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Abstract
Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in par-

ticular, in space and time. Discrete lymphocyte subsets, depending on their activation and differ-

entiation status, express various sets of chemokine receptors to be recruited to distinct tissues.

Thus, the network of chemokines and their receptors ensures the correct localization of special-

ized lymphocyte subsets within the appropriate microenvironment enabling them to search for

cognate antigens, to become activated, and to fulfill their effector functions. The chemokine sys-

tem therefore is vital for the initiation as well as the regulation of immune responses to protect

the body from pathogens while maintaining tolerance towards self. Besides the well investigated

function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in

multiple ways to shape immune responses. In this review, we highlight and discuss the role of

chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte

arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and dif-

ferentiation, survival, as well as in modulating effector functions.
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1 INTRODUCTION

Chemokines are chemotactic cytokines that belong to a group of small,

structurally related peptides. Chemokines constitute the largest fam-

ily of cytokines comprising about 45 different members in humans

and mice.1,2 The function of chemokines is mediated by binding to

chemokine receptors of the 𝛾 subfamily of class A rhodopsin-like

G-protein coupled receptors. Today 18 classical chemokine recep-

tors that signal by coupling to G𝛼i to promote cell migration are

known. In addition, 4 atypical chemokine receptors that bind and

scavenge chemokines to facilitate chemokine gradient formation in

Abbreviations: ADAP, adhesion and degranulation adapter protein; CalDAG-GEF1, calcium

andDAG regulated GEF1; Cdc42, cell division cycle 42; DC, dendritic cell; DOCK2, dedicator

of cytokinesis 2; GEF, guanidine nucleotide exchange factor; HEV, high endothelial venules;

IS, immunological synapse; LN, lymph node; LPAM-1, lymphocyte peyer’s patch adhesion

molecule-1; MAdCAM-1, mucosal addressin cell adhesionmolecule-1; mLN, mesenteric

lymph node; PKC, protein kinase C; PLC, phospholipase C; pLN, peripheral lymph node; PPs,

Peyer’s patches; Rac1, Ras-related C3 botulinum toxin substrate 1; Rap1, Ras-proximate 1;

RAPL, regulator of cell adhesion and proliferation enriched in lymphoid tissue; RIAM,

Rap1-GTP interacting adapter molecule; SKAP55, Src kinase associated protein of 55 kDa;
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a G protein-independent manner, are described.3,4 Different subsets

of immune cells express diverse repertoires of chemokine recep-

tors, also depending on their differentiation or maturation sta-

tus, enabling them to respond to appropriate ligands to mediate

their individual functions. Thus, by temporally and spatially posi-

tioning immune cells, chemokines are essential for the develop-

ment of the immune system, immune surveillance, immune priming,

effector responses, as well as regulation of the immune system.2

Chemokines and their receptors are best-described for their function

in guiding directional cell migration.5 Nevertheless, chemokines also

mediate additional cellular responses that go beyond simply guid-

ing directional migration, including cell-to-cell contacts, adhesion and

arrest of immune cells, immune cell priming, survival, as well as effec-

tor responses, although these functions are often intimately asso-

ciated with the positioning of the cells in vivo. These additional

functions of chemokines in lymphocyte biology have not been inves-

tigated as thoroughly yet. In this review, we aim to outline the cur-

rent knowledge on chemokine functions in lymphocyte biology beyond

guiding directional migration.
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TABLE 1 Chemokines and their receptors described tomediate inside-signaling to integrins on lymphocytes

Receptor Chemokine Cell type Integrins References

CCR1 CCL3, CCL5 T cells, B cells, pre-B cells 𝛼L𝛽2, 𝛼4𝛽1, 𝛼4𝛽7
14,15,40,163

CCR4 CCL17, CCL22 Memory CD4+ T cells 𝛼L𝛽2
31

CCR5 CCL4 Anti-CD3 activated T cells 𝛼L𝛽2, 𝛼4𝛽1
14

CCR6 CCL20 Memory CD4+ T cells, T cells, B cells 𝛼L𝛽2, 𝛼4𝛽7
16,18,40,164

CCR7 CCL19, CCL21 Circulating lymphocytes, T cells, PBLs 𝛼L𝛽2, 𝛼4𝛽1, 𝛼4𝛽7
16,18,28,40,75,165

