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Endoplasmic reticulum (ER) stress is a cell state in which misfolded or

unfolded proteins are aberrantly accumulated in the ER. ER stress induces an

evolutionarily conserved adaptive response, named the ER stress response,

that deploys a self-regulated machinery to maintain cellular proteostasis.

However, compared to its well-established canonical activation mechanism,

the negative feedback mechanisms regulating the ER stress response remain

unclear and no accepted methods or markers have been established. Several

studies have documented that both endogenous and exogenous insults can

induce ER stress in cancer. Based on this evidence, small molecule inhibitors

targeting ER stress response have been designed to kill cancer cells, with

some of them showing excellent curative effects. Here, we review recent

advances in our understanding of negative feedback of the ER stress response

and compare the markers used to date. We also summarize therapeutic inhibi-

tors targeting ER stress response and highlight the promises and challenges

ahead.
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The endoplasmic reticulum (ER) is an essential protein

folding organelle of eukaryotic cells and monitors

approximately 40% of all cellular protein biosynthesis,

folding and trafficking [1].

Endoplasmic reticulum stress is a state in which mis-

folded or unfolded proteins accumulate in the ER and

can arise as a result of numerous types of internal or

external insults; for example, mutant proteins, nutrient

status and pathogen stimuli. An adaptive mechanism,

the so-called ER stress response, becomes activated to

counter this problem and to maintain protein home-

ostasis [2]. Because of increased protein synthesis rates,

more gene mutations and the stressful microenviron-

ment, it is not surprising that ER stress could be trig-

gered in cancer cells. Indeed, numerous studies have

demonstrated that ER stress is present in many types
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of human cancers and have also shown that the ER

stress response plays a vital role in the initiation and

development of cancer [3].

In this review, we start with a concise exposition of

mechanisms underlying the adaptive response upon

ER stress. Next, we describe the feedback regulation

of the ER stress response and then compare and con-

trast the ER stress response and heat shock response

(HSR). Finally, the role of ER stress in cancer and the

available anticancer therapeutics targeting ER stress

are analyzed.

Canonical mechanisms of unfolded
protein response

Three signal branches of the UPR

The UPR comprises two steps: first, misfolded or

unfolded proteins compete and bind to chaperone

immunoglobulin heavy-chain binding protein (BiP)

from three UPR sensors [4]. Second, once activated,

the sensors further activate downstream signaling

pathways. The three UPR sensors and their corre-

sponding downstream pathway are PRKR-like ER

kinase (PERK)-eukaryotic translation initiation factor

2a (eIF2a) [5], inositol-requiring protein 1a (IRE1a)-
X-box binding protein 1 (XBP1) [6,7] and activating

transcription factor 6a (ATF6a) [8].

IRE1a

IRE1a is the most evolutionarily conserved ER stress

sensor among the three UPR signaling branches. It is

a type I transmembrane protein, containing a luminal

sensor domain, a cytosolic serine/threonine kinase and

an RNase domain [9]. Under nonstress conditions, the

luminal domain of IRE1a is associated with the ER

chaperone BiP to prevent dimerization. Upon mild ER

stress, unfolded and misfolded proteins compete for

BiP from IRE1a. IRE1a homodimerizes, autophos-

phorylates and subsequently activates its endoribonu-

clease activities [10]. Activated IRE1a cleaves a 26-

base intron from XBP1u (uncleaved form mRNA),

generating a translational frame-shift mRNA, XBP1s

(active form) [11]. XBP1 (transcription factor) enters

the nucleus and regulates a set of UPR-related genes

to enhance protein folding, secretion and ER-associ-

ated protein degradation (ERAD) to cope with the

accumulation of misfolded protein in ER [12]. Addi-

tionally, XBP1 can inhibit C/EBP homologous protein

(CHOP), thereby promoting cell survival [13]. On the

other hand, under irremediable ER stress, unfolded

proteins may bind to IRE1a to induce oligomer [14]

