics for Graph Rewriting 121

α

α

α
α

β

R1

G

α

α

α
α

β

G

R1

Figure 7: A transition in a monotone context.

E

J

E1

F

E′

K

J F K=: C〈J → F ← K〉

The label J → F ← K is the combination of C with C, and is denoted by
C〈J → F ← K〉.

In fact, it is easy to show that compatible contexts are combinable with
their label.

Lemma 1. Given a label J → F ← K and a compatible context J → E ← J
, we can split the diagram in (2) to obtain the following diagram.

E E1 E′

J F K

J F K

and therefore E

J

E1

F

E′

K

J F K

With this lemma we can easily define the rule that corresponds to
“parallel composition” of an action with another “process”.

122 A. Dorman, T. Heindel, B. König

Definition 14 (Compatible Contexts rule). Let J → F ← K be a label,
let C = J → E ← J be a context that is compatible with it, and let
C = (J → F ← K)〈C〉 be the combination of C with the label; moreover let
J → G and K → H be inclusions. Then

(J → G)
J→F←K−−−−−−→ (K → H)

C[J → G]
C〈J→F←K〉−−−−−−−−→ C[K → H]

is an instance of the combination rule in l.

Soundness and Completeness The l-system, which consists of basic
actions, the narrowing rule and the combination rule is summarized in
Table 1. It does not only give an analogy to the standard sos-semantics for
ccs. In fact, we shall see that the labels that are derived by the standard bc
technique are exactly those labels that can be obtained from the basic actions
by compatible contextualization and interface narrowing. In technical terms,
the l-system is sound and complete.

Theorem 2 (Soundness and completeness). Let S be a graph transformation
system. Then there is a bc-transition

(J → G)
J→F←K−−−−−−→ (K → H)

if and only if it is derivable in the l-system.

Sketch of the proof: It is easy to build a dpobc-diagram to justify
the Basic Action axioms. We have seen while defining the Narrowing and
Compatible Context rules that they are derivable with the bc technique.
Let us now show completeness.

Let d be a dpobc-diagram using the rule ρ = L← I → R; the resulting

transition is t = (J → G)
J→F←K−−−−−−→ (K → H) and the partial match is D.

D L I R

G Gc C H

J F K

We have that the transition t0 = (D → D)
D→L←I−−−−−→ (I → R) is a basic

action, i.e. derivable by an axiom of the system. Let C = D → G← G be a

Structured Operational Semantics for Graph Rewriting 123

• Basic Actions

(D → D)
D→L←I−−−−−→ (I → R)

where
(L← I → R) ∈ R
and D → L

• Interface Narrowing

(J → G)
J→F←K−−−−−−→ (K → H)

(J ′ → G)
J ′→F ′←K′−−−−−−−→ (K ′ → H)

where
C = J → J ← J ′

and J ′ → F ′ ← K ′ = C[J → F ← K]

• Compatible Contextualization

(J → G)
J→F←K−−−−−−→ (K → H)

C[J → G]
C[J→F←K]−−−−−−−−→ C[K → H]

where
C = J → E ← J is compatible with J → F ← K

and C = (J → F ← K)[C]

Table 1: Axioms and rules of the l-semantics.

monotone context. It is clearly non-inhibiting w.r.t. D → L← I. Thus it is
compatible with it and C〈D → L← I〉 = G→ Gc ← C. So one can use the
contextualization rule, and obtain, from t0, the transition

t′′ = (G→ G)
G→Gc←C−−−−−−→ (C → H).

Let C ′ = G→ G← J . By uniqueness of pushout complement and pullback,
the C-narrowing of G → Gc ← C is exactly J → F ← K. Therefore the
narrowing rule applied to t′′ yields the original transition t.

As a result, for any dpobc-diagram that justifies a transition t (where
the names of the graphs are the usual ones, as in Definition 7), the following

124 A. Dorman, T. Heindel, B. König

three step derivation in l justifies t:

(D → D)
D→L←I−−−−−→ (I → R)

ax.

(G→ G)
G→Gc←C−−−−−−→ (C → H)

ctx.

(J → G)
J→F←K−−−−−−→ (K → H)

narr.

Example 3.1. An example of a derivation of the example transition is
shown in Figure 8. We can see the basic action first, using the partial
match of the diagram. Using compatible contextualization, we “add” to this
transition, all that is in the original state. The interface is everything that
is necessary; in this example, we just add an extra vertex (and we could have
put some more objects in the interface of the monotone context). Finally, we
remove from the interface everything that is not needed, to get the desired
interface.

The main role of soundness and completeness is not its technical “back-
bone”, which is similar to many other theorems on the Borrowed Context
technique. The main insight to be gained is the absence of any “real” com-
munication between sub-systems; roughly, every reaction of a state can be
“localized” and then derived from a basic action (followed by contextualiza-
tion and narrowing). In particular, we do not have any counterpart to the
communication-rule in ccs, which has complementary actions P −a� P ′ and
Q −a� Q′ as premises and allows to infer communication of the processes P
and Q, i.e. a silent “internal” transition P ‖ Q −τ� P ′ ‖ Q′. This absence
of communication in the “monolithic” bc-labels is the main motivation for
our study of composition of transitions.