CCR8 CCL18 Th2 cells 𝛼L𝛽2
20

CCR9 CCL25 Thymocytes, T cells, B cells 𝛼4𝛽1, 𝛼4𝛽7
19,40

CXCR1 CXCL8 Pre-B cells 𝛼4𝛽1
166

CXCR3 CXCL9, CXCL10 T cells, B cells 𝛼4𝛽1, 𝛼4𝛽7
14,40,167

CXCR4 CXCL12 Naïve CD4+ T cells, memory CD4+
T cells, T cells, PBLs

𝛼L𝛽2, 𝛼4𝛽1, 𝛼4𝛽7
16,22,40,43,75,168

CXCR5 CXCL13 B cells 𝛼L𝛽2
21

CX3CR1 CX3CL1 T cells, NK cells 169

2 MODULATION OF LYMPHOCYTE

ADHESION BY CHEMOKINES

Chemokine functions are not limited to transmit signals leading to

directional migration of lymphocytes, but they additionally initiate

cell-to-cell contacts and adhesion by inducing inside-out signaling to

integrins.6,7 Integrin-mediated adhesion of lymphocytes is on the one

hand important for integrin-dependent cell migration and extravasa-

tion into tissues, but on the other hand also controls the arrest of

patrolling cells. Examples are lymphocyte adhesion to endothelial cells,

lymphocyte-dendritic cell (DC)/stroma interactions to facilitate lym-

phocyte priming, and effector functions likeCTL-target cell interaction

for cytotoxic killing.7–10

Integrins are type 1 transmembrane proteins that form het-

erodimers consisting of one 𝛼 and one 𝛽 chain, which are noncovalently

associated. In mammals, 18 different 𝛼 and 8 𝛽 chains, forming about

24distinct 𝛼𝛽 pairs are described.8 Integrins consist of a large extracel-

lular domain and a small, although functionally essential, intracellular

domain.11 The intracellular domain of integrins is vital for 𝛼𝛽 het-

erodimer formation, binding of signaling molecules, and for regulation

of integrin endocytosis and recycling. On the surface of lymphocytes,

integrins are normally inactive in a cell’s resting state, however, they

undergo dynamic changes in their adhesive properties after stimula-

tion of either lymphocyte Ag receptors, or chemokine receptors.8 One

exception from this are effector lymphocytes, which were shown to

express constitutively active integrins and are thus able to adhere to,

for example, inflamed endothelial cells without chemokine signaling.12

To allow a very dynamic regulation of ligand binding properties, the

total affinity (avidity) of integrins to their ligands can be modulated in

twoways, by regulation of affinity of the single integrin (conformation)

