
OR I G I N A L R E S E A R CH

Facial nerve repair utilizing intraoperative repair strategies

Brandon L. Brown MS1,2 | Morgan M. Sandelski BS1 | Sarah M. Drejet MD3 |

Elizabeth M. Runge PhD1 | Taha Z. Shipchandler MD3 | Kathryn J. Jones PhD1,4 |

Chandler L. Walker PhD1,4,5

1Department of Anatomy, Cell Biology and

Physiology, Indiana University School of

Medicine, Indianapolis, Indiana

2Department of Anatomical Sciences and

Neurobiology, University of Louisville,

Louisville, Kentucky

3Department of Otolaryngology, Indiana

University School of Medicine, Indianapolis,

Indiana

4Research and Development Service, Richard L

Roudebush Veterans Affairs Medical Center,

Indianapolis, Indiana

5Department of Biomedical Sciences and

Comprehensive Care, Indiana University

School of Dentistry, Indianapolis, Indiana

Correspondence

Chandler L. Walker, Department of Biomedical

Sciences and Comprehensive Care, Indiana

University School of Dentistry, 1121

W. Michigan Street Room 260A, Indianapolis,

IN 46202.

Email: chalwalk@iu.edu

Funding information

U.S. Department of Veterans Affairs

Roudebush VA IMMR Young Investigator

Award and Career Development Award,

Grant/Award Number: IK2RX002688 (C.L.W);

Indiana University Collaborative Research

Grant (K.J.J)

Abstract

Objectives: To determine whether functional and anatomical outcomes following

suture neurorrhaphy are improved by the addition of electrical stimulation with or

without the addition of polyethylene glycol (PEG).

Methods: In a rat model of facial nerve injury, complete facial nerve tran-

section and repair was performed via (a) suture neurorrhaphy alone, (b) neu-

rorrhaphy with the addition of brief (30 minutes) intraoperative electrical

stimulation, or (c) neurorrhaphy with the addition electrical stimulation and PEG.

Functional recovery was assessed weekly for 16 weeks. At 16 weeks postopera-

tively, motoneuron survival, amount of regrowth, and specificity of regrowth were

assessed by branch labeling and tissue analysis.

Results: The addition of brief intraoperative electrical stimulation improved all func-

tional outcomes compared to suturing alone. The addition of PEG to electrical stimu-

lation impaired this benefit. Motoneuron survival, amount of regrowth, and

specificity of regrowth were unaltered at 16 weeks postoperative in all treatment

groups.

Conclusion: The addition of brief intraoperative electrical stimulation to neu-

rorrhaphy in this rodent model shows promising neurological benefit in the surgical

repair of facial nerve injury.

Level of Evidence: Animal study.
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1 | INTRODUCTION

Despite the regenerative ability of the peripheral nervous system

following injury, complete functional recovery remains elusive. In

an effort to improve recovery following facial nerve repair, various

strategies, including artificial nerve conduits, stem cell treatments,

and delivery of neurotrophic factors, have been employed.1-3 These

strategies aim to improve the number of axons crossing the injury site

and improve specificity of regrowth. A major limitation to improving

these outcomes is the disruption of the myotopic organization at

multiple levels in the central nervous system, which contributes to

facial synkinesis.4-6

The addition of electrical stimulation (e.stim) to neurorrhaphy

has improved functional outcomes and the amount and specificity
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of regrowth in multiple models of peripheral nerve injury.7-9 This results

from the ability of e.stim to upregulate expression of pro-regenerative

neurotrophic factors, growth promotion, and myelination genes; aiding

to accelerate axon regrowth.7,10-12 Following facial nerve crush in

the rat, a single, 30-minute session of e.stim improves functional

outcomes.13,14 Due to its translational potential, we use the same,

30-minute intraoperative e.stim protocol in the current study.

In addition to neurorrhaphy, intraoperative treatment utilizing a

fusogen, polyethylene glycol (PEG), has been investigated.15,16 The

PEG treatment protocol developed and characterized by Bittner

et al17 has shown great promise in a rat sciatic nerve injury model,

and our laboratory has previously used this protocol in a rat facial

nerve injury model.18 This protocol first bathes the cut ends of the

nerve in a hypotonic calcium-free solution, followed by application of

an antioxidant, 1% methylene blue (MB) in ddH2O. After microsuture

neurorrhaphy, 50% PEG by weight in sterile water is applied to the

coaptation site, causing nonspecific fusing of neuronal membranes.