and trigger a promiscuous cleave at an XBP1-like site

of ER-related mRNAs, ribosomal RNA and miRNAs

[15], known as regulated IRE1-dependent decay

(RIDD), which can either preserve ER homeostasis or

induce cell death [2].The cytoplasmic part of activated

IRE1a also binds tumor necrosis factor receptor-asso-

ciated factor 2, an adaptor protein, which activates

apoptosis signal-regulating kinase 1 (ASK1) and JUN-

N-terminal kinase (JNK), leading to ER stress-induced

apoptosis by activation of BIM and inactivation of B

cell lymphoma 2 (Bcl-2) [16].

PERK

PERK is a type I transmembrane protein with a

cytosolic serine/threonine kinase domain and it is the

most rapidly activated pathway among the three

branches [17]. Similar to IRE1a, PERK is homodimer-

izated and autophosphorylated when BiP is recruited

to misfolded proteins, under conditions of acute ER

stress [18]. Activated PERK is one of the integrated

stress response (ISR) kinases that can suppress global

protein synthesis by phosphorylation-mediated inacti-

vation of eIF2a at Ser51 [19,20]. As a subunit in the

eIF2–GTP–tRNAmet ternary, phosphorylation of

eIF2a greatly inhibits the exchange of eIF2 bound

GDP for GTP, which is essential for translation initia-

tion [21]. As a result, global protein translation is sup-

pressed and causes the cell cycle to arrest in the G1

phase [22]. This process helps ameliorate the ER pro-

tein burden and recover from ER stress.

Although shutting down global mRNA translation, p-

eIF2a paradoxically increases the translation of activat-

ing transcription factor 4 (ATF4) because of its short

inhibitory upstream open reading frames in 5’-UTR [23].

ATF4 enters the nucleus to activate cascades of gene

expression constituting the ISR, which is responsible for

remediating stress, restoring homeostasis and promoting

cell survival [24]. ATF4 also stimulates the expression of

CHOP (also known as DDIT3 and GADD153), which

is responsible for the initiation of the apoptotic cascade

[23]. Ample evidence has suggested expression of CHOP

is strictly involved in cell apoptosis; however, ChIP-se-

quencing studies did not confirm that CHOP occupies

pro-apoptotic family genes. Instead, ATF4 and CHOP

formed heterodimers directly induce genes encoding pro-

tein synthesis, but not apoptosis. The increased protein

synthesis causes ATP depletion and oxidative stress,

which is an essential signal for cell death [25]. These

results indicate that cell apoptosis induced by CHOP

may result from increased protein synthesis and associ-

ated oxidative stress [26]. The heterodimer also upregu-

lates the transcription of growth arrest and DNA-
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damage-inducible protein 34 (GADD34), which pro-

motes eIF2a dephosphorylation in a negative feedback

manner and recovery from global mRNA translational

inhibition [27].

During the early stages of ER stress, ATF4 induces

miR-211 expression, which represses CHOP transcription

by enhancing histone methylation at the CHOP pro-

moter [25]. Moreover, mRNAs and proteins of CHOP

are degraded rapidly because its short half-life results in

their downregulated expression, allowing cells to adapt.

However, upon intense and persistent stress, constitutive

PERK-eIF2a activation increases CHOP stability and

induces apoptosis [28]. Therefore, activation of the

PERK–eIF2a pathway can promote both survival or

apoptosis depending on the severity of the stress.

ATF6

ATF6 is a leucine zipper-containing transcription fac-

tor and a type II transmembrane protein that has two

homologues, ATF6a and ATF6b. Under basal condi-

tions, ATF6a is retained on the ER membrane by

interacting with BiP. Upon accumulation of misfolded

protein in ER, ATF6a is released from BiP and trans-

ported to the Golgi apparatus, where it is cleaved

sequentially by membrane bound transcription factor

peptidase, site 1, and membrane bound transcription

factor peptidase, site 2, to generate an active transcrip-

tion factor (cleaved ATF6a) [29]. Cleaved ATF6a
enters the nucleus to increase transcription of XBP1

and a set of genes that increase ER protein folding

capacity and ERAD [30,31]. Unlike ATF6a, ATF6b
may act as a translational repressor of ATF6a-medi-

ated transcription and function [32].