and by clustering of integrins (valency).13 Moreover, two directions

of signaling, inside-out and outside-in, further increase the regula-

tory properties of integrins.8,9 Ligand binding to integrins initiates

outside-in signaling that controls, for example, themorphology anddif-

ferentiation of cells.Whereas inside-out signaling describes the ability

of other signaling receptors, mainly Ag receptors and chemokine

receptors on lymphocytes, to induce changes in affinity and valency

of integrins.8,9

2.1 Lymphocyte integrins and their ligands

Lymphocytes express primarily the integrins 𝛼4𝛽1 (CD49d/CD29,

VLA-4), 𝛼L𝛽2 (CD11a/CD18, LFA-1), and 𝛼4𝛽7 (lymphocyte peyer’s

patch adhesion molecule (LPAM)-1),14–21 and many chemokines were

shown to initiate inside-out signaling to one or several integrins,

including CCL19, CCL21, and CXCL12 (Table 1). The three major

lymphocyte integrins bind to different ligands: 𝛼L𝛽2 binds ICAM-

1/2/3, 𝛼4𝛽1 binds VCAM-1, whereas 𝛼4𝛽7 binds both, VCAM-1 and

mucosal peyer’s patch adhesion molecule (MAdCAM)-1. Depending

on the site of expression of their ligands, integrins are involved in

diverse biological functions and the cell–cell contacts they control are

important in diverse processes, such as rolling and firm arrest on

endotheliumwithin distinct tissues, aswell as formation of an immuno-

logical synapse (IS).8,13,22–24 The integrin ligands ICAM-1 and VCAM-

1, for example, are expressed on high endothelial venules (HEVs) of

peripheral lymph nodes (pLNs) or on inflamed, activated endothe-

lial cells.13 Here, chemokine-mediated signaling to 𝛼L𝛽2 and 𝛼4𝛽1 is

important for the arrest of lymphocytes on HEVs to enter LN, or for

effector lymphocytes to enter inflamed tissues, respectively.8 In con-

trast, MAdCAM-1 is expressed on endothelia of mucosal tissue and

the GALT, for example, HEVs of peyer’s patches (PPs) and mesen-

teric lymph nodes (mLNs), to control arrest of lymphocytes at these

sites.25,26 Furthermore, besides the differences in integrin ligands, dis-

tinct tissues display different chemokines immobilized on their sur-

face. For instance, pLNs present immobilized CCL21 and CXCL12,

whereas mLNs and PPs in addition have CXCL13 immobilized on their

surface.25 Moreover, different subsets of lymphocytes express vari-

ous sets of chemokine receptors. For example, naïve T cells express

CCR7 and CXCR4, whereby naïve B cells express high levels of CXCR5

in addition to CCR7 and CXCR4.27 To adhere to HEVs of pLNs and

mLNs T cells rely on CCR7 and partially on CXCR4, whereby arrest

of B cells is driven by CCR7 and CXCR4 on HEVs of pLNs or CXCR5
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F IGURE 1 Distinct patterns of integrins and chemokine receptors determine lymphocyte trafficking. (A) Naïve lymphocytes expressing CCR7,
CXCR4, 𝛼L𝛽2, and 𝛼4𝛽1 arrest on ICAM-1 or VCAM-1 of HEVs in pLNs or PPs in a CCL21- and CXCL12-dependent manner. Naïve lymphocytes
can also utilize CCL21-CCR7 induced, or CXCL13-CXCR5 induced inside-out signaling to adhere to the 𝛼4𝛽7 ligand MAdCAM-1 on HEVs of PPs.
(B) Effector T cells expressing inflammatory chemokine receptors arrest on integrin ligands of the activated endothelium. Expression patterns
of inflammatory chemokine receptors on distinct Th subsets are depicted as a chart. (C) Activated/memory lymphocytes can adhere to either
MAdCAM-1 of GALT or VCAM-1 of the activated endothelium mediated by 𝛼4𝛽7, depending on whether inside-out signaling is activated by the
CCL25-CCR9 axis or by CXCL10 triggered CXCR3

together with CCR7 and CXCR4 on HEVs of PPs.18,28,29 Moreover,

the LFA-1 mediated arrest of naïve T cells and B cells on ICAM-

1 can be induced on HEVs of pLNs by the chemokines CCL21 and

CXCL12, but not by inflammatory chemokines, as naïve lymphocytes

lack the expression of inflammatory chemokine receptors.16 Con-

sequently, naïve T and B cells do not enter inflamed tissues, but

home to LNs (Fig. 1A). In contrast, Th1, Th2, and Th17 effector T

cells that express 𝛼L𝛽2 or 𝛼4𝛽1 together with receptors for inflam-

matory chemokines, adhere to ICAM-1 or VCAM-1 within inflamed

tissues. While the different Th effector T cell subsets have some

chemokine receptors in common, for example, CCR2 and CCR4, sev-

eral chemokine receptors are characteristically expressed by dis-

tinct effector Th subsets, coordinating the guidance of Th effector

T cells to specific sites to mediate their specific functions in the

inflamed tissues (Fig. 1B).2,16,30,31 Th1 cells express CCR5, CXCR3,

and CXCR6, Th2 cells express CCR3 and CCR8, whereas Th17 express

CCR6.2,32–39 Thus, the expression of different sets of chemokine

receptors and integrins on lymphocytes, together with diverse

patterns of integrin ligands and chemokines on endothelial cells,

permits distinct lymphocyte subtypes to initiate locally confined

integrin-mediated arrest, which in addition is regulated by environ-

mental cues.

Interestingly, on a given cell type activation of the same inte-

grin by different chemokine receptors can result in distinct inte-

grin ligand binding, as exemplified for the lymphocyte integrin 𝛼4𝛽7

(Fig. 1C). Here, the CCL25-CCR9 axis leads lymphocytes to adhere to

MAdCAM-1, whereas the CXCL10-CXCR3 axis facilitates their arrest

on VCAM-1.40 The different capabilities are attributed to distinct

inside-out signaling by the two chemokine receptors. Thereby, CCR9

signals via PKC-𝛼 and p38 to talin, whereas CXCR3 signals through Src

and Syk to recruit both talin and kindlin-3 to 𝛼4𝛽7.
40 Consequently,

the same integrin, activated by inside-out signaling pathways of dif-

ferent chemokine receptors, controls lymphocyte trafficking by pro-

moting firm adhesion and arrest at distinct tissues. Thus, the integrin

𝛼4𝛽7 on lymphocytes canbindeither toVCAM-1onactivatedendothe-

lium, pLN and bone marrow, or to MAdCAM-1 found in mucosal tis-

sues, GALT and mLN, depending on the chemokine receptor that

initiated and specified the inside-out signaling pathway.

2.2 Chemokine-mediated integrin activation in

different environments

The mode of activation of integrins on lymphocytes differs depend-

ing on the environment a cell resides in. Under shear-flow conditions,

for example, within blood vessels, integrins of rolling lymphocytes are

rapidly (<1 s) activated by chemokine receptor triggering.6,16,41–46

This fast integrin activation follows a 3-step model involving a bi-

directional activation of ligand-bound integrins. The first step is initi-

ated by inside-out signaling of chemokine receptors resulting in talin

binding to the cytoplasmic tail of the integrin and subsequent integrin
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extension. The next step involves ligand binding and results in integrin

