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High-dimensional datasets are becoming ubiquitous in many applications and there-

fore unsupervised tensor methods to interrogate them are needed. Here, we report a

new unsupervised machine learning (ML) approach (NTFk) based on nonnegative

tensor factorization integrated with a custom k-means clustering. We demonstrate

the ability of NTFk to extracting temporal and spatial features of phase separation of

copolymers as they are modeled by self-consistent field theory. Microphase separa-

tion of block copolymers has been extensively studied both experimentally and the-

oretically. However, the interpretation of computer simulations and/or experimental

data, representing temporal and spatial changes of molecular species concentration

is still a challenging task. Thus, extracting the phase diagram from simulations or

experimental data as well as the interpretation of data requires discernment of the

model/experimental parameters (such as, temperature, concentrations, the number

of molecular species and the interaction between species) impact on the microphase

separation process. An attractive and unique aspect of the introduced ML method

is that it ensures the nonnegativity of the extracted latent features. Nonnegativity is

an essential constraint needed to obtain interpretable and sparse latent features that

are parts-based representation of the data. The custom clustering in NTFk serves to

estimate the number of latent features in the data.
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1 INTRODUCTION

The emerging collections of large and distinct

high-dimensional datasets increase the interest in factor

analysis based on tensor decomposition [1]. These collected

datasets include only directly observable quantities, while

the underlying processes are either too complex and can-

not be observed directly or are completely unknown. These

processes are called latent variables or latent features [2].

Extracting latent variables permits reduction of the large

number of directly observable quantities to a smaller set of

latent features, where each observable quantity in the data

is expressed as a linear or multilinear combination of the

extracted latent features. Tensor decompositions are lever-

aged for estimating latent variables [3], pattern recognition

[4] subspace learning, unsupervised separation of unknown

mixtures of signals [5] and many other applications [6].

Here we introduce a new approach based on nonneg-

ative tensor factorization (NTF) that integrates NTF with

custom k-means clustering to estimate the number of non-

negative latent features. We demonstrate the application of

this approach, called NTFk, for a successful identification

of the morphologies and phase transitions in a molecular

self-assembly.

Molecular self-assembly is a spontaneous association

of molecules under equilibrium conditions into stable,
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FIGURE 1 Illustration of symmetric ABA triblock copolymer: a

macromolecule composed of three strongly bonded alternating groups

(blocks) of molecular units (copolymers) of two different molecular species.

f A and f B denote the contour length of the A and B block, respectively

structurally well-defined aggregates joined by weak bonds.

Molecular self-assembly is ubiquitous throughout soft con-

densed matter and biological materials and it is becoming an

important tool in nanoscience and the design and manufactur-

ing of complex functional materials. A significant challenge

working with these materials and techniques is to properly

identify and characterize the transition points and conditions

as well as the emerging morphologies. This is true for exper-

imental situation but also for modeling approaches based on

molecular dynamics and density functional techniques. Block

copolymers, which are macromolecules composed of strongly

bonded alternating groups (blocks) of repeated molecular

units (copolymers) of different molecular species, form a

simple and prototypical self-assembling system for which

continuum modeling techniques such as field theory are well

developed.

To demonstrate the applicability of NTFk in this field we

are applying our technique to modeling data arising from

well-established field theoretic methods [7] and a simple

system of triblock copolymers (Figure 1).

2 NONNEGATIVE TENSOR
FACTORIZATION

The combined procedure of dimension reduction and latent

features extraction is crucial for data mining and is a sub-

ject of factor analysis [8]. Factor analysis includes a group

of unsupervised machine learning (ML) techniques based

on blind source separation (BSS) [9]. Classical BSS utilizes

matrix factorizations, including: principle component analy-

sis (PCA) [10], independent component analysis (ICA) [11],

singular value decomposition (SVD) [12] and nonnegative

matrix factorization (NMF) [13], which form a class of unsu-

pervised ML methods that are instrumental for model-free

latent features extraction.