The UPR increases capacity for protein clearance

The activation of the UPR results in a transient atten-

uation of protein synthesis, as well as an increased

capacity for protein folding. Moreover, the UPR also

upregulates the activity of protein degradative path-

ways such as the ERAD and selective ER-phagy to

decrease ER stress.

Main components and processes of ERAD

Unlike the classical UPR pathway, novel components

of the ERAD system are still being identified. The

main known mammalian components include E2s

(UBE2G2, UBE2J1, UBE2J2), E3s (HRD1, GP78,

TRC8, TEB4, RNF5, RNF170, RNF103, RFP2,

Fbx2, Fbx6, Parkin, CHIP, UBE4a, TMEM129 [33],

RNF185 [34]) and deubiquitinases (DUBs) (YOD1,

USP13, USP25, Ataxin-3, VCIP135, OTUB1) [35].

The ER does not contain degradative devices and

misfolded proteins need to be dislocated across the ER

membrane for degradation by the cytosolic 26S protea-

some. The main processes of ERAD include substrate

recognition, retrotranslocation, polyubiquitination,

substrate extraction and proteasomal degradation [36].

Substrate recognition

Substrate recognition is a vital process in ERAD

because inefficient recognition causes the accumulation

of misfolded protein and overactive recognition may

have costs. However, how the ERAD components rec-

ognize the misfolded protein is largely unclear. Many

studies have focused on the recognition of luminal N-

glycosylated ERAD substrates in yeast. A large number

of ER proteins are modified at asparagine residues

within the canonical N-glycosylation sites (NxS/T) with

a well-defined, branched glycan chain Glc3Man9Glc-

NAc2 (Glc, glucose; Man, mannose; GlcNAc, N-acetyl-

glucosamine) [37]. A prolonged ER residency, usually

originating from the protein folding problem, results in

the trimming of terminal mannoses by the mannosidase

Htm1 (EDEM in mammals) and the formation of an a-
1,6-linked mannose residue [38,39]. The mannose 6-

phosphate receptor homology (MRH) domain of ER-

resident lectins Yos9 (OS-9/XTP3-B in mammalian)

binds to this biochemical mark [40] and directs the

mannose-trimmed misfolded proteins to the groove of

Hrd3 (SEL1L in mammals), which can bind the mis-

folded polypeptide segment around the glycan [41,42].

Because the affinity between substrates and Hrd3 or

MRH domain is low, the chaperone Kar2 (BiP in mam-

mals) may help in this process [43]. The mechanisms of

nonglycosylated protein recognition are less clear. A

study focusing on the degradation of three ERAD

nonglycosylated proteins suggested that glycosylated

and nonglycosylated proteins shared a similar recogni-

tion complex comprising of calnexin, EDEM1, OS-9,

XTP3-B and HRD1 [44]. However, in another study,

nonglycoproteins were found to be captured by BiP

and then transferred to the ER disulfide reductase

ERdj5 for reduction of disulfide bonds without going

through the calnexin/EDEM1 pathway [45].

Retrotranslocation and polyubiquitination

According to the location of the misfolded protein

domain (the ER lumen, the ER membrane, or the

cytosolic side of the ER membrane), misfolded ER

proteins can be retrotranslocated in three pathways
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(ERAD-L, ERAD-M and ERAD-C) even though

ERAD-L and ERAD-M share the similar components

[46]. After being selected, ERAD-L substrates are retro-

translocated across the ER membrane back into the

cytoplasm by the complex consisted of the RING-finger

ligase Hrd1p and other cofactors (Hrd3, Usa1 and

Der1) [47]. Hrd1p allows the misfolded luminal domain

of a substrate to move across the membrane by

autoubiquitination on several lysines within its RING-

finger domain [48]. Hrd1p contains eight transmem-

brane segments and can only form a ‘half-channel’. The

whole channel across the membrane comprises two

‘half-channels’ corresponding to the cavities of Hrd1p

and the rhomboid-like Der1 protein, linked by Usa1.