4 Communication in Composed States

The formal analogy between ccs and the Borrowed Context technique
that we have established in the previous section is imperfect: we have no
counterpart to the communication rule of ccs, which allows to derive the
reaction P ‖ Q −τ� P ′ ‖ Q′ of the “composed” state P ‖ Q from the
two interactions P −a� P ′ and Q −a� Q′ of the “constituents” P and Q.
Thus, we shall now analyze when and how two labelled transitions from two
different states in a gts give rise to a “smaller” labelled transition of the
composition of the two states. This analysis will lead to a counterpart of the
communication rule of ccs that is admissible in the system l; moreover, as
we shall exploit in Section 5, we can reduce the number of axioms.

Structured Operational Semantics for Graph Rewriting 125

α

α

α
α

β

R1

(a) First, make the partial match evolve (Basic Action).

G

α

α

α
α

β

G

R1

(b) Then, add what is missing from the original graph, thanks to Compatible
Context.

G

α β

G

R1

(c) Finally, remove the interface you don’t need, using Interface Narrowing.

Figure 8: An example of a derivation in the l-system.

4.1 The idea of composition of transitions

Communication within a composed state is based on the following idea:
(sub-)states may provide resources for each other that they (used to) borrow
from the environment; as a consequence, the composed state needs to borrow
less from the environment. This idea is illustrated in the following example.

Example 4.1 (Composition of transitions). Let s = J → G be a state of
Sex that contains an edge α with its second connected node in the interface as
shown in Figure 9(a). Further, let s′ = J ′ → G′ be a state that contains an
edge β with its second connected node in the interface as shown in Figure 9(b).
Both graphs can perform transitions t and t′, using the rule α/β/γ. Let
X be the graph that consist of the black round vertex only, which is both a
subgraph of J and J ′. Now we can compose t and t′ along J ← X → J ′ to

126 A. Dorman, T. Heindel, B. König

obtain the transition in Figure 9(c).

G

α β

γ

G

R4

(a) A first transition for a state s = J → G.

G′
β α γ

G′

R4

(b) A second transition for a state s′ = J ′ → G′.

G

α

G′
β γ

G

G′

R4

(c) The composition of s and s′ along J ← X → J ′.

Figure 9: An example of composition of two transitions that use the rule α/β/γ.

The crucial problem of a general composition rule for the system l
is due to the inherent, “incomplete” information of labels. The transitions
that we derive with the Borrowed Context technique only indicate what a
state needs from the environment to perform some reaction that the state
cannot perform on its own; in particular the transition label abstracts away
from the complete bc diagram. Roughly, labels indicate what needs to “be
around” to make something happen but do not inform about what exactly
is happening “inside” the interacting state. For instance, a state can react
after “borrowing” some small graph F ; however the graph F could be used
in several ways – possibly even applying different rules.

Thus, in general, one can neither determine what part of a state is
actually reacting, i.e. what partial match has been used to derive the label,
nor what rule is used. Thus, it is non-trivial to generalize the communication

Structured Operational Semantics for Graph Rewriting 127

rule of ccs to a composition rule for “opposite labels” – simply, because the
“opposite” of a derived label does not exist. The following example illustrates
the problem and also suggests that it is not due to the use of graphs as
system models but is rather a consequence of the use of minimal contexts as
labels.

Example 4.2 (Failure of Composition). Consider the following microscopic
(process) calculus. The terms are given by

P ::= ?a | !a | [a | \a | 0 | P ‖ P

where a is element of a set of names and we have ‖ as an associative
operator. Moreover, we have the following reaction axioms and rules for
contextuatlization.

?a ‖ !a→ 0 [a ‖ !a→ 0 ?a ‖ \a→ 0

P → Q

P ‖ R→ Q ‖ R
P → Q

R ‖ P → R ‖ Q
With the intuitive idea of minimal contexts as labels, we have labelled tran-
sitions ?a −[·‖!a]� 0 and !a −[?a‖·]� 0; they can be composed, leading to
the “silent” transition ?a ‖ !a −[·]� 0. However, we also have [a −[·‖!a]� 0
and \a −[?a‖·]� 0 but not [a ‖ \a −[·]� 0. Thus, two transitions with labels
[· ‖ !a] and [?a ‖ ·] are not always composable. This means that composability
depends on the states. Nevertheless, there is at most one way to compose

“opposite” labels.

In the case of graphs, the use of the Borrow Context technique implies
the existence of some “substate” that is “responsible” for an interaction
with the environment. Moreover, in the composition of the two labelled
transitions in Example 4.1, we can still locate the “responsible” substates
of the constituents, namely the edges with labels α and β. Finally, we see
that the new “responsible” substate is the union of the old ones. Thus, the
interaction of the composed state is not only based on the same rule, but
it actually reuses the same parts of the original states that triggered the
transition.