The matrix factorization methods, although extremely effi-

cient, are inherently deficient for examining high-dimensional

datasets, that is, tensor datasets. The tensor datasets are nat-

ural extensions of the matrix datasets needed when there are

more than two dimensions in the data because any attempts

to represent and analyze a high-dimensional dataset as a

matrix will neglect the cross-correlations among the different

dimensions.

Two main classical tensor factorization methods are:

canonical polyadic decomposition (CPD) [14–16] and

Tucker decomposition (TD) [17,18] (Figure 2). Nonnegative

CPD/TD of a three-dimensional tensor X can be derived by

nonconvex constraint minimization of the following objective

function, O,

O =
‖‖‖‖‖‖

Xn,m,l −
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

Gr1,r2,r3 Ar1,nBr2,mCr3,l

‖‖‖‖‖‖

2

F

,

Gr1,r2,r3 ≥ 0;Ar1,n ≥ 0;Br2,m ≥ 0;Cr3,l ≥ 0, (1)

where ‖… ‖F is the Frobenius norm. In the case of CPD

(also called CANDECOMP/PARAFAC model [19]) the

core-tensor G in Equation (1) is superdiagonal, that is,

Gr1 , r2 , r3 = 1; if r1 = r2 = r3 and Gr1 , r2 , r3 = 0 in all other

cases. For CPD, the objective function, O, can be written as,

O =
‖‖‖‖‖‖

Xn,m,l −
R∑

k=1
Ak,nBk,mCk,l

‖‖‖‖‖‖

2

F

,

Ak,n ≥ 0;Bk,m ≥ 0;Ck,l ≥ 0, (2)

where R1 = R2 = R3 = R (R is called the rank of X), while

for TD, in general, R1 ≠ R2 ≠ R3 and (R1, R2, R3) is called

multilinear rank of X.

When the considered data X is inherently nonnegative the

choice of the nonnegative constraints is natural. Many types

of data, for example, density, energy, spectral power, popula-

tion, etc., are naturally nonnegative and the extracted features

will lose the physical meaning if the nonnegativity is not

preserved. Importantly, the nonnegativity is crucial for the

extraction of interpretable and sparse latent features. Indeed,

when the factorization produces only nonnegative values the

extracted features can only be added and no subtractions are

allowed. Hence, reproducing the data only by combinations

of nonnegative latent features requires these features to be

(a) sparse and (b) parts-based representations of the orig-

inal data, which is making the extracted features easy to

interpret [20]. Thus, the nonnegative factorization produces

readily explainable features, which in turn facilitate discov-

eries of new causal structures and mechanisms hidden in

the data without prior assumptions. Additional advantage of

the nonnegative factorization is that it also works with data

where the latent features are not statistically independent but

can be even partially correlated [6]. One of the limitations

of nonnegative factorization is that, unlike PCA, SVD, or

ICA, it requires prior knowledge of the number of the latent

features. Thus, the nonnegative CPD requires prior estima-

tion of the nonnegative rank, R, of the tensor, that is, the

minimal number of rank-1 nonnegative tensors whose sum

accurately reproduces the data. It is well known that CPD is

unique [21] up to a scaling and permutation of the factors,

and that CPD represents the tensor-data, X, with the smallest

number of parameters. However, CPD is difficult to achieve

because, in the general case, computing the rank of a ten-

sor (ie, the number of the latent features) is known to be a
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FIGURE 2 Basic tensor factorizations illustrated for a three-dimensional tensor X: (A) canonic polyadic decomposition (CPD) and (B) Tucker

decomposition (TD). Both factorizations decomposed the three-dimensional data-tensor X with size (I1, I2, I3) into three matrix factors A, B, C, and a small

core-tensor G. In the CPD case, the core-tensor G is a superdiagonal cube (it has zeroes everywhere except on the main diagonal), denoted by the red line in G
with size (R, R, R), and R is the rank of the tensor X. In the TD case, the core-tensor G is of size (R1, R2, R3), which is the multirank of X. Panel C) represents

the nonconvex minimization with nonnegative constraints, needed to obtain CPD/TD

nondeterministic polynomial-time (NP) hard problem [22].