Finally, the site is bathed in calcium containing isotonic solution to

seal neuronal membranes not previously fused by PEG. This well char-

acterized protocol has ≥98% success rate when these solutions are

applied in the correct order.19 Successive application of these solutions

prevents sealing of the nerve endings by expelling vesicles, slows the

initiation of injury signaling cascades via inhibiting calcium influx, and

potentially lowers the activation energy of membrane fusion by remov-

ing the hydration barrier surrounding the axolemma.15,20 All of which

are thought to “prime” the axotomized nerve for fusion potentially

restoring some continuity.

We previously evaluated the addition of PEG to neurorrhaphy

following facial nerve transection in the rat, and found it provided no

functional or anatomical benefits beyond suturing alone.18 However,

other combinatorial treatments have been beneficial.8,14,21 Thus, we

hypothesized that the addition of brief intraoperative e.stim to neu-

rorrhaphy would improve functional and anatomical outcomes, and

the combination of e.stim and PEG would further improve outcomes.

To test these hypotheses, functional and anatomical outcomes were

quantified in a rat model of facial nerve injury.

2 | MATERIALS AND METHODS

2.1 | Overview of methods

In total, 23 male Wistar Rats (250-450 g; Envigo) were used:

3 uninjured, 4 suture neurorrhaphy, 8 suture neurorrhaphy plus e.stim,

and 8 suture neurorrhaphy plus e.stim and PEG. The IACUC of

Indiana University School of Medicine approved all experimental pro-

tocols. Data were collected from 18 July 2016, through 1 April 2017.

For all procedures, 2.5% isoflurane in 98% oxygen at a rate of 1 L/min

was used for anesthesia. Nine millimeter wound clips were used to

close surgical sites and 1 mL of buprenorphine hydrochloride was

administered immediately postsurgery. All surgical procedures were

performed by a trained head and neck surgeon whom had 3 weeks of

practice surgeries prior to performing the surgeries for the study.

2.2 | Surgical groups

2.2.1 | Facial nerve axotomy and neurorrhaphy

A 1.5-cm postauricular incision was made on the animal's right side to

expose the main extratemporal trunk of the facial nerve. Once 5 to

6 mm of the main truck was exposed and freed from surrounding tis-

sue, complete transection was performed 2.5 to 3 mm distal from its

exit at the stylomastoid foramen (Figure 1). Neurorrhaphy was per-

formed using 10-0 nylon suture (AROSurgical), and care was taken to

prevent excess tension on the nerve. These measures also prevented

fraying and swelling of the nerve, preventing protrusions from the

suture site, allowing for close apposition of the epineurium.

2.2.2 | Addition of brief electrical stimulation to
neurorrhaphy

Following exposure of the facial nerve, fine wire electrodes were care-

fully hooked around the nerve 2 mm proximal to the intended

axotomy site and formed into a loop encircling the nerve. Stimulator

(Pulse generator; Tektronics AFG1022 Arbitrary Function Generator,

Tektronics & Stimulus isolator; Analog Stimulus Isolator 200, A-M

Systems) test pulses were administered to confirm correct placement

of the electrodes by visually observing facial twitches. Immediately

following neurorrhaphy, the nerve was stimulated (100 μs charge-

balanced square waves; peak-to-peak amplitude 3 V) in a continuous

20 Hz train for 30 minutes.7,22 Following stimulation, electrodes were

removed, and the surgical site closed.

F IGURE 1 Anatomy of the rat facial nerve and surgical sites.
Anatomy of the rat facial nerve. The five main branches form after the
facial nerve exits the stylomastoid foramen. Red arrowhead indicates
location of facial nerve transection and neurorrhaphy. Yellow
arrowhead indicates the site of retrograde tracer labeling. Adapted
from Hohman et al. JAMA Facial Plas Surg. 2014;16 (1):20-24.
doi:10.1001/jamafacial2013.1431
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2.2.3 | Addition of electrical stimulation and PEG
to neurorrhaphy

For repairs utilizing PEG, a 50 wt% PEG solution (33.35 kDa; Sigma

Aldrich) was prepared in sterile water immediately before surger-

ies. Prior to axotomy, test pulses were performed as previously

described to confirm the correct placement of stimulation elec-

trodes. Once confirmed, electrodes were removed, and the area

was rinsed with a calcium-free solution (Plasma-Lyte; Baxter Inter-

national, Inc.). Following transection, the area was rinsed again

with a calcium-free solution, and two drops of 1% MB (Fisher Sci-

ence) in ddH2O were applied to both ends of the axotomized

nerve. To remove residual MB and improve visibility, the area was

rinsed again with the calcium-free solution. After neurorrhaphy

PEG solution was applied to the suture site for 60 to 90 seconds.