4.2 Composition results for Borrowed Context diagrams

We now formalize the idea that labelled transitions of “composed” states can
be “restricted” to interactions of their “constituents”. We start by defining

128 A. Dorman, T. Heindel, B. König

superstates of states (which in turn will be substates) and formally describe
how transitions of substates can be extended to superstates.

Definition 15 (Superstate and homogeneous transitions). Let s = J → G
and s′ = J ′ → G′ be two states. Now s′ is a superstate of s and s is a
substate of s′ if s′ = C[s] for some monotone context C = J → F ← J ′ (see
Definition 12).

Let ρ = L← I → R be a rule, let J ′ → G′ be a superstate

of J → G and let t = (J → G)
J→F←K−−−−−−→ (K → H) and

t′ = (J ′ → G′)
J ′→F ′←K′
−−−−−−−→ (K ′ → H ′) be two transitions

that are derived with respective partial matches D and D′.
Now, t′ is homogeneous with respect to t and t extends
to t′ (relative to D and D′) if D → D′.

D′ L

G′

D L

G

The extension of a transition yields the illustrated diagram (as part of the
complete bc diagrams).

Now we are ready to formulate our composition results: in Proposition 1,
we describe how two transitions that are derived using partial matches into a
common rule can be composed such that the original states have a “minimal”
overlap in the composed state, namely the intersection of the partial matches;
further, Theorem 3 gives sufficient conditions for the composition of two
transitions such that the resulting transition is homogeneous w.r.t. to both
of them (relative to their partial matches).

Composition with minimal overlap Homogeneity expresses the fact
that the rule is applied in the superstate exactly where we expect it to be,
i.e. its partial match “reuses” the elements that were already in the partial
match in the original graph. In the opposite direction, for any transition
t from a state s = J → G that is derived using a partial match D, any
substate s = J → G of s can evolve in “the same” way by “restricting” t
to a transition t from s such that t is homogeneous w.r.t. t: we simply take
the intersection of G and D as partial match for t. In general, s might miss
some parts that were in s to evolve and thus the superstate s will need to
borrow less from the environment.

Now consider states s and s′ with respective transitions t and t′ that
are derived with respective partial matches D and D′ into a common rule
ρ = L ← I → R. Suppose we want to extend t and t′ to a composed
transition t such that it needs to borrow as little as possible from the

Structured Operational Semantics for Graph Rewriting 129

environment (relative to D and D′). In fact, the solution uses the union of
D and D′ as partial match and yields a minimal overlap of s and s′ in the
composed state s.

Proposition 1 (Composition with minimal overlap). Let s = J → G
and s′ = J ′ → G′ be states, let ρ = L ← I → R be a rule, and let

t = (J → G)
J→F←K−−−−−−→ (K → H) and t′ = (J ′ → G′)

J ′→F ′←K′
−−−−−−−→ (K ′ → H ′)

be two transitions that are derived using respective partial matches D and
D′ into L.

Then there exists a transition t = (J → G)
J→F←K−−−−−−→ (K → H) that is

homogeneous w.r.t. both t and t′ (relative to D and D′) where G→ G← G′

is the pushout of G← (D ∩D′)→ G′ and J = J ∪ J ′.
Proof: Let d and d′ be the dpobc-diagrams yielding t and t′ using rule ρ,
with partial matches D and D′ where we use the usual names for objects in
dpobc diagrams (as in Definition 7).

D L I R

G Gc C H

J F K

D′ L′ I ′ R′

G′ G′c C ′ H ′

J ′ F ′ K ′

We shall build a dpobc-diagrams d using rule ρ and yielding a transition
t where J → G is as in the statement of the proposition. The outline of the
proof is as follows: we start by constructing the graph G and the first row
of the bc diagram d, then we build the interface J , and finally we show that
there exists a pushout complement for J → G→ Gc.

Let D− be the pullback of D → L← D′ and let D be the union of D
and D′ over L, i.e. D → D ← D′ is the pushout of D ← D− → D′; now we
use D to split the upper left pushout squares of d and d′ as shown in Figure
10(a).

Next, take all pushouts and mediating morphisms as shown in Figure
10(b). It is straightforward to verify that all faces are pushouts: by composi-
tion of pushout squares, the vertical “diagonal” squares are pushouts. We
have thus constructed the first row of d.

D L I R

G Gc C H

130 A. Dorman, T. Heindel, B. König

D−

G

G′

D′

D

D

G+

G′+

L

Gc

G′c

(a)

D L I R

G Gc C H

G′ G′c C ′ H ′

G Gc C H

(b)

Figure 10

As J , let us take the union of J and J ′ in G. It is clear that J → G is a
superstate of J → G and J

′ → G
′
.

Let us show now that a pushout complement for J → G→ Gc exists.
It is sufficient to show that there exist graphs X and Y such that Y is a
pushout complement of X → D → L and X → J , as shown in the diagram
below.