Importantly, the nonnegative tensor decomposition is almost

always unique [23] and Lim and Comon [24] proved that the

best approximation of the nonnegative rank of a nonnegative

tensor always exists, which facilitates the nonnegative CP

decompositions.

The main difference between CPD and TD is the presence

of nondiagonal elements and the different dimensions (R1,
R2, R3) of the core-tensor in TD, which allows column vec-

tors of factor matrices to interact with each other in order to

reconstruct the original data, X. In TD, R1 is the dimension of

the subspace spanned by mode-1 fibers (fiber is a subtensor

obtained by fixing all but one index/mode in the array Xijk),

R2 is the dimension of the subspace spanned by mode-2, and

R3 is the dimension of the subspace spanned by mode-3 fibers.

Unlike CPD, TD is not unique and offers a poorer compres-

sion of the data; however, TD is easier to achieve (no need

to know the rank of the tensor) even with additional spar-

sity constraints in the minimization. In general, the Tucker

core-tensor cannot be diagonalized, and the rank of the ten-

sor is not bounded by TD’s multilinear rank. There are also

other types of tensor factorizations but they all are related to

the CPD and the Tucker factorizations [1].

3 NTF WITH CUSTOM K-MEANS
CLUSTERING: NTFK

If the rank R of the data-tensor (ie, the number of the latent

features in the data) is known, then the best solution of the

minimization of the objective function O in Equation (1)

is the solution of the factorization. Unfortunately, the rank

of the tensor is typically unknown and it has to be esti-

mated solely from the data. Since it is known that the

best approximation of the rank of the nonnegative tensor X
exists [24], a naive approach would be to explore all pos-

sible solutions applying the nonlinear minimization (2) for

a range of possible ranks, and then to use the most accu-

rate solution (ie, the solution with the smallest reconstruction

error) as an estimate of the rank R. However, this is obvi-

ously a flawed approach—over-fitting will certainly lead to

overestimation of the number of latent features; more free

parameters will generally lead to a better reconstruction, irre-

spective of how close the estimated number of features is to

the real one. Instead, to determine the optimal approxima-

tion of the rank of a nonnegative tensor, we utilize a custom

clustering algorithm, following the idea used to estimate the

unknown number of latent features in NMF [25].

The original NMF algorithm also requires prior knowl-

edge of the number of the latent features. It was demon-

strated that the number of the latent features can be estimated

based on the reproducibility and robustness of the solution

of NMF minimization. This approach has been introduced

to decompose the largest available dataset of human cancer

genomes [26], and then extended for decomposition of phys-

ical pressure transients [27]. Although heuristic in nature, the

method, called NMFk, has proven to be accurate and reli-

able in various problems [28–33], and also has the important

practical advantage that it is relatively easy to implement

and use.

In NTFk-CPD, which we introduce here, we use the robust-

ness of the extracted factor matrices and the accuracy of the

decomposition to determine the optimal number of the non-

negative latent features in the data X. Specifically, to estimate

the rank of X, we perform M sets of CPD-minimizations,

Equation (2). Each solution set contains N ∼ 100 CPD min-

imizations with random initial guesses for the unknown

parameters. Each solution set is with a fixed rank R, and

for the different sets we have, R= 1, 2, ..., M. We concate-

nated the columns of the extracted factors AR, BR, and CR

(Figure 2) in each set (with same rank R) and obtain, HR =
([AR

1 ,B
R
1 ,C

R
1 ]; [A

R
2 ,B

R
2 ,C

R
2 ]; … ; [AR

N,B
R
N,C

R
N]; ), where R is

the selected rank. Next, we apply a custom k-means clustering

algorithm to cluster the columns of HR.
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This custom clustering is based on k-means clustering with

R clusters (each solution contains R features) but with the

following constraint: the number of the elements in each of

the clusters needs to be the same. For example, with N = 100

minimizations each one of the R clusters has to contain

exactly 100 elements. This constraint has to be enforced since

each solution of the 100 nonnegative minimizations contains

exactly the same number, R, of different features. Thus, a

fixed-size k-means clustering is needed since each of the 100

minimizations (with the same number of features) contributes

exactly one element to each of the R clusters with features.