The area was then rinsed 5 to 6 times with a calcium containing

solution (Lactated Ringer's; Hospira).23,24 Last, e.stim was then

applied as outlined in the previous section.

2.3 | Functional outcome measures

Axotomy was visually confirmed immediately postsurgery by

observing ipsilateral facial paralysis, consisting of complete loss of

vibrissae movement, posterior orientation of vibrissae, and loss of

eye blink reflex.25 Beginning 1 week postoperatively, animals

were monitored by a single blinded observer weekly for 16 weeks

to evaluate recovery of eye blink reflex and vibrissae function.

Functional recovery was scored on a 3-point scale (1 = no recov-

ery; 2 = partial recovery; 3 = complete recovery, indistinguishable

from uninjured side). Eye blink reflex was tested by delivering a

brief direct stream of air to the eye using a rubber bulb syringe.

A score of 2 was considered recovery for eye blink reflex, which

is further defined as the ability to close the eye more than half-

way owing to voluntary muscular contraction. Vibrissae function

was monitored by stabilizing animals' heads with a rodent

restraint cone (AIMS, Inc.) with the end cut, allowing the head to

emerge and the animal to whisk freely. A score of 2 was consid-

ered recovery for vibrissae functional recovery and was defined

as the ability of the vibrissae to move synchronously during

consecutive whisks.

2.4 | Retrograde tracing

Buccal branch labeling was performed 16 weeks postoperatively. A

1-cm incision was made 5 mm dorsal to the maxilla to expose the

buccal branch. Once freed from the surrounding tissue, the buccal

branch was transected, and the proximal end bathed in 2 μL of 4%

fluorogold (Fluorochrome, LLC) (Figure 1). A small piece of absorb-

able gelatin (Gelfoam; Pfizer) was placed on the proximal end of

the transected nerve to sequester fluorogold to the area.

2.5 | Tissue analysis

One week after branch labeling, animals were anesthetized using a

mixture of ketamine and xylazine hydrochloride and perfused with

phosphate-buffered saline solution followed by 4% paraformaldehyde

(PFA). The brain and brainstem were removed, postfixed in 4% PFA

for 12 hours, and transferred to 30% sucrose solution until sectioned.

The pons from each animal was cryo-sectioned at 20 μm and mounted

on microscope slides (Superfrost slides; Thermo Scientific). Five slide

sets were collected from each animal and one slide from each set was

Nissl stained to visualize the facial motor nucleus (FMN) and prevent

double counting of motoneurons. A map of the rat FMN was used to

assess myotopic organization (Figure 2A).26 The middle seven stained

sections from each animal were used for quantification. All image

processing and counting was performed by the same blinded individ-

ual using photo editing software (Photoshop CS6; Adobe). The num-

ber of motoneurons per section, number of motoneurons with buccal

branch projections, and number of motoneurons with misguided pro-

jections were quantified.

2.6 | Data analysis

The statistical program “R” was used to perform one-way analysis of

variance using the Tukey post hoc test for all behavioral and anatomi-

cal outcomes. A P value <.05 was considered statistically significant.

3 | RESULTS

3.1 | Functional outcomes

Among the 20 male rats that underwent injury, two died prior to recov-

ering from anesthesia, one from the “Suture + e.Stim” group, and one

from the “Suture + E.Stim + PEG” group. Of the 18 remaining rats, ipsi-

lateral facial paralysis was seen immediately postsurgery. Passive eyelid

movement due to retraction of the eye may be mistaken for active

orbicularis oculi-induced closure. To prevent this misinterpretation,

slow-motion video analysis was used. Once the recovery criteria for

eye blink reflex was achieved (see Section 2), blink on the injured side

remained slower than the uninjured side and was frequently accompa-

nied by incomplete eyelid opening after a blink. Visible vibrissae move-

ment typically began 2 to 3 weeks postoperatively and consisted of

uncoordinated vibrissae oscillations. Upon reaching the criteria for

whisking recovery (see Section 2), whisks remained slower and of

smaller amplitude compared to the uninjured side.