D

G

J

x

L

Gc

y

⇒

G

J

x

Gc

y

In d and d′ we already have pushout complements for D and D′ in L
as shown in Figure 11(a). By splitting the back pushout squares through
D and constructing the pullbacks in Figures 11(b) and 11(c), we obtain a
pushout square where Y is the pushout complement of X → D → L. It is
now sufficient to show that X → J , which is a consequence of the following
reasoning in the distributive lattice of subgraphs.

X = X∩D = X∩(D∪D′) = (X∩D)∪(X∩D′) ⊆ E∪E′ ⊆ J∪J ′ = J (3)

� This proposition already generalizes the preliminary results
that have been described in [9]. However, it is still too specialized to obtain

Structured Operational Semantics for Graph Rewriting 131

D

G

J

E

L

Gc

D̂

F
D′

G′

J ′

E′

L

G′c

D̂′

F ′

(a)

D

E

D

D̃

L

D̂

D′

E′

D

D̃′

L

D̂′

(b)

D

D̃

X

D̃′

L

D̂

D̂′

Y

(c)

Figure 11

a meaningful counterpart to the communication rule of ccs; nevertheless,
it can be “re-used” to obtain the main theorem about the composition of
dpobc-diagrams.

Composition with arbitrary overlap The composition for states that
is used in Proposition 1 uses as default a minimal overlap of the substates in
the composed super-state; in particular, their overlap is part of the left hand
side of the rule that is used to derive the involved transitions. In general,
in the composition of two states, we might want to have a bigger overlap
than strictly necessary. To illustrate this point, the processes a.0 ‖ P and
a.0 ‖ Q, can communicate. It suffices that they communicate over the name
a; however, in the parallel composition a.0 ‖ P ‖ a.0 ‖ Q, the process P and
Q share all free names and not only the name a. Thus, while the minimal
overlap is just the channel name a, we in fact want also to share all common
free names of P and Q in a.0 ‖ P ‖ a.0 ‖ Q.

Thus, we want to extend Proposition 1 to “arbitrary” overlaps of two
given states J → G and J ′ → G′; more detailed, we start with two dpobc-

132 A. Dorman, T. Heindel, B. König

diagrams d and d′ and an “admissible” overlap G← X → G′. The idea of
an “admissible” is simple: the graph X should just be an extension of the
minimal overlap of G and G′ that is necessary for communication.

As proof technique, we want to reuse Proposition 1 by “artificially”
enlarging the rule that we use to obtain the desired composition to a suitable
extended rule.

Definition 16 (Extended rule). For any rule ρ = L ← I → R and any
supergraph L → L+ of L, the L+-instance of ρ, denoted ρ(L+), is the
lower-span of the following double-pushout diagram (if it exists).

L I R

L+ I+ R+

Now, the main idea of the theorem is to extend the rule that is used
in the composition just enough to obtain the “desired” overlap X as the
minimal overlap of Proposition 1.

Theorem 3 (Composition of transitions). Let s = J → G and s′ = J ′ → G′

be states; moreover let t = (J → G)
J→F←K−−−−−−→ (K → H) and t′ = (J ′ →

G′)
J ′→F ′←K′
−−−−−−−→ (K ′ → H ′) be two transition using respective partial matches

D and D′ into a common rule ρ = L ← I → R. Let X be a common
subgraph of G and G′ and let G = G+X G

′ be the pushout of G and G′ over
X.

Now, there exists a transition t = (J → G)
J→F←K−−−−−−→ (K → H) that is

homogeneous with respect to both t and t′ (where J is the union of J and
J ′) if there exists E such that (the black part of) the diagram in Figure 12
consists of three pullback squares.

Proof: We start by building the pushout of L ← E → X, and call L̃
the pushout graph. Because EXGcL (resp. EXG′cL) is a composition of
two pullbacks, it is itself a pullback square. Therefore, there is a unique
monomorphism L̃ → Gc (resp. L̃ → G′c) making the diagram with the
square commute, in other words, L̃ splits L→ Gc (resp. L→ G′c) into two
monomorphisms. By classical pushout splitting, we can split the square
ELL̃X into two pushouts. Since the square EDGX is a pullback, there
is a unique monomorphism D+ → G such that the diagram in Figure
13(a) commutes. Because of pushout decomposition properties, the square
D+L̃GcG is a pushout.

Structured Operational Semantics for Graph Rewriting 133

E
D′D

X

L

G′G

G′cGc

G

Figure 12: The condition for ρ-composability (in black) and some pushouts from
the proof (in grey)

E

X

D

D+

L

L̃

G Gc

(a)

E
D′

D

L

X
D′+

D+

L̃

(b)

Figure 13

A symmetric construction yields a match D′+ for G′ and L̃. Since
EDLD′ is a pullback, and all vertical squares of the cube of Figure 13(b)
are pushouts, the lower square is a pullback.

We can now construct the diagrams d(L̃) and d′(L̃) by the construction
mentioned after Definition 16, with D+ and D′+ as matches. We com-
pose them by Proposition 1 and obtain the dpobc-diagram d̃ shown in
Figure 14(a).