During the clustering, the similarity is measured by the cosine

distance, which is naturally to use in positive spaces where the

angle between the feature vectors is bounded in the interval

(0, 𝜋/2).

Finally, the optimal number of latent features (ie, the non-

negative rank of the tensor, X) is evaluated by comparing the

quality of the derived clusters (obtained for different ranks)

with the accuracy of the minimization. The quality of the

clusters is estimated by their average Silhouettes values that

measure the similarity between an element and the other ele-

ments of its own cluster, compared to the similarity to the

elements of the other clusters [34]. The accuracy of the min-

imization, r, is calculated based on the relative Frobenius

norm: r=X − X̃F∕XF, where X̃ is the reconstruction of the

data. The combination of these two criteria is easy to under-

stand intuitively: The optimal number of clusters means that

the Silhouette value has to be close to one, that is, the clus-

ters containing the optimal number of features have to be well

separated and with a good cohesion, while the set of these

optimal features has to reconstruct the initial data well. Note

that, for solutions with number of clusters, R, less than the

actual number of latent features we expect the clustering to

be good (ie, with an average Silhouette width close to 1),

because several of the actual features could be combined to

produce one reproducible ‘super-cluster’; however, the recon-

struction error will be high, due to the model being too

constrained (with too few degrees of freedom), and thus on the

under-fitting side. In the opposite limit of over-fitting, when

the number of clusters R exceeds the actual number of pat-

terns, the average reconstruction error could be small—each

solution reconstructs the observation matrix very well, but the

solutions will not be well-clustered (with an average Silhou-

ette substantially less than 1), since there is no unique way to

reconstruct X with more than the actual number of features,

and no well-separated clusters will be formed. Thus, our best

estimate for the optimal number of latent features R is given

by the value of R that optimizes both these metrics simulta-

neously. Finally, after determining R, we use the centroids of

the final R clusters to represent the final robust latent features,

that is, the columns of the factor matrices. It is clear, that the

same protocol can be applied to high-dimensional data with

d > 3.

In NTFk-TD, to identify the optimal number of features, we

also perform M TD runs with random initial guesses for the

unknown parameters, and then cluster (as for NTFk-CPD) the

resulting set of concatenated columns of the factor matrices

A, B, and C, with different sizes R1, R2, R3, and deter-

mine the optimal multirank, that is the dimension of the

corresponding subspaces by comparing the quality of the

reconstruction and the average Silhouettes of the derived

clusters.

4 SELF-CONSISTENT FIELD THEORY

Copolymer melts are made of chemically complicated, large

molecules and are characterized by a variety of compet-

ing length scales—size of the individual molecular units vs

the extension of entire macromolecule molecules (Figure 1.

A full treatment in atomistic detail is in most cases out of

computational reach. On the other hand, the apparent com-

plexity of the systems in fact contributes to a simplification

of the physics on a coarser than atomistic level. Because of

the large number of possible interactions between molecules,

microscopic details average out to a large extent. A few char-

acteristic attributes of the molecules are often responsible for

the main features of a substance. This has motivated the study

of idealized simplified models, which account only for the

main properties of the molecules and absorb the microscopic

details in a few, effective parameters. A second important

point is that dense macromolecular systems are often unusu-

ally well described by mean-field approximations. As large

molecules interact with many others, the effective interac-

tion range in the limit of large molecules is very long, and

the critical region in which concentration fluctuations become

important is very small as a result. Self-consistent field theory

(SCFT) [35–38] is based on these two observations and has

proven to be a very successful description of block copolymer

melts. Here we used the implementation of SCFT for sym-

metric triblock copolymers ABA (see Figure 1 ) as described

in Ref. 39. The morphological phase diagram for this type

of triblock copolymer can be fully parameterized by the nor-

malized block contour length f A = (1 – f B)/2 and the incom-

patibility, 𝝌 , between A and B blocks. The incompatibility 𝝌

is the strength of the interaction between A and B blocks, it

depends on the polymer species and scales with temperature

roughly as, 𝝌 ∼ 1/T .