headpiece opening. In the last step, full integrin activation is achieved

by the association of the actin cytoskeleton to the integrin tail through

talin and kindlin-3.6 Notably, this rapid integrin activation occurs

under shear-flow and hence relies on immobilized chemokines, such

asCCL21.41,47,48 Under shear-free conditions, for example,within LNs,

also soluble chemokines, including CCL19 that cannot trigger integrin

signaling under shear-flow conditions, are able to trigger high-affinity

integrin conformations,47 but integrin activation is much slower and

takes 10–30min.45

Rapid integrin activation is best illustrated for LN homing of lym-

phocytes. Here, T cell rolling mediated by selectins is enhanced

on the luminal surface of HEVs, where CCL21 is immobilized on

glycosaminoglycans,49 resulting in a CCR7 signaling-driven initiation

of firm arrest28 controlled by binding of high-affinity 𝛼L𝛽2 to its ligand

ICAM-1, a prerequisite for subsequent diapedesis.50,51

2.3 Chemokine receptor inside-out

signaling pathways

Aselucidated above, integrin inside-out signaling pathways aredistinct

among various lymphocyte subsets and depend on the cellular context

and on the integrin. In other words, signaling events that control inte-

grin inside-out signaling are not universal but differ depending on the

cell type, the integrin, the chemokine, and the chemokine receptor.52,53

Although not all signaling pathways elicited by chemokine receptors

mediating inside-out signaling to integrins have been itemized, some

molecular details are well characterized, especially for CCR7 and

CXCR4. Key signaling molecules in chemokine-mediated signaling to

𝛼L𝛽2 include Rap1, its guanidine nucleotide exchange factors (GEFs)

RapGEF1 and CalDAG-GEF1, as well as talin, kindlin-3, PIP5K𝛾87,

and phospholipase C (PLC)9,54–57 as described in more detail in the

following paragraphs.

The arrest of non-activated lymphocytes on endothelial cells medi-

ated by chemokine receptor inside-out signaling depends on G𝛼i
signaling16,58–60 and its downstreameffectorPLC.13,55 Downstreamof

PLC, CalDAG-GEF113,54,55,61 and the small GTPase Rap1 become acti-

vated in a G𝛼i-dependent manner upon CCR7 and CXCR4 triggering

to control both affinity regulation and clustering of the integrins 𝛼L𝛽2
and 𝛼4𝛽1.

57,62–65 Thereby, regulator of cell adhesion and prolifera-

tion enriched in lymphoid tissue (RAPL), through binding to Rap1-GTP,

associateswith the cytoplasmic tail of the integrin’s𝛼 chain.13,66,67 Fur-

thermore, the Ste20-like serine/threonine kinaseMst1, a downstream

effector of RAPL is needed for lymphocyte arrest under physiological

flow conditions.68,69

Recently, another Rap1 GEF, namely RapGEF1, was found to be

important for CXCR4 triggered inside-out signaling to 𝛼L𝛽2.
70 In this

pathway, dynamin2 by involving RapGEF1 and FAK/Pyk2 is vital for

CXCL12 induced clustering, but not affinity regulation, of 𝛼L𝛽2 on

naïve CD4+ T cells.70 Moreover, the Rac/Rho-GEFs Vav1, SOS1, and

DOCK2 were shown to contribute to CXCR4-driven Rap1 activation

for inside-out signaling.71 However, residual chemokine-driven Rap1

activationwas observed inDOCK2deficient T and B cells, andDOCK2

was dispensable for CCR7 and CXCR4-mediated inside-out signaling

to 𝛼L𝛽2 and 𝛼4𝛽1 in T cells, but not for CCR7, CXCR4, and CXCR5-

mediated inside-out signaling to 𝛼L𝛽2, 𝛼4𝛽1, and 𝛼4𝛽7 in B cells.72

Furthermore, the small GTPases RhoA and Rac1 and their down-

stream effector phosphatidylinositol-4-phosphate 5 kinase are

involved in chemokine-mediated integrin affinity regulation and

adhesion of T cells under shear flow,53,73,74 whereas Cdc42 fulfills an

inhibitory function in chemokine-driven integrin activation.73

An additional layer of regulation comes from common and dis-

tinct chemokine receptor pathways exploited for inside-out signal-

ing to specific integrins. For example, CXCR4-driven T cell adhesion

relies on CalDAG-GEF1 and Rap1 to signal to 𝛼L𝛽2,
55 while 𝛼4𝛽1-

mediated T cell arrest involves PKC55 and the non-receptor tyrosine

kinase ZAP70.75 Notably, ZAP70 acts downstreamof bothCXCR4 and

CCR7 and phosphorylates Vav1, thereby liberating talin required for

its association with 𝛽1 integrins resulting in the high-affinity confor-

mation of 𝛼4𝛽1.
75–77 Whether ZAP70 is also involved in CCR7 and

CXCR4-mediated inside-out signaling to 𝛼L𝛽2 integrins remains to

be determined.