By pushout complement splitting of the upper-left square of the con-
struction of d(L̃) into two pushouts, as shown in Figure 14(b), one obtains a
match for the completion of d̃ into a dpobc-diagram with rule ρ. Thanks to
the uniqueness properties of pushouts and pullbacks, it is easy to show that
the same match would be constructed from d′.

It is now left to show that G ∼= G̃. In fact, we not only want to

134 A. Dorman, T. Heindel, B. König

D̃ L̃ Ĩ R̃

G̃ G̃c C̃ H̃

J̃ F̃ K̃
(a)

+

D D L

D+ D̃ L̃
(b)

⇒

D L I R

G̃ G̃c C̃ H̃

J̃ F̃ K̃
(c)

Figure 14: Recomposition of a dpobc-diagram with the correct rule.

prove that there exists a homogeneous transition, but also that there is one
involving the given graph G.

Figure 15(a), where all “faces” are pushout squares, shows how G̃ is
constructed, as well as some other parts of the composition diagram. One
part of it, namely the left face of the cube, the top square and the two
diamond-shaped faces are shown flattened out in Figure 15(b).

By uniqueness of pushouts, the outer square of Figure 15(b) being one,
we have G ∼= G̃. �

The intuition behind the condition of Theorem 3 is as follows. Whatever
G and G′ had in common with L, namely the partial matches D and D′

respectively, are glued in G as they should be in L, i.e. by identifying the same
elements, namely E. Technically, the condition ensures that the pullback
of D → G ← D′ is the same as the one of D → L ← D′. For instance, if
D and D′ contain both more than half the rule L, the gluing in G has to
identify everything they have “in common” to form L, and not something
“bigger”. Of course, if this gluing is bigger than L (if not enough is identified),
it still makes G able to evolve using this rule. But then, it is not clear how
to obtain the resulting graph H from the two resulting graphs H and H ′, so
we will not understand it as composition of transitions.

Structured Operational Semantics for Graph Rewriting 135

X

G

G′

D′+

D+

D̃

G+

G′+

G̃

L̃

Gc

G′c

G̃c

(a)

X

D+

D′+

D̃

G

G′

G+

G′+

G̃

(b)

Figure 15

We will make use of the condition of the theorem in the next section to
succinctly describe the premises of the counterpart to the communication
rule of ccs.

Definition 17. With the assumptions of Theorem 3, the transitions t and t′

are ρ-composable if there exists E such that (the black part of) the diagram
in Figure 12 consists of three pullback squares; the transition t of the theorem
is the composition through G of t and t′ (relative to D and D′).

Remark 1 (The “Meaning” of Compositionality). The word compositional-
ity is used differently in different contexts. We understand compositionality
as the principle that the semantics of the whole is determined by the se-
mantics of the parts, where the (possibly composed) entities are states with
interfaces. To illustrate the basic idea, take all transitions of a state as
semantics; in this situation, using Theorem 3, we have that this “all tran-
sitions” semantics is compositional: each transition of the composed state
can be (re-)constructed from the transitions of its components. It is an open
problem how this approach to compositionality can be incorporated into the
work presented in [23] where compositionality is considered on the level of
rules and rewriting diagrams.

In fact, we shall only make use of the special case of Theorem 3 where
X is actually a common sub-interface of the states J → G and J ′ → G′, i.e.
X is a common subgraph of J and J ′. This is in analogy to process calculi
where it is crucial that parallel composition lets the composed processes only
share some of their free names.

136 A. Dorman, T. Heindel, B. König

5 SOS semantics

We now make use of the composition result of Theorem 3 in two ways:
first, as already discussed at length, we obtain a counterpart of ccs-style
communication for graph rewriting; second, we can dispense with a number
of “superfluous axioms” for basic actions.

Looking at ccs again, we can notice a difference with l in the definition
of axioms. In fact, in l, the application of the rewriting rules themselves
appear as basic actions, which is not the case in ccs where we cannot have
both actions a and a in a single label. The communication rule covers the
case where both are performed complementary, which corresponds exactly
to the application of a reduction rule. Conversely, in l, any match for a
left-hand side of a rule yields a basic action, in particular the empty graph.
Now that we have an equivalent of the ccs-composition, we can remove
from the set of basic actions certain “superfluous” ones, which can then be
reconstructed by addition of a composition rule.

As “good” matches for a rule in graphs we shall take the irreducible
elements in the lattice of subgraphs of the left hand side of the rule. Using
irreducible graphs, we define atomic actions, which use irreducible graphs
as partial matches. However, we shall show that we can obtain all basic
actions by applying the composition rule to the atomic ones. This allows
us to define a system that is exactly as expressive as l (and hence dpobc)
with one extra rule, but a smaller number of axioms.

Definition 18 (Irreducible graph). Let G be a hypergraph. A (non-trivial)
decomposition of G is a pair of inclusions A→ G← B such that G is the
union of A and B and G 6= A or G 6= B. A hypergraph G is irreducible if it
has no non-trivial decomposition.