Block copolymers provide a paradigm for molecu-

lar self-assembly in soft condensed matter. Unfavorable

interactions between distinct blocks may lead—above

a threshold value of the parameter quantifying blocks’

incompatibility—to segregation into nano- and micron-scale

domains, producing well-ordered periodic structures [40–42].

The morphology of the resulting self-assembly arises from

the interplay between the incompatibility of unlike blocks

and forces resulting from local configurational entropy con-

siderations. The subtle counterbalance of these competing

physical mechanisms is sensitive to the composition of the

macromolecules. By changing, for example, the faction of
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FIGURE 3 Sketch of morphological phase diagram for an ABA copolymer in two spatial dimensions (in the middle), x-axis represents the parameter 2f A,

while y-axis represents the parameter 𝝌 . The vertical red line denotes the cross section at 2f A = 0.50, while the horizontal red line denotes the cross section at

𝝌 = 25. The panels (1), (2), (3), (4), and (5) show the specific phases, that is: the disorder, cylindrical, lamellar, inverted cylindrical, and again disorder, in the

phase diagram. The colors in these panels show the spatial density distribution 𝝓A of the A block. Yellow color indicates high density while blue color

indicates low density

molecular repeats forming one type of block in the chain,

phase transitions (defined by nonanalyticities in the main

thermodynamic functions) may take place among different

ordered structures. In particular, the system transitions from

one phase to another, and for example, it can pass from a

disordered to an ordered phase. Any quantity that character-

izes the symmetry of the system (or simply the system) that

exists in one of the phases but vanishes in the other phase

can be used for description of the phase transition and then it

is called order parameter.

A sketch of the phase diagram as produced by SCFT in

two spatial dimensions is given in Figure 2 where three

morphological phases are displayed: (a) disordered, which

occurs when the incompatibility, 𝝌 , between blocks is insuf-

ficient to cause segregation, (b) cylindrical, where one of the

molecular blocks aggregate into rod like structures embed-

ded in a matrix formed by the other molecular blocks—this

transition occurs when one block is much shorter than the

other, and finally (c) lamellar, where each of the molecu-

lar blocks aggregate into sheet-like structures, this transition

occurs when the blocks are of similar length. Examples pro-

duced by SCFT of the lamellar and cylindrical phases are

given in the insets of Figure 2. It is worth noticing that because

of the structure of the triblock copolymer the phase diagram

is not quite symmetric around 2f A = 0.5. When B is the

minority component, the cylindrical phase occupies a larger

portion of the phase space than A component. Also, the phase

boundaries of the lamellar phase are slightly shifted toward

small f A.

As the order parameter we choose the density of the A

block. The A block density is obtained as output of SCFT sim-

ulations, as it is represented in in the panels (1), (2), (3), (4)

and (5) of Figure 3, and this representation is what we used

as an input for the Nonnegative Tensor Factor analysis.

5 NTFk ANALYSIS OF SCFT SIMULATION
DATA

5.1 SCFT input data

We apply NTFk to two data-tensors representing the order

parameter, 𝚫(f A, x, y,𝝌) of a system of copolymers as a func-

tion of: (a) 𝝌 , at a fixed length f A, and (b) as a function of f A,

at a fixed 𝝌 . As order parameter, 𝚫(f A, x, y,𝝌), we choose the

density of the A block. Thus, 𝚫(f A, x, y,𝝌)≡𝝓A(f A, x, y,𝝌),

where 𝝓A(f A, x, y,𝝌) is the density distribution of block

A polymers and it is generated by the SCFT simulations

described in the previous section. For a fixed length f A, the

output of SCFT simulations is a data-tensor 𝚫nml with three

dimensions: 𝚫(𝝌 , x, y) with size (11× 64× 64), while for a

fixed𝝌 , the output is, 𝚫̃(f A, x, y,𝝌) with size (201× 64× 64).