The two proteins make the membrane between them

much thinner by distorting it, which weakens the energy

barrier to accommodate a polypeptide chain. The

ERAD-L substrate inserts into the retrotranslocon as a

hairpin, one side interacting with Der1 and the other

with Hrd1p. Then, polyubiquitination occurs at a suit-

able lysine residue that emerges in the cytosol, which

could prevent backsliding of the polypeptide into the

ER lumen [42]. Hrd1p overexpression can mediate the

retrotranslocation in the absence of its cofactors Hrd3,

Usa1 and Der1 [49], even though the selectivity for mis-

folded proteins is lost [47]. This indicates Hrd1 plays a

central role in this retrotranslocation. This comprises

the most conserved ERAD mechanism in mammals.

ERAD-M substrates also use Hrd1p and Hrd3, but this

is independent of Usa1 and Der1. ERAD-C substrates

are directly targeted to the Doa10 [46]. Doa10 also rec-

ognizes some substrates with the misfolded domain

within their membrane-spanning region [50]. Recently,

the fourth ERAD pathway to dispose of inner nuclear

membrane proteins has been identified. It relies on an

Asi RING-finger ligase complex that comprises three

integral membrane proteins: Asi1, Asi2 and Asi3

[51,52].

Substrate extraction and degradation

Almost all ERAD polyubiquitinated substrates are

pulled out of the ER membrane by a common

machine, the ubiquitin-interacting p97 ATPase com-

plex [53]. It consists of an AAA + ATPase Cdc48

(called p97 or VCP in mammals) hexamer that forms

a double-ring construction and associates with two

cofactors, Ufd1/Npl4, which can bind the polyubiqui-

tin chain of the substrate [54]. Some nonubiquitinated

substrates such as cholera toxin can be translocated

into the cytosol in a p97 independent manner, which is

consistent with the requirement for polyubiquitination

in p97 function [55]. The misfolded protein is pulled

through the central pore of the double-ring ATPase,

causing its unfolding by hydrolyzing ATP. When the

substrate is completely translocated, the release from

the p97 ATPase complex requires a DUB, Otu1,

because the Ufd1/Npl4 is still associated with the

polyubiquitin chain. A minority of substrates lose all

ubiquitins, whereas most of them retain an oligoubiq-

uitins chain [56]. How the trimmed substrates from

Cdc48 are transferred to the proteasome is still

unclear. They are probably transferred directly to the

proteasome through the oligoubiquitin chain or the

polyubiquitin chain extended by Ufd2 [57]. The

unfolded substrates may be kept soluble by cytosolic

chaperones such as the BAG6 [58] complex and trans-

ferred to the proteasome by the shuttling factors

Rad23 and Dsk2 because they have both ubiquitin-

and proteasome-binding domains [59]. Finally, the

ERAD substrates are degraded by the proteasome.

Aggregated proteins and ER components are cleared by

selective ER-phagy

Autophagy, a self-degradative process, is another adap-

tive mechanism upon ER stress. Activation of ER stress

and autophagy was demonstrated by detecting the pro-

tein markers and it was found that inhibited ER stress

could reduce the level of autophagy [60]. Autophagy

triggered by ER stress mainly includes the ER stress-

mediated autophagy, selective ER-phagy and ER-to-

lysosome-associated degradation (ERLAD).