Thus, an irreducible graph cannot be decomposed into strictly smaller
graphs. Clearly, a single node is an irreducible graph, but a graph composed
of two single nodes is not. This formal definition fits the intuition of “atomic”
hypergraphs.

Fact 4. The only irreducible hypergraphs are the single vertex graph and all
graphs that consist of a single hyperedge that is incident to every node.

We now have all concepts to inductively define a transition system for
graph rewriting in analogy to ccs. The system is summarized in Table 2.
We call the system sosbc, since it is an sos-like definition for borrowed
contexts (as we shall show below).

Structured Operational Semantics for Graph Rewriting 137

Formally, the first rule describes a family of Atomic Actions, which are
the basic actions in which the partial match is an irreducible graph. The
second and third rule are taken from l and have already been discussed
in Section 3. Finally, the last rule is the one justified by the composition
theorem, i.e. Theorem 3.

We now show that this system is exactly as expressive as l. We have
already seen that it is included in it. Indeed, every transition derivable in
sosbc is also in l (trivially for the first three rules, and by Section 4 for
the last one). It then suffices to show that every transition derivable in l
is also in sosbc. It is trivially true for interface narrowing and compatible
contextualization. It is left to show that every basic action can be derived
in sosbc.

Lemma 2 (Basic action decomposition). Let ρ = L ← I → R be a rule
and D a partial match for L. Let A → D ← B be a decomposition of D.
Then A→ A and B → B are ρ-composable through D and the result of the

composition is exactly the axiom transition (D → D)
D→L←I−−−−−→ (I → R).

Proof: We first show that the condition of Theorem 3 holds. As A →
D ← B is a decomposition of D, the morphisms D is the union of A and B.
Thus, let A← O → B be the pullback of A→ D ← B to obtain a pushout
square. Since D is a partial match for L, then so are A and B, and therefore
their corresponding basic action transitions exist. They are justified by
the dpobc-diagrams in Figure 16(a), which lead to the construction of the
diagram 16(b).

After applying the construction of Theorem 3, it is easy to check that
the resulting composition of the two transitions is the transition (D →
D)

D→L←I−−−−−→ (I → R). �

Theorem 5 (Basic Completeness). Any basic action of the l-system can be
obtained from atomic actions and the composition rule of the sosbc-system.

Proof: Let t = (D → D)
D→L←I−−−−−→ (I → R) be a basic action and l be the

size of D, i.e. the number of hyperedges. By applying the decomposition
lemma (Lemma 2) repeatedly until all the subgraphs of D are decomposed
into irreducible graphs, one obtains a binary tree whose root is t and nodes
are basic actions. Since l is finite, and the decomposition lemma decreases
the size of graphs, this process is finite, and the leaves of the tree are atomic
actions. �

138 A. Dorman, T. Heindel, B. König

A L I R

A L I R

A L I

id id id id

B L I R

B L I R

B L I

id id id id

(a)

O
BA

O

L

BA

LL

D

id id

id id

id

(b)

Figure 16

Theorem 6 (Soundness and completeness). Let S be a graph transformation
system. Then there is a bc-transition

(J → G)
J→F←K−−−−−−→ (K → H)

if and only if it is derivable in the sosbc-system.

Proof: Atomic actions, interface narrowing and contextualization are
part of the l-system, therefore they are derivable as bc-transitions. By
construction, the composition yields derivable transitions in bc too.

Conversely, every bc-transition is derivable in l, and by Theorem 5, is
derivable in sosbc. �

Structured Operational Semantics for Graph Rewriting 139

• Atomic Actions

(D → D)
D→L←I−−−−−→ (I → R)

where
(L← I → R) ∈ S
and D irreducible with D → L

• Interface Narrowing

(J → G)
J→F←K−−−−−−→ (K → H)

(J ′ → G)
J ′→F ′←K′−−−−−−−→ (K ′ → H)

where
C = J → J ← J ′

and J ′ → F ′ ← K ′ = C[J → F ← K]

• Compatible Contextualization

(J → G)
J→F←K−−−−−−→ (K → H)

C[J → G]
C[J→F←K]−−−−−−−−→ C[K → H]

where
C = J → E ← J compatible with J → F ← K

and C = (J → F ← K)[C]

• Composition

t = (J → G)
J→F←K−−−−−−→ (K → H)

t′ = (J ′ → G′)
J ′→F ′←K′
−−−−−−−→ (K ′ → H ′)

J ← X → J ′

t = ((J +X J ′)→ (G+XG
′))

(J+
X
J ′)→F←K−−−−−−−−−−→ (K → H)

where
t and t′are ρ-composable
and t is their composition through G+X G′

Table 2: Axioms and rules of the sosbc-system.

140 A. Dorman, T. Heindel, B. König

In fact, every derivation tree obtained by the process that is described
in the theorem will have the same structure: a certain number n of Atomic
Actions, followed by n − 1 applications of the composition rule. Then a
Compatible Contextualization and an Interface Narrowing, as in the case of
the l system. Consider the following example of a derivation tree.