Each cell of these three-dimensional tensors contains the

value of the order parameter, 𝚫, at a specific f A, at a specific

𝝌 , and at a point with coordinates (xm,yl).
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FIGURE 4 The results of NTFk-CPD: (A) 10 2D slices (x= 1, ..., 64; y= 1, ..., 64) representing the self-consistent field theory simulations with decreasing

value of 𝝌 and fixed f A = 0.5, showing the evolution of the microphase separation of triblock copolymers as a function of inverse temperature (along the

vertical line in Figure 3). (B) CPD of the data 𝚫(𝝌 , x, y) with rank R= 4. (C) The plot represents the four latent features, that is, the columns of each of the

factor matrices A, B, and C (color coded as in (B)). (D) Silhouette-Reconstruction criterium for determination the number of the latent features in 𝚫(𝝌 , x, y).

The double arrow depicts that the optimal number of the latent features is R= 4

5.2 NTFk-CPD feature extraction of the order
parameter 𝚫(𝝌 , x, y)

The nonnegative CPD of the three-dimensional data-tensor

representing the evolution of the order parameter 𝚫(𝝌 , x, y),
with 𝝌 on a two-dimensional (x, y) lattice, and it is given by,

𝚫n ,m , l =
R∑

k= 1
Ak ,nBk ,mCk , l + 𝜺n ,m , l (3)

where A = [a1, ..., aR]; B = [b1, ..., bR]; C = [c1, ..., cR] are

the nonnegative CPD factor matrices (Figure 2A, while 𝜺n,m,l
is normally distributed unbiased error of the approximation.

Equation (3) can be also represented as:

𝚫n ,m , l = 𝚫̃n ,m , l + 𝜺n ,m , l (4)

where 𝚫̃ (𝚫 ∈R
N ×M ×L
≥ 0 ) is the CPD estimate of 𝚫.

CPD includes:

• An unknown matrix A (A∈R
N ×R
≥ 0 ) representing

the changes of the order parameter 𝚫 with 𝝌 (the

𝝌-component);

• An unknown matrix B (B∈R
M ×R
≥ 0 ) representing the

changes of the order parameter 𝚫 in x-direction (the

x-component);

• An unknown matrix C (C∈R
L×R
≥ 0 ) representing the

changes of the order parameter 𝚫 in y-direction (the

y-component);

Here, R≥0 denotes the set of nonnegative real numbers R≥0

{x∈R; x≥ 0}. Additionally, 𝜺 (𝜺 ∈R
N ×M ×L
≥ 0 ) denotes the

unknown discrepancy between the original order parameter 𝚫
and the estimate 𝚫̃.

To extract the unknown factor matrices A, B, and C, we

utilize the block coordinate descent method for regularized

multiconvex optimization algorithm introduced in [43,44].

Mathematically, the solution of the nonnegative CPD is given

by the minimization with nonnegative constraints,

O =
‖‖‖‖‖‖
Δ −

R∑
k=1

𝝀kak(𝝌)⊗ bk(x)⊗ ck(y)
‖‖‖‖‖‖

2

F

,

𝝀k ≥ 0; ak(𝝌) ≥ 0; bk(x) ≥ 0; ck(y) ≥ 0; (5)

where 𝝀k are the weights of the normalized rank-1 tensors

ak(𝝌)⊗ bk(x)⊗ ck(y). The results are presented in Figure 4.

Figure 4, panel A shows the data that the NTFk-CPD

algorithm is applied to. The data consist of 11 SCFT sim-

ulation outputs for (𝝌 = 25, 23, 21, … , 5) each consisting

of spatial density distribution, 𝝓A(𝝌 , x, y), of the polymer

species A discretized in a (64× 64) grid. Panel A clearly

shows that the polymer melt is transitioning from a disor-

dered state at low 𝝌 to a lamellar ordered state at larger 𝝌 .

Panel B illustrates the results of NTFk-CP decomposition as

it is applied to the data. NTFk-CPD extracts four (R = 4)

rank-1 tensors each given as a tensor product of 3 vectors,

where each of these vector-columns is of size (1× 64). These

12 vectors are given in panel C. Finally, panel D shows the

Silhouette-Reconstruction criterium that explains how NTFk

determines that the rank of 𝚫(𝝌 , x, y) is R = 4. The results

given in Figure 4, panel C demonstrate that the methodology

readily identifies the existence of a phase transition. This is
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FIGURE 5 The results of NTFk-TD: (A) Tucker decomposition of the data 𝚫(𝝌 , x, y) with multirank R= (2, 3, 3). (B) Â , the 𝝌 subspace with two columns.