Neurorrhaphy alone resulted in a mean (SD) time to eye blink

recovery of 9.0 (2.0) weeks, and a mean (SD) time to whisking recovery

of 13.0 (1.4) weeks. The addition of e.stim to neurorrhaphy significantly

improved time to eye blink recovery 4.3 (1.2) weeks (Tables 1 and 2),

and mean time to whisking recovery 5.6 (4.5) weeks (Tables 1 and 2).

The addition of e.stim and PEG to neurorrhaphy did not significantly

554 BROWN ET AL.



improve either time to eye blink recovery 6.0 (2.3) weeks, or time to

whisking recovery 7.3 (4.5) weeks compared to neurorrhaphy alone

(Tables 1 and 2). Not all animals reached recovery by the end of the

functional assessment period. Of interest, the percentage of rats

reaching eye blink recovery (4 of 4 [100%], 5 of 7 [71.4%], and 6 of

7 [85.7%]) and whisking (3 of 4 [75%], 6 of 7 [85.7%], and 6 of

7 [85.7%]) at 16 weeks postoperative did not favor any surgical group.

(Table 1).

3.2 | Motoneuron survival

Following peripheral nerve injury, motoneuron survival in Wistar rats

is ≥75%.18,27,28 We found 86% motoneuron survival in all surgical

groups compared to uninjured controls (mean 122.3 motoneurons per

tissue section; 95% confidence interval [CI] = 117.5-127.1; P = .01).

While mean (SD) motoneuron survival in the “Suture” 117.3 (9.6)

(95% CI = 107.7-126.9; P = .00), “Suture + E.Stim” 125.2 (10.0) (95%

CI = 15.2-135.2; P = .03), and “Suture + E.Stim + PEG” 121.8 (10.1)

(95% CI = 111.8 -131.9; P = .01) groups significantly decreased com-

pared to uninjured controls 142.6 (25.2), we found no difference

F IGURE 2 Organization of the rat facial motor nucleus. A, Nissl-stained rat facial motor nucleus is subdivided into the following five main

subnuclear groups: lateral (L), dorsal (D), intermediate (I), ventromedial (VM), and medial (M). B, Overlay of motoneurons projecting to the buccal
branch (red) from an uninjured animal. C, Overlay of motoneurons projecting to the buccal branch (red) from an injured animal; yellow arrowheads
indicate motoneurons misguiding projection to the buccal branch. Scale bar = 200 μm

TABLE 1 Recovery of function

Mean number of weeks
for recovery (SD)

95% Confidence
interval SE of group mean

No. (%) of animals reaching
recovery in 16 wk

Function

Eye blink recovery

Suture (n = 4) 9.0 (2.0) 4.0-13.9 ±1.2 4 (100.0)

Suture + E.Stim (n = 7) 4.3 (1.2) * 3.1-5.6 ± 0.5 5 (71.4)

Suture + E.Stim + PEG (n = 7) 6.0 (2.3) 3.6-8.4 ±0.9 6 (85.7)

Whisking recovery

Suture (n = 4) 13.0 (1.4) 10.8-15.3 ±0.7 3 (75.0)

Suture + E.Stim (n = 7) 5.6 (4.5) * 0.1-11.2 ± 2.0 6 (85.7)

Suture + E.Stim + PEG (n = 7) 7.3 (4.5) 2.7-12.0 ± 1.8 6 (85.7)

Abbreviations: SD, standard deviation; SE, standard error; E.Stim, electrical stimulation; PEG, polyethylene glycol.

*P < .05, Tukey's post hoc compared to Suture group.