Example 5.1 (Composition of transitions). As example, consider the deriva-
tion tree of sosbc for the final transition of Example 4.1, which is shown in
Figure 17.

6 Conclusion

We have made a first step towards a proper sos semantics for graph trans-
formation systems, by introducing sos rules not only for a specific graph
transformation system, but by presenting a method for synthesizing such
rules for arbitrary systems. This will hopefully lead to a better understanding
of the nature of sos semantics in general.

While earlier work on automatic derivation of labelled transition systems,
pioneered by [18], focused on the derivation of labelled transitions such
that the resulting bisimilarity is a congruence, we here concentrated on
synthesizing sos rules, obtaining a compositional operational semantics.

Composition rules for process calculi, such as ccs or the π-calculus,
where at most two processes interact in a well-defined manner, can usually be
stated quite concisely, whereas our composition rule is surprisingly complex.
In future work we want to investigate under which conditions the label of the
composed step can be determined from the labels of the interacting graphs
by a simpler procedure. We regard this work as a first step towards a sos
semantics for graph transformation, however in order to obtain a simpler and
more straightforward presentation it might be necessary to impose certain
constraints on the rules, such as restrictions on the left-hand or right-hand
side.

A natural question to ask is how the sos semantics for a specific calculus
or graph transformation system would look like, for instance for the encoding
of css into graph transformation studied in [2]. One of the synthesized rules
would certainly correspond to the ccs communication rule, which states

that P
a→ P ′ and Q

a→ Q′ imply P | Q τ→ P ′ | Q′. On the other hand we
would also generate many other rules, for instance a rule where P in addition
borrows the output prefix of Q and Q borrows the input prefix of P . Our
sos rules allow the composition of such labelled transitions, since we accept

Structured Operational Semantics for Graph Rewriting 141

α

α

α
β

α γ R4

β

β

β β

α γ R4

α

β
α

β

α

β β

α γ R4

G

α

G′
β

α

β

α

β β

α γ

G

G′
R4

G

α

G′
β γ

G

G′
R4

Figure 17: An example of a derivation in the sosbc-system.

arbitrary overlaps of the left-hand side and the two graphs to be composed.
Hence the full sos semantics would be somewhat large and unwieldy and
difficult to represent. Pruning the synthesized rules to a minimal set is a
direction of future work.

142 A. Dorman, T. Heindel, B. König

Our focus is quite different than that of work on process calculi defining
syntactic conditions on the rules in such a way that the resulting bisimilarity
is a congruence (compare with the de Simone format [8] and the tyft/tyxt-
format [14]). Instead, bisimilarity on labelled transition systems derived via
the Borrowed Context technique is automatically a congruence [10]; thus we
work in the “opposite” direction and synthesize the sos rules, which is in
contrast to work on rule formats where the sos rules are given in advance.

Earlier work has established graph transformation as a formalism into
which many process calculi can be encoded or “compiled”. This becomes
apparent in Milner’s work on bigraphs [19, 20] and related work (e.g. [13]);
also there are several approaches of graphical syntax for processes, such
as [5, 11] or the well-known interaction nets [17]. Even closer to our work
are papers that discuss sos semantics for graphs such as [7, 15]. However,
in these two papers, sos rules are given a priori, similar to the work on
rule formats cited above, while they are synthesized in the present paper; a
further development of the ideas of [15] is presented in [16], which in turn has
inspired the work described in [4] where so-called sos rewriting is performed
on term representations of graphs.

A predecessor paper of the present one is [1], which addresses the
composition and decomposition of derivations without the emphasis on sos
rules and instead focuses on the combination of entire Borrowed Context
diagrams. In [23] compositionality for graph transformation is obtained by
decomposing rules into subrules, a view that is somehow dual to ours: we
do not decompose rules, but the graph to be rewritten. Finally [6] shows
how label derivation can be addressed in double categories and explores
connections to the tile model [12]. There are similarities to our approach,
however [6] works in a different categorical setting and does not investigate
composition of lts steps.

This diversity of work on compositionality in semantics of interactive
systems reflects the richness of the subject. Attracted by the simplicity
of structural operational semantics, we have developed basic results for a
simplified account of the Borrowed Context technique. Even though we have
missed the mark of a proper sos format since composition of labels depends
on the involved states, we are convinced that our results are the core of a
fully fledged structural operational semantics for graph transformation.

Structured Operational Semantics for Graph Rewriting 143

Acknowledgements

We would like to thank Paolo Baldan and Filippo Bonchi for many interesting
discussions on this topic.

References

[1] P. Baldan, H. Ehrig, and B. König. Composition and decomposition of
DPO transformations with borrowed context. In Proceedings of ICGT
’06, volume 4178 of Lecture Notes in Computer Science, pages 153–167.
Springer, 2006.

[2] F. Bonchi, F. Gadducci, and B. König. Synthesising CCS bisimulation
using graph rewriting. Information and Computation, 207(1):14–40,
2009.