(C) B̂, the x-subspace with three columns. (D) Ĉ, the y-subspace with three columns

most clearly seen by the behavior of the columns of the fac-

tor matrix A(𝝌) as a function of 𝝌 . Panel C shows that three

vector sets, Si = (ai(𝝌), bi(x), ci(y)); i= 1, 2, 3 are required

to describe the phase segregated state. The remaining set,

D= (a4(𝝌), b4(x), c4(y)), represents the disordered state. It is

also clear that the three vector sets, Si, representing the segre-

gated state, are degenerate in the sense that they only differ by

a spatial shift on the vectors bi(x) and ci(y). The degeneration

is caused by the orientation of the lamella along the diago-

nal simulation box. Note that panel A can give the impression

that two phase transitions occur—one from disorder to cylin-

drical phase and the second from cylindrical to lamella phase.

However, panel C clearly demonstrates that there is only a

single transition. Therefore, the cylindrical-like structures are

intermediate states but not a true phase.

5.3 NTFk-TD subspace-analysis of the order
parameter 𝚫(𝝌 , x, y)

The nonnegative TD of the three-dimensional data-tensor

represents the subspaces of the parameter 𝚫(𝝌 , x, y),

Δn,m,l =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

Gr1,r2,r3 Âr1,nB̂r2,mĈr3,l + 𝜺̂n,m,l (6)

where all elements of 𝚫, G, Â, B̂ , and Ĉ are nonnegative,

Equation (6) can be also represented as:

Δn,m,l = Δ̃n,m,l + 𝜺̂n,m,l (7)

where 𝚫̃:(𝚫̃ ∈R
N ×M ×L
≥ 0 ) is the TD estimate of 𝚫.

TD includes:

• An unknown core-tensor G (G∈R
R1 ×R2 ×R3
≥ 0 ) that repre-

sents the mixing between the 𝝌 , x, and y components.

• An unknown matrix Â (Â∈R
N ×R1
≥ 0 ) representing

the changes of the order parameter 𝚫 with 𝝌 (the

𝝌-component);

• An unknown matrix B̂ (B̂∈R
M ×R2
≥ 0 ) representing the

changes of the order parameter 𝚫 in x-direction (the

x-component);

• An unknown matrix Ĉ (Ĉ∈R
L×R3
≥ 0 ) representing the

changes of the order parameter 𝚫 in y-direction (the

y-component);

Mathematically, the solution of the nonnegative TD decom-

position is a solution of a nonconvex optimization with non-

negative constraints. To extract the unknown core-tensor G,

and the factor matrices, Â , B̂ , and Ĉ, we utilized the block

coordinate descent method for regularized multi-convex opti-

mization algorithms introduced in Refs. [43,44].

Figure 5 shows the results of the TD factorization. This fac-

torization results in three matrices (Â, B̂ , and Ĉ) and a single

(2× 3× 3) core-tensor G. The optimal value of the multirank

R was determined through application of the clustering proce-

dure described in Section 3. The matrices are given in panels

B to D, where different colors represent different columns of

the matrices. Again, the columns of matrix A clearly iden-

tify the phase transition. However, in this factorization the

disordered state is not readily identifiable as it is achieved

by a combination of the columns of B and C through the

components of the tensor G.