TABLE 2 Functional outcomes

Group comparisons Significance

Multiple comparisons (ANOVA and Tukey HSD)

Eye blink recovery (ANOVA; P = .03)

Suture vs Suture + E.Stim .02

Suture vs Suture + E.Stim + PEG .25

Suture + E.Stim vs Suture + E.Stim + PEG .42

Whisking recovery (ANOVA; P = .04)

Suture vs Suture + E.Stim .04

Suture vs Suture + E.Stim + PEG .11

Suture + E.Stim vs Suture + E.Stim + PEG .75

Abbreviations: ANOVA, analysis of variance; E.Stim, electrical stimulation;

PEG, polyethylene glycol.
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between the “Suture” group compared to either the “Suture + E.stim”

(95% CI = 115.2-135.2; P = .60) or “Suture + E.Stim + PEG” (95%

CI = 111.8-131.9; P = .90) groups (Figure 3A). These results indicate

that none of our surgical interventions provided benefit nor produced

adverse effects on motoneuron survival.

3.3 | Amount and specificity of regrowth

Amount of regrowth was assessed by quantifying the number of

motoneurons routing projections to the buccal branch via fluorogold

labeling at 16 weeks postoperative (Figure 2B and C). We found no

significant differences in the mean number motoneurons with buccal

branch projections between groups (95% CI = 28.4-37.1; P = .18)

(Figure 3B). These data suggest that brief electrical stimulation with

or without the addition of PEG produce no beneficial or adverse

effects on the amount of regrowth compared to neurorrhaphy alone.

Following injury, the myotopic organization of the FMN is

disrupted, contributing to facial synkinesis.29 This results from reg-

enerating axons being misguided to the incorrect nerve branch and

subsequent musculature.30 In uninjured animals, motoneurons from

the lateral, dorsal, and intermediate subnuclei project to the buccal

branch (Figure 2B). Following injury and repair, motoneurons in the

ventromedial and medial subnuclei also project to the buccal branch,

disrupting this myotopic organization (Figure 2C). Our data show a

significant disorganization in all surgical groups compared to uninjured

controls (95% CI = 9.0-17.7; P < .01) (Figure 3C). The addition of e.

stim to neurorrhaphy resulted in greater disorganization compared to

neurorrhaphy alone (95% CI = 13.6-17.1; P = .01).

It should be noted that buccal branch labeling was suboptimal in

one animal from the “Suture” group, one animal from the “Suture + E.

Stim” group, and two animals from the “Suture + E.Stim + PEG” group.

Data from these animals were not included in amount and specificity

of regrowth quantification.

F IGURE 3 F Anatomical outcomes. Blue lines indicate mean values; error bars, 95% CIs. *P < .05, **P < .01, ***P < .001. E.Stim, electrical
stimulation; PEG, polyethylene glycol
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4 | DISCUSSION

Multiple studies have shown the efficacy of e.stim to promote

recovery after peripheral nerve injury. Following sciatic nerve tran-

section 1 hour of e.stim accelerates axon regeneration, improves

specificity of regrowth, and temporally compresses “staggered

regeneration” times.7,31 Additionally, 30 minutes of e.stim follow-

ing facial nerve crush improves functional outcomes.13,14 To our

knowledge, the current study is the first to show that as little as

30 minutes of intraoperative e.stim is needed to improve functional

outcomes following transection and neurorrhaphy. The well-

characterized PEG fusion protocol used by Bittner, Ghergherehchi,

Riley, and Mikesh has improved functional and anatomical out-

comes in the sciatic nerve injury model.19,24,32,33 Bittner et al19

reports that using this protocol, even unskilled surgeons, after

some training, have a high success rate (≥98%) of PEG fusion.

However, the favorable outcomes due to PEG fusion can be

impaired by excess tension on the nerve.34-36

PEG fusion is commonly evaluated immediately following PEG

application by measuring compound action potentials (CAPs).19,32

However, there are multiple issues with immediate evaluation of

CAPs. First, axons distal to the injury do not fragment until 37 hours

after transection, still allowing for conduction of electrical current.37

Clinically this is evident as the nerve distal to the injury is identifiable

via electrical stimulation for up to 72 hours.36,38 Second, small

amounts of solution(s) in the surgical field can conduct electrical cur-

rent.38 To circumvent these issues, Salomone et al39 measured com-

pound muscle action potentials (CMAPs) following PEG fusion, and

showed no electrophysiologic differences until 6 weeks postopera-

tively. Due the limitations in-vivo with measuring CAPs immediately

following repair, and differences in CMAPs not appearing until

6 weeks post-operatively, we concur with Bittner et al17 that behav-

ioral outcomes are the best measure of success for a treatment. To

completely separate the rat facial nerve from surrounding tissue(s)

and solutions in the surgical field, excess tension would need to be

applied to the nerve, undeniably impacting regeneration and recovery.