2.4 Detailed pathways of integrin inside-out

signaling by CCR7 in lymphocytes

CCR7 is expressed on several subsets of lymphocytes: on thymocytes

during defined stages of development, on regulatory T cells, central

memory T cells, as well as on naïve T cells and B cells.78 CCR7-induced

inside-out signaling modulates both, affinity and valency of 𝛼L𝛽2 as

well as 𝛼4𝛽1 and 𝛼4𝛽7 in multiple ways (Fig. 2). To recapitulate, acti-

vation of 𝛼L𝛽2 is solely achieved by immobilized CCL21, but not sol-

uble CCL19, to promote lymphocyte arrest in the presence of shear

forces and happens in a part of a second.41,45–47 In the absence of

shear forces, both CCR7 ligands are able to enhance the affinity of

𝛼L𝛽2.
8,16,47,48,79 PI3K was one of the first signaling molecules iden-

tified in the CCR7 pathway mediating inside-out signaling to 𝛼L𝛽2

in a G protein-dependent manner. In fact, inhibition of PI3K blocked

CCR7-mediated clustering of 𝛼L𝛽2, while affinity regulation remained

intact, irrespective whether cells were exposed to shear forces or

not.48 Notably, PI3K was critical for CCR7-driven arrest under lim-

iting availability of the 𝛼L𝛽2 ligand ICAM-1, whereas cell adhesion

was normal at high ligand density.48 Alternatively, CCR7 engagement

modulates 𝛼L𝛽2 valency and affinity regulation through RhoA.74 In

addition, valency regulation of 𝛼L𝛽2 can be mediated by PKC𝜁13,74

(Fig. 2). Interestingly, two distinct active Rap1 (Rap1-GTP) contain-

ing signaling complexes were recently identified to control CCR7-

mediated affinity and valency regulation of 𝛼L𝛽2.
80 Whereas both

signaling complexes share the kinase Mst1 and the adapter proteins

adhesion and degranulation adapter protein (ADAP) and SKAP55,

one complex further includes RAPL, the other complex comprises

Rap1-GTP interacting adapter molecule (RIAM), talin, and kindlin-

3 (Fig. 2). Interestingly, both signaling complexes are independently

recruited to the integrin upon CCR7 triggering and lymphocytes lack-

ing ADAP and SKAP55 show a delayed LN homing and reduced intra-

nodal motility.80 This study is supported by previous findings showing

that RAPL and Mst1 contribute to CCR7-medaited 𝛼L𝛽2 clustering.
68

Thereby, RAPL not only regulates the association of Rap1 with the
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F IGURE 2 Signaling pathways of CCR7 inside-out signaling to the three main lymphocyte integrins. For inside-out signaling of CCR7 to 𝛼L𝛽2

signaling via PI3K and PKC𝜁 induces clustering, but not affinity regulation, whereas RhoA is involved in both, affinity regulation and clustering
of 𝛼L𝛽2. Moreover, a pathway is described involving PLC and CalDAG-GEFs leading to activation of Rap1 that forms two distinct complexes with
its downstream-effectors, mediating inside-out signaling of CCR7 to 𝛼L𝛽2. CCR7 inside-out signaling to 𝛼4𝛽1 involves a pathway depending on
ZAP70 that phosphorylates Vav1, leading to dissociation of the Vav1-talin complex, allowing talin to bind to the 𝛽1 intracellular domain. Inside-out
signaling of CCR7 to 𝛼4𝛽7 involves PKC𝛼 and p38MAPK

𝛼-chain of 𝛼L𝛽2,
13,66,81 it also regulates the subcellular localization and

the kinase activity of Mst1.13 In line with this, Mst1-deficient lympho-

cytes barely adhere to ICAM-1 under shear flow and are impaired in

LN homing.13,69,82 Based on these results, a two-step model has been

proposed80 in which ligand binding to CCR7 results in the activation

of Rap1. Active Rap1-GTP is able to bind to ADAP/SKAP via RIAM,

which linksRap1with the actin cytoskeleton andpromotes the recruit-

ment of the RAP1/RIAM/ADAP/SKAP55-complex to the intracellular

domain of the 𝛽2 integrin chain. In the second step, the membrane-

associated complex comprising RAP1/RIAM/ADAP/SKAP55 facili-

tates the binding of talin to the 𝛽2 integrin chain, linking the

integrin to the actin cytoskeleton that allows its activation. The second,

Rap1/RAPL/ADAP/SKAP55-consisting complex, through RAPL, might

preferentially interacts with the integrin 𝛼 chain to control CCR7-

mediated inside-out signaling to 𝛼L𝛽2.

Considerably less is known about how CCR7 controls inside-out

signaling to 𝛼4 integrins. However, PKC𝛼 and p38 MAPK are phos-

phorylated after CCL21 stimulation of T and B cells, increasing 𝛼4𝛽7-

dependent arrest on VCAM-1.40 CCR7 signaling to 𝛼4𝛽1 depends

on Vav1 and talin as described above for CXCR4. Basically, binding

of CCL21 to CCR7 induces the dissociation of the Vav1-talin het-

erodimer, thereupon liberated talin directly associates with the 𝛽1

chain to initiating 𝛼4𝛽1 inside-out signaling.
75

3 CHEMOKINE RECEPTORS AS

CO-STIMULATORY MOLECULES

FOR EFFICIENT T CELL PRIMING

Upon entering the LN, T cells crawl along a network of fibroblastic

reticular cells in a random walk-like manner depending on chemokine

receptors and 𝛼L𝛽2 integrin to scan DCs for cognate Ags.
10,51,83–86 On

the search for cognateAgsnaïveT cells scanabout100DCsperhour.87

When a T cell recognizes a peptide presented in the context of MHC

and co-stimulatorymolecules on aDC, T cells interrupt their migration

path to form an IS with the DC, resulting in T cell activation, prolifera-

tion, and differentiation.88,89 The outcome of T cell activation depends

on the context of Ag recognition and is largely controlled by various

co-stimulatorymolecules.