The ER stress-mediated autophagy is characterized

by the generation of autophagosomes that include

aggregated proteins, worn-out proteins and damaged

subcellular organelles under ER stress conditions. Ca2+

and the three UPR branches are necessary for the acti-

vation of ER stress-mediated autophagy [60,61]. ER

contains a high concentration of Ca2+. The escalation

of intracellular Ca2+ release into the cytoplasm from

ER upon ER stress stimulates a CamKK/AMPK

dependent pathway that relieves mTOR inhibition on

the ULK1 complex and induces autophagy [62]. Ca2+

also activates death-associated protein kinase, which

phosphorylates Beclin1 on T119 and promotes Beclin1

dissociating from Bcl-2, inducing autophagy [63]. As

mentioned above, p-IRE1a could activate JNK, and

JNK1, but not JNK2, mediates Bcl-2 phosphorylation.

Phosphorylation at T69, S70 and S87 promotes the dis-

ruption of the Beclin-1/Bcl-2 complex and autophagy

activation [64]. XBP1s, another product from p-IRE1a,
triggers autophagy through transcriptional activation of

Beclin-1 [65]. Additionally, the PERK/eIF2a pathway is

essential for stress-induced autophagy because overex-

pression of ATF4 results from eIF2a phosphorylation,
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and the ATF4-mediated CHOP activation was shown

to transcriptionally induces a set of autophagy-related

genes such as LC3, ATG5, ATG3, ATG7, ATG10,

beclin1 and p62 [66]. Furthermore, the ATF6 pathway

indirectly regulates autophagy via the transcriptional

activation of CHOP [67].

The ER-phagy might be a new branch of ER stress-

mediated autophagy, in which ER fragments are

sequestered within double membrane autophagosomes

and transported to the lysosomes for degradation with

the assistance of ER-phagy receptors. ER-phagy recep-

tors are the ER-resident Atg8-binding proteins that dec-

orate specific ER subdomains for capture by

autophagosomes [68]. To date, six mammalian ER-

phagy receptors have been identified: family with

sequence similarity 134 member B (FAM134B) [69],

reticulon-3 (RTN3) [70], Sec62 [71], cell cycle progres-

sion-1 (CCPG1) [72], atlastin-3 (ATL3) [73] and

TEX264 [74]. FAM134B is an ER membrane protein

that is mainly located at the edges of the ER sheets and

is the first of the ER-phagy receptors to be described

and characterized. Downregulation of FAM134B pro-

tein causes an expansion of the ER, whereas FAM134B

overexpression results in ER fragmentation [69]. RTN3

and ATL3 are located at ER tubules and are involved

in the turnover of ER subdomains on nutrient depriva-

tion [70,73]. Recently, TEX264 was identified as a sin-

gle-pass transmembrane protein involved in starvation-

induced ER-phagy [74]. CCPG1 is a type II, single-pass

transmembrane protein. By contrast to FAM134B and

RTN3, CCPG1 carries a luminal domain, which recog-

nizes and binds to lumenal protein aggregates and

sequesters them into autophagosomes. CCPG1 will

respond to an overloaded ER with misfolded or aggre-

gated proteins [72]. Sec62 mainly plays a role in

RecovER-phagy, which is discussed below.

ERLAD was specially defined in 2018 to distinguish

it from ER-phagy, even though the phenomenon that

nonautophagic clearance from the ER of aggregated

proteins by direct conversion of ER into lysosomes

was discovered several decades ago [75]. In ERLAD,

ER-derived vesicles containing material to be removed

from cells are not captured by autophagosomes, but

can fuse with lysosomes [76].