Due to high success rate of PEG fusion, issues with measuring CAPs

immediately postrepair, and the harmful effects of applying excess

tension on the nerve, we did not measure CAPs immediately following

PEG fusion.

Despite our previous study showing PEG provided no neurologi-

cal benefits in our model of nerve injury, we hypothesized that com-

bining e.stim with PEG would further improve outcomes, due to

PEG's ability to limit injury signaling cascades, and e.stim accelerating

axonal regeneration. However, we found that this combinatorial treat-

ment hindered the functional benefits provided by e.stim alone.

Anatomically, recovery is impacted by neuronal death, impaired

regrowth, poor specificity of regeneration, and aberrant branching,

three of which were evaluated here.4 Following peripheral nerve

injury neuronal death is minimal in the rat, and we found no adverse

effects of our intraoperative treatments.6,27,28 At 16 weeks postop-

eratively the amount of regrowth was similar between uninjured

controls and all surgical groups.

Following neurorrhaphy of a mixed nerve, motoneurons preferen-

tially regrow into motor pathways if given equal access to motor and

sensory pathways via preferential motor reinnervation (PMR). PMR is

evident 8 weeks postoperatively when misguided motoneuron projec-

tions to sensory pathways are pruned, resulting in improved specific-

ity.40,41 The addition of e.stim accelerates PMR to 3 weeks after

repair.7 8 weeks after repair, when PMR has occurred, Robinson

et al16 found that PEG impaired specificity of regrowth, likely due to

non-specific PEG fusion “locking” axons in place, limiting pathway

sampling. PMR results from the specificity of trophic support from

sensory or motor specific Schwann cells.42,43 There is no know dis-

tinction between trophic support from Schwann cells in different

motor branches. Thus, the known mechanism for improved specificity

of regrowth in mixed nerves is not present in purely motor nerves,

such as the rat facial nerve. Since e.stim accelerates regrowth, and

PMR is not present in purely motor nerves, this is likely why we found

more non-specific regrowth in our e.stim group, and improved recov-

ery times.

Due to the above differences in the specificity of regrowth in

mixed-nerves verses motor nerves; we suggest clinicians evaluate the

efficacy of treatments such as e.stim and PEG on a case-by-case basis.

The evidence supporting the addition of e.stim to neurorrhaphy is

favorable in both mixed and motor nerves, however, the efficacy of

PEG is still debated. We previously found that PEG provided no bene-

fit beyond suturing alone in a motor nerve, and Robinson et al16

reported impaired specificity of regrowth in a mixed nerve when PEG

was applied. However, other groups report PEG being a potential pan-

acea. Based on our findings, intraoperative e.stim proximal seems to

hasten functional recovery, though longer-term follow-up is necessary

to determine if overall improvement is better compared to suture neu-

rorrhaphy alone.

4.1 | Limitations

For functional outcome measures, the observer was blinded; how-

ever, this approach to scoring does not remove all subjectivity.

Other studies have used more advanced opto-electric systems to

assess functional recovery, which would remove any subjectivity

from the functional evaluations used here.44,45 As previously men-

tioned in the discussion section, we did not directly assess axon

fusion via CAP measurement, which is a limitation of the current

study. Future studies using this injury model should assess axon

fusion by measuring CMAPs. Since no time course was performed

to evaluate regrowth, we cannot determine the temporal effects

our treatments. We also did not histologically evaluate the repair

site. To date, no studies using PEG have done so; thus, we cannot

confirm or deny that PEG may “lock” axons in place limiting their

ability to sample possible pathways. Last, due to anatomical con-

straints in our model, and proactively limiting tension on the nerve,

the musculature underlying the facial nerve was undoubtedly stim-

ulated during e.stim, which may contribute to improvements in

these animals.
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5 | CONCLUSION

The addition of brief, 30 minute, intraoperative e.stim to neu-

rorrhaphy in this rodent model improved functional outcomes, which

is consistent with other models of peripheral nerve injury. The addi-

tion PEG provided no further neurological benefit, and negated the

benefits e.stim provided. The encouraging improvements e.stim pro-

vided in the absence of PEG, should be corroborated by clinical trials

with long-term follow-ups. Future studies should evaluate whether e.

stim alters long-term facial synkinesis in other injury models.
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