Distinct co-stimulatory activities have been attributed to the

chemokines CCL5, CCL19, CCL21, and CXCL12.90–97 T cell co-

stimulation via TCR and CXCR4 was shown to enhance the expression

of the activation markers CD69, CD25, and CD154 to increase T cell

proliferation, as well as to augment the production of the cytokines

IL-2, IFN-𝛾 , IL-4, and IL-10.90–92 CXCR4-driven IL-10 and IL-2 secre-

tion was further noted to enhance activation of the transcription fac-

tor AP-1.92 Similarly, co-stimulation of T cells with CCR7 ligands,

where CCL21 shows stronger effects compared to CCL19, resulted in

increased cell proliferation, higher expression of CD69 and CD25, and

enhanced secretion of IL-2, TNF-𝛼, and IFN-𝛾 .93,94 It needs to be men-

tioned that addition of high concentrations ofCCR7 ligands (2.5𝜇M) to

T cell cultureswas found to arrest the cell cycle and to hamper cell pro-

liferation and IL-2 production.98 Molecular mechanisms that underlie

the co-stimulatory activity are only vaguely understood.

Several suggestions were made to explain the co-stimulatory role

of chemokines in T cells. The most advanced is the “stop and go”

hypothesis.99 This hypothesis describes that during the formation of

T cell–DC conjugates the strength of two opposed signals, a migra-

tory onedrivenby chemokine receptors, and a “stop” signal transduced

by the TCR, is decisive for the duration of the interaction.99,100 Thus,

the stability of T cell-APC conjugates is regulated on the one hand

by the affinity of the MHC-peptide-TCR interaction and on the other
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hand by the effectiveness of chemokine receptor signaling.101 Some

chemokines owing co-stimulatory functions, including CCL5, CCL19,

and CXCL12, can be produced by APCs themselves.91,101,102 Accord-

ingly, interfering with chemokine secretion by APCs dampened the co-

stimulatory functionof chemokine receptors asmanifestedby reduced

IFN-𝛾 production by T cells.91,101 Moreover, localization of CCR5 and

CXCR4at the IS andexposure to their ligandspresentedbyAPCsmight

desensitize the chemokine receptor signal and stabilize the contact

site.91 In line with this, interfering with G protein-dependent CXCR4

and JAK1/2 signaling correlated with reduced actin polymerization at

the contact site, altered structure of the IS, and mislocalization of the

microtubule-organizing center.95

CXCR4 directly interacts with the TCR, allowing CXCR4 to utilize

the ITAMs of TCR to signal through ZAP70.92 CXCR4 and TCR co-

stimulation also stabilizes SLP76 cluster formation facilitating its phos-

phorylation by ZAP70.96 CCR7 and TCR co-stimulation, by a pathway

involving DOCK2 and Rac increases Erk1/2 phosphorylation and IL-

2 secretion.94 Notably, the threshold for T cell activation is reduced

if cells experienced CCL21 during the first hours of TCR stimulation

and might be a mechanism to promote T cell activation within appro-

priate micro-anatomical compartments.94 Apart from that, CCL21 on

APCs is proposed to activate CCR7 on the T cell to form a tran-

sient tether rendering the cell hyper-responsive to Ags.97 This tether

formation is also attributed to CXCR3-CXCL10, CXCR4-CXCL12,

and CCR5-CCL5 and additionally involves 𝛼L𝛽2-intergin/ICAM-1 at

T cell-APC interface.97

3.1 Integrins in chemokine-mediated T cell

co-stimulation

Besides acting as co-stimulatory molecules themselves, chemokine

receptors are also able to fulfill a co-stimulatory function indirectly by

increasing the avidity of integrins to their ligands, thereby supporting

the cell–cell contact between the T cell and the APC.91,103,104 How-

ever, the signal for increased avidity of integrins might not be induced

by the chemokine receptors alone, but in concert with the TCR during

IS formation.91,104

A critical role in the formation of an IS between a naïve T cell and

a DC has been attributed to 𝛼L𝛽2 and ICAM-1. Micro-clustering and

affinity regulation of 𝛼L𝛽2 are vital for effective signaling at the IS.