[3] F. Bonchi, F. Gadducci, and G. V. Monreale. Labelled Transitions for
Mobile Ambients (as Synthesized via a Graphical Encoding). Electronic
Notes in Theoretical Computer Science, 242(1):73–98, 2009.

[4] R. Bruni and E. Tuosto A. Lluch Lafuente, U. Montanari. Style-based
architectural reconfigurations. Bulletin of the EATCS, 94:161–180, 2008.

[5] R. Bruni, F. Gadducci, and A. Lluch Lafuente. A graph syntax for
processes and services. Web Services and Formal Methods, pages 46–60,
2010.

[6] R. Bruni, F. Gadducci, U. Montanari, and P. Sobociński. Deriving
weak bisimulation congruences from reduction systems. In Proceedings
of CONCUR ’05, volume 3653 of Lecture Notes in Computer Science,
pages 293–307. Springer, 2005.

[7] A. Corradini, R. Heckel, and U. Montanari. Graphical operational
semantics. In Proceedings of GT-VMT ’00, pages 411–418. Carleton
Scientific, Ottawa, 2000.

[8] R. de Simone. Higher level synchronizing devices in MEIJE-SCCS.
Theoretical Computer Science, 37:245–267, 1985.

[9] A. Dorman and T. Heindel. Structured operational semantics for graph
rewriting. In Silva et al. [26], pages 37–51.

144 A. Dorman, T. Heindel, B. König

[10] H. Ehrig and B. König. Deriving Bisimulation Congruences in the DPO
Approach to Graph Rewriting with Borrowed Contexts. Mathematical
Structures in Computer Science, 16(6):1133–1163, 2006.

[11] F. Gadducci. Graph rewriting for the pi-calculus. Mathematical Struc-
tures in Computer Science, 17(3):407–437, 2007.

[12] F. Gadducci and U. Montanari. The tile model. In Plotkin et al. [21],
pages 133–166.

[13] D. Grohmann and M. Miculan. Graph algebras for bigraphs. Electronic
Communications of the EASST, 29, 2010.

[14] J.F. Groote and F. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–
260, 1992.

[15] D. Hirsch and U. Montanari. Synchronized hyperedge replacement with
name mobility (a graphical calculus for mobile systems). In Proceedings
of CONCUR ’01, volume 2154 of Lecture Notes in Computer Science,
pages 121–136. Springer, 2001.

[16] D. Hirsch and U. Montanari. Shaped hierarchical architectural design.
Electronic Notes in Theoretical Computer Science, 109:97–109, 2004.

[17] Y. Lafont. Interaction nets. In Proceedings of POPL ’90, pages 95–108,
New York, NY, USA, 1990. ACM.

[18] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In Proceedings of CONCUR ’00, volume 1877 of Lecture Notes
in Computer Science, pages 243–258, 2000.

[19] R. Milner. Bigraphical reactive systems. In Proceedings of CONCUR
’01, volume 2154 of Lecture Notes in Computer Science, pages 16–35.
Springer, 2001.

[20] R. Milner. Pure bigraphs: Structure and dynamics. Information and
Computation, 204(1):60–122, 2006.

[21] G. D. Plotkin, C. Stirling, and M. Tofte, editors. Proof, Language, and
Interaction, Essays in Honour of Robin Milner. The MIT Press, 2000.

Structured Operational Semantics for Graph Rewriting 145

[22] J. Rathke and P. Sobociński. Deriving structural labelled transitions
for mobile ambients. Information and Computation, 208:1221–1242,
2010.

[23] A. Rensink. Compositionality in graph transformation. In Proceedings
of ICALP ’10, volume 6199 of Lecture Notes in Computer Science, pages
309–320. Springer, 2010.

[24] V. Sassone and P. Sobociński. Deriving bisimulation congruences using
2-categories. Nordic Journal of Computing, 10(2):163–183, 2003.

[25] V. Sassone and P. Sobociński. A Congruence for Petri Nets. Electronic
Notes in Theoretical Computer Science, 127(2):107–120, 2005.

[26] A. Silva, S. Bliudze, R. Bruni, and M. Carbone, editors. Proceedings
Fourth Interaction and Concurrency Experience, volume 59 of Electronic
Proceedings in Theoretical Computer Science, 2011.

[27] A. Simpson. Sequent Calculi for Process Verification: Hennessy-Milner
Logic for an Arbitrary GSOS. Journal of Logic and Algebraic Program-
ming, 60–61:287 – 322, 2004.

c© Scientific Annals of Computer Science 2012

	Introduction
	Preliminaries
	Hypergraphs
	Standard Graph Transformation
	Behaviour as Interaction With the Environment

	A Process Calculus Perspective on Borrowed Contexts
	The analogy with CCS
	Borrowed Contexts in Three Layers

	Communication in Composed States
	The idea of composition of transitions
	Composition results for Borrowed Context diagrams

	SOS semantics
	Conclusion