Negative feedback loop in the ER
stress response

Negative feedback regulation of the HSR in

prokaryotes

Negative feedback regulation in the stress response is

highly conserved with respect to the evolution of

eukaryotes and prokaryotes. HSR plays a major role in

sustaining protein homeostasis in prokaryotes. When

Escherichia coli cells are suddenly exposed to high tem-

perature, transcription factor r32 is rapidly translated

by rpoH mRNA for which the 5’ region is required for

thermal regulation, repression at low temperature or

nonstress conditions [77]. r32 rapidly increases the syn-

thesis of chaperone HSP (e.g. DnaKJ) and protease

(e.g. FtsH) to refold or degrade the denaturation pro-

teins resulting from the high temperature. As a manner

of feedback regulation, free chaperones can directly

bind and inactivate r32 [78], which is extremely unsta-

ble and rapidly degraded by the membrane-localized

FtsH protease in a chaperone-dependent manner. Signal

recognition particle-dependent targeting of r32 to the

membrane is an essential step in this progress [79,80].

The HSR in bacteria may be evolutionarily related

to an ER stress response such as the UPR in eukary-

otic organisms [80]. The breakthrough in prokaryotes

research may provide inspiration for UPR investiga-

tions. The similarities between the HSR in bacteria

and the UPR in eukaryotic organisms are compared in

Table 1.

Actually, ER stress response should be a fine-tuning

regulation machinery like the HSR in prokaryotes.

The overactivated or defective responses that do not

match the stress level will harm cells. Excess UPR

products also need to be disposed during stress recov-

ery (Fig. 1). By contrast to the classical UPR path-

ways that have been constantly proposed, the feedback

regulation of the ER stress response largely remains

mysterious.

BiP and its J-domain co-chaperones (ERdj4)

restrain excessive IRE1a activity

BiP and ERdj4 are key regulators for restraining the

UPR in the feedback regulation machinery. ERdj4 has

two functional domains: the targeting domain and the

J-domain. The targeting domain can associate with the

IRE1a luminal domain and recruit BiP. The J-domain

stimulates the ATPase activity of BiP. Thus, it pro-

motes BiP binding to IRE1a. Subsequently, ERdj4 is

ejected and a repressive BiP-IRE1a complex is formed.

During ER stress, accumulated unfolded proteins com-

pete for BiP and ERdj4, and IRE1a dimerizes and

activates downstream pathways as described above.

Once the stress is relieved or as a result of UPR acti-

vation, redundant ERdj4 and BiP will disrupt the

active IRE1a luminal domain dimmer, forcibly

monomerize IRE1a and repress the UPR [81]. Previ-

ous studies have reported that XBP1s, the product of

IRE1a activation, induces the expression of ERdj4
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and BiP [82]. As a result, the ‘ERdj4-BiP-IRE1a’ axis
may represent a form of negative feedback for fine-

tuning the IRE1a pathway.

Protein disulfide isomerase (PDI) limits excessive

UPR signaling

PDI is a multifunctional protein catalyzes the forma-

tion, breakage and rearrangement of disulfide bonds

[83] or functions as a chaperone at high concentrations

[84]. Recently, S357 of PDI was found to be phospho-

rylated by Fam20C and induce an open conformation

of PDI that can bind to the lumenal domain of IRE1a
and attenuate excessive IRE1a activity [85].

Protein disulfide isomerase family A member 6

(PDIA6), a resident ER protein, attenuates the IRE1a
signaling by directly binding to C148 in the IRE1a
luminal domain, which is oxidized when IRE1a is acti-

vated [86]. However, PDIA6 was demonstrated to

interact with IRE1a and enhance IRE1a activity in

another study [87]. In addition to IRE1a, PDIA6 was

also found to interact with PERK and inhibit its sig-

naling [86]. By contrast to PERK and IRE1, PDIA6

cannot affect ATF6 signaling. However, another two

protein disulfide isomerases, PDIA5 and ERp18, were

found to monitor ATF6 ER quality control [88,89].

Moreover, the production of XBP1u, a 261aa protein,

functions as a negative regulator of ATF6 and XBP1s

by direct association and promotes rapid degradation

of the complex by the proteasome [90]. This evidence

provides a mechanism for maintaining UPR activation

within a physiologically appropriate range.