The head of activated, unbend, high-affinity 𝛼L𝛽2 is 25 nm away from

the membrane compared to 5 nm of the “bent” inactive conforma-

tion of the integrin,105 hence, the conformation of 𝛼L𝛽2 might not only

strengthen the cell-to-cell-contact at the synapse, but also controls the

intercellular space to ease TCR-MHC/peptide interactions.7,106 In this

scenario, CCR7-mediated 𝛼L𝛽2 activation at the ISwould contribute to

efficient T cell priming.7

4 REGULATION OF T CELL HOMEOSTASIS

AND SURVIVAL BY CHEMOKINES

Besides supporting activation, chemokines also promote survival of

T cells.107 Stimulation of CD4+ T cells with CXCL12 results in

enhanced cell survival in a PI3K-and MAPK-dependent manner

to increase the expression of genes associated with cell survival

while simultaneously pro-apoptotic factors are posttranscriptionally

inactivated.107 Similarly, CCR7 signaling protects CD8+ T cells from

apoptosis.108 Moreover, CCL19has a key function in naïve T cell home-

ostasis by its anti-apoptotic function109 whereas CCL21 has been

shown to regulate naïve T cell proliferation.110 The precise mecha-

nisms have not been investigated in detail.

5 CHEMOKINES ORCHESTRATE

T CELL DIFFERENTIATION

Chemokines can orchestrate the differentiation of effector T cells

and thereby shape immune responses basically in 2 ways: by acting

directly on T cells or indirectly by acting on DCs to influence their

maturation and cytokine secretion pattern111–116 (Fig. 3). The effect

of chemokines on T cell-mediated immunity and on the differentia-

tion of Th subsets has previously been reviewed for the CCL2-CCR2

and CCL3-CCR5 axis111 and for CCL2, CCL3, CCL19, and CCL21.112

Here, we therefore provide a short summary and an update on

recent advances.

T helper cell differentiation starts when naïve CD4+ T cells interact

with DCs in lymphoid organs and is, especially during the early stages,

driven by cytokines.117 The cytokines IL-12 and IFN-𝛾 are well known

to shift differentiation towardsTh1 cells required for cellular immunity

against intracellular pathogens and to contribute to inflammatory dis-

eases, whereas IL-4 is a major driver for Th2 cell differentiation play-

ing important roles in humoral immunity and allergic reactions.117,118

Th17 cells contribute to effective host-defense against bacteria and

fungi, as well as to the pathology of inflammatory diseases and

the development of autoimmune diseases and their differentiation

is more complex and mediated by multiple cytokines including IL-6,

IL-1𝛽 , TGF-𝛽 , and IL-23.117–120

CCL3 was the first chemokine shown to modulate Th cell differ-

entiation. Karpus et al. have shown that stimulation of the TCR in

presence of CCL3 resulted in increased IFN-𝛾 production.115 Subse-

quently, CCL4 and CCL5were found to own Th1 polarizing activity.121

Moreover, several other chemokines, including CCL21, CXCL12, and

CX3CL1were found to promote Th1 polarization, mainly by triggering

IFN-𝛾 production.92,93,122 While there has been conflicting results on

the role of Th2 cell differentiation, substantial evidence emerged that

CCL2 and its receptor CCR2 are important for Th1 differentiation as

discussed elsewhere.111,112 Whether that is a direct effect of CCL2–

CCR2 signaling in DCs or T cells as opposed to influencing immune cell

composition in the priming LN or cell positioning within the LN is cur-

rently not clear.

The IFN-𝛾-inducible chemokines CXCL9 and CXCL10 by trigger-

ing CXCR3 induce Th1 polarization through STAT1/4/5, whereas

CXCL11, by binding to the same receptor, drives the differentia-

tion of IL-10 producing regulatory Tr1 (IL-10 producing regulatory

T cells) and IL-4 producing Th2 cells through STAT3/6 and p70 kinase/

mTOR.123–125 Notably, CXCL11 not only promotes the polarization of
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naïve T cells into regulatory T cells, this chemokine is in addition able

to repolarize experimental autoimmune encephalomyelitis-associated

effector cells into IL-10 producing regulatory T cells to dampen the

autoimmune response.124 Noteworthy, these effects are more pro-

nounced in C57BL/6 mice which lack functional CXCL11, compared

to SJL/J mice expressing functional CXCL11124 implying that CXCL11

might only play a role in Th differentiation in certain settings.