5.4 NTFk-TD subspace-analysis of the order
parameter Δ̂(fA, x, y)

In the previous section we used SCFT data generated along

the vertical line through the polymer phase diagram given

in Figure 3. Here we show the TD applied to 201 SCFT
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FIGURE 6 The results of NTFk-TD of 𝚫̂(f A, x, y). This dataset is generated

along the horizontal line on the phase diagram presented in Figure 3. It

consists of 201 simulations for various f A and for fixed 𝝌 = 25. We present

the four density features extracted by NTFk-TD from the data, that is, the

columns of the first factor matrix Â. The core-tensor has multirank R= (4,

12, 12). The four insets illustrate the microphase separation patterns formed

by the B̂ and Ĉ factors corresponding to these features that follow the

changes of f A. The dashed line is the average density of block A

datasets generated along the horizontal line in the phase dia-

gram presented in Figure 3. These 201 datasets are for 𝝌 =
25 and f A = 0.05, 0.052, 0.054, … , 0.45. As seen from the

phase diagram this data contains 4 phase transitions between

disordered, cylindrical and lamellar states. Similarly, to the

case presented in Figure 5, here the TD factorization results

in three matrices (Â, B̂, Ĉ) and one core-tensor G with size

(4× 12× 12). The size of G was determined via the cluster-

ing procedure described in Section 3. In Figure 6 the four

columns of the matrix Â are shown. From Figure 6 it is clear

that the factorization identifies all four phase transitions. The

column a1 (in blue) represents the disordered state, a3 (in yel-

low) and a4 (in purple) represent cylindrical states, and finally

a2 (in red) represents the lamellar state, as is illustrated by

the five inset figures. It can be noticed that the magnitudes

of the components increase linearly with f A as expected from

the fact that average value of 𝚫̂(f A, x, y) ∼ f A as illustrated by

the black dashed line in Figure 6. It is also noteworthy that Â,

components are not symmetric around f A = 0.25 but possess

the asymmetry of the phase diagram as shown in Figure 3.

The B̂ and Ĉ factor matrices reproduce the four microphases

of the phase diagram at each f A point, as illustrated in the five

insets of Figure 6: disordered, cylindrical, lamellar, inverted

cylindrical, and again disordered phase.

6 CONCLUSIONS

Here we demonstrated the applicability of our approach

NTFk to analyze complex model outputs and determine

the number of latent features in the case of block copoly-

mer microphase segregation as modeled by SCFT. NTFk is

based on NTF combined with custom k-means clustering.

We demonstrated two types of nonnegative decompositions

combined with our clustering: NTFk-CPD and NTFk-TD.

NTFk-CPD allows for deconstruction of tensor datasets

(multidimensional arrays) into sum of tensors with rank-1

and NTFk-TD—for a product of small core-tensor and factor

matrices. We have shown that our approach can identify

the unknown number of latent features and characterize

the phase transitions based on the data alone. While our par-

ticular polymer system and the SCFT model are well studied

and well understood, this is not true for most phase separat-

ing systems of interest in materials science and engineering.

Therefore, a systematic methodology to characterize phase

transitions solely from data, experimental or simulated, based

on NTFk will be of importance for future materials devel-

opment. We demonstrate that the latent features identified

by NTFk have a clear physical meaning and enable easy inter-

pretation of the processes governing phase separation. NTFk

also acts as a data compression of the numerical simulations

and may streamline the development of reduced-order mod-

els that can be applied to predict the system behavior in a

more computationally efficient manner. NTFk can readily be

applied to any observed or simulated dataset that is repre-

sented as a tensor (a multidimensional array) and possess

latent features that span subspaces in the space of the observ-

able quantities. We illustrated the different strengths of CPD

and TD: CPD extracts straightforwardly the latent features,

but it can result in a rank deficiency (linearly dependent fea-

tures), which may obscure the final results and make the cal-

culations difficult. TD does not suffer by rank deficiency

but certain latent features are not clearly manifested in the

extracted subspaces, for example, there is no spatial represen-

tation of the disorder phase in Figure 5, although the transition

can be still clearly observed. In general, it therefore seems

that a combined application of both approaches, NTFk-CPD

and NTFk-TD, is preferred. Extracting latent features and

subspaces can help the development of conceptual models,

reduced-order models, and simplified closed-form mathemat-

ical expressions, which can then be used to predict the system

behavior. NTFk can also be applied to detect anomalies or to

complete gaps in the data. Lastly, NTFk-extracted latent fea-

tures can be coupled with a suitable supervised ML method

to produce predictions.
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