CCR7 ligands indirectly promote Th17 polarization by inducing

IL-23 induction in DCs through a PI3K and NF-𝜿B signaling

pathway.126 Consequently, CCR7 knockout and plt/plt mice show

reduced IL-17 production due to lower IL-23 production of DCs.127 In

contrast, CXCL1, the ligandofCXCR2, directly actedonCD4+ Tcells to

augment Th17 differentiation and to enhance IL-17 production by an

unknown pathway.128

6 CHEMOKINES IN DENDRITIC CELL

SURVIVAL AND MATURATION – INDIRECT

ROLE FOR T CELLS

DCs are highly versatile APCs owing multiple functions in immu-

nity and tolerance129 that produce numerous chemokines130 and

express distinct patterns of chemokine receptors131 depending on

their maturation stage. Notably, by acting on DCs, chemokines indi-

rectly impact T cell functions. The chemokines CCL19 and CCL21 are

best known forDCguidance to LNs,78 however, bothCCR7 ligands can

induce dendritic extensions132 and enhance the endocytic capacities

of DCs.133 CCR7 ligands also act as survival signals through a PI3K/

GSK3𝛽/NF-𝜿B pathway.134,135 Simultaneously, CCR7-mediated Akt

activation results in the phosphorylation and inhibition of the pro-

apoptotic transcription factor FOXO1.135 Moreover, CCL19 and

CCL21 were found to be required for full maturation of TLR-activated

DCs and CCR7 ligand experienced DCs secrete more IL-12, IL-1𝛽 , and

TNF required for efficient T cell proliferation.136

Also the CXCR4 ligand CXCL12 was shown to promote DC mat-

uration and survival137 through Akt and subsequent phosphorylation

and inhibition of the pro-apoptotic transcription factors FOXO1/3.138

Furthermore, DCs exposed to CCL3 up-regulate the expression of the

co-stimulatory molecules B7-1 and B7-2,139 and CCL3 augments the

secretion of IL-12 by DCs to mount an efficient antiviral Th1 response

against mouse hepatitis virus infection.140

The chemokine CX3CL1 is unique in its property to be membrane-

anchored and to act as adhesion molecule. Expression of CX3CL1 by

tumor cells thereby allows DCs, by binding CX3CL1, to directly inter-

act with tumor cells.141 These CX3CL1-experienced DCs mature and

produce IL-12 to enhance Th1 polarization.141

7 CHEMOKINES REGULATE THE

FUNCTION OF NATURAL KILLER CELLS

Lymphocytes not only comprise T and B cells, but also NK cells,

cytotoxic lymphocytes of the innate immune system. NK cells can be

quickly activated without priming and exert their function by directly

killing their target cells or indirectly by secreting cytokines that shape

the adaptive arm of the immune system.142 Both functions of NK cells

are influencedby chemokines.143 The cytotoxic activity ofNKcellswas

attributed to chemokine-driven re-distribution of adhesion molecules

on their surface to facilitate interaction with the target cell.144 In

addition, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CXCL10,
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and CX3CL1 were shown to provoke the release of cytotoxic

granules.145–149 The chemokines CCL19, CCL20, and CCL21 were

shown to augment IL-2-induced proliferation of NK cells,150 whereas

CXCL2 and CX3CL1 increased IFN-𝛾-secretion from activated NK

cells resulting in Th1 polarization.139,151

Although NK cells per se do not require prior activation to ful-

fill effector functions, DCs are able to prime NK cells to enhance

their efficiency.152 In this process, CX3CL1 expressed by DCs can

promote NK cell priming,153 but the precise mechanisms remain

to be determined.

8 APPLICATION OF CHEMOKINES TO

MODULATE IMMUNE RESPONSES

Due to their multifaceted functions that go much beyond guiding

cell migration, chemokines, or chemokine-binders, could be used

to deliberately shape the immune response as therapeutic option.

Such strategies are successfully exploited by certain pathogens.

One example is the parasitic protozoan Toxoplasma gondii that pro-

duces cyclophilin-18 mimicking a chemokine acting as agonist for

CCR5.113,154 Binding of cyclophilin-18 to CCR5 on DCs induces IL-12

production, promoting a Th1 response that is key for T. gondii to

establish a persistent infection of the host and avoiding to overwhelm

the host with too many parasites.113,154 In contrast, ticks produce

evasins, highly selective chemokine binding proteins, to neutralize pro-

inflammatory chemokines to dampen the host’s immune response.155

One of these, evasin-4, has been modified for preclinical applications

in inflammatory diseasemodels.156

Chemokines are also useful to shape the immune response in can-

cer immunotherapies.157 For instance, injection or ectopic expres-

sion of CCR7 ligands in cancer cells was used to target effector cells

to the tumor for its eradication.158,159 Alternatively, chemokines can

also be used to modulate the properties of ex vivo-generated DCs

that are loaded with tumor-associated Ags to induce tumor-specific

immunity.160,161 DCs transfected with CCL21 were shown to induce

stronger antitumor immunity by increasing T cell proliferation, and

by inducing a stronger cytotoxic T cell response acquainted with Th1

differentiation.162

9 CONCLUDING REMARKS

Advances in the field clearly reveal that chemokines fulfill pleiotropic

functions that go much beyond simply guiding cell migration.

Chemokines additionally play an important role in lymphocyte

adhesion and activation, in orchestrating lymphocyte differentiation,

and inmodulating their effector functions. Future studies are required

to unravel the complex network of chemokine action. More detailed

information is particularly needed on distinct signal transduction

pathways orchestrating the multifaceted events elicited by distinct

chemokines and their receptors.
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