IRE1a is an endogenous substrate of ERAD

ERAD was described and named in 1996 [91] and it

has long been thought to be an integral part of the

UPR, as previously discussed. However, a recent study

revealed that the UPR sensor could be degraded by

ERAD to downregulate the ER stress response. In a

quantitative liquid chomatography-tandem mass spec-

trometry analysis of purified microsomal/ER fractions

from SEL1L induced knockout and wild-type mouse

embryonic fibroblasts, IRE1a was found to be an

endogenous substrate for the SEL1L-HRD1 ERAD

complex without a significant change in the mRNA

abundance of IRE1a [92].

First, as a membrane protein, the recognition of

IRE1a for ERAD may depend on BiP and OS-9, as

well as three intramembrane hydrophilic residues of

IRE1a. Under basal conditions, IRE1a is sequestered

by redundant BiP, selected and transferred to the

SEL1L-HRD1 complex and then degraded. BiP can

not only act as an IRE1a blocker, but also an IRE1a-
ERAD trigger. Under ER stress, BiP is competed by

misfolded proteins leading to IRE1a dimer-/oligomer-

ization, which is resistant to the SEL1L-HRD1 com-

plex and activation, as discussed above. BiP may play

a key role in the inactivation of IRE1a. IRE1a dissoci-

ates from ERAD and is stable when BiP is depleted

and degrades faster when BiP is overexpressed. As fur-

ther evidence, D123P mutant IRE1a has a shorter

half-life than wild-type IRE1a because mutant IRE1a
associates with BiP constitutively even under stress

conditions [92]. Thus, this unique feedback mechanism

Table 1. Similarities between the HSR in prokaryotes and the ER stress response in eukaryotes.

HSR ER stress response

Inducer Heat Misfolded protein

Sensors 5’ region of rpoH mRNA PERK, IRE1a, ATF6

Transcript factors r32 ATF4, XBP1, cleaved ATF6

Consequences

• Chaperones: DnaK, GroEL, GroES • Attenuate global protein translation: p-eIF2a
• Increase protein folding capability: chaperones

• Proteases: HslVU, FtsH • Promote protein degradation: ERAD, ERLAD

• Induce apoptosis

Feedback regulation

• Chaperones inhibit r32 activity • Chaperones inhibit IRE1a activity

• GADD34 promotes eIF2a dephosphorylation

• XBP1u degrades ATF6 and XBP1s

• Proteases degrade r32 • HRD1-SEL1L complex degrades IRE1a
• RecovER-phagy clears excess ER components
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between the UPR and ERAD fills an important gap in

the ingenious self-regulatory mechanism of the ER

stress response.

RecovER-phagy help ER return to prestress

condition

Another feedback mechanism in the ER stress

response is RecovER-phagy [71], which is triggered, or

substantially enhanced, when recovery from ER stress

takes place. Upon resolution of ER stress, excess ER

components must be removed so that both the volume

and the content of the ER can return to prestress con-

ditions. This process is assisted by selective autophagic

programs. Excess ER subdomains decorated with

Sec62 containing molecular chaperones and folding

enzymes, although excluding ERAD factors, will be

delivered to the autolysosomal system for clearance.

Sec62 is a channel protein of the translocon complex,

being responsible for importing proteins into the ER

and acting as an ER-resident autophagy receptor.

Sec62 contains a conserved LC3-II-interacting region

in the C-terminal cytosolic domain, promoting the

delivery of select ER domains to autolysosomes for

clearance [71].

In sum, ER stress response is a conserved self-regu-

latory process that can maintain homeostasis via a

multiple feedback loop. However, some aspects of the

process have not be clarified; for example, how ERAD

components are downregulated when the stress is

relieved and whether the ATF6 pathway also has a

feedback loop. Accordingly, additional studies are

worthwhile, which may use findings in HSR in

prokaryotes for reference.

The adaptive ER stress response in
human cancers

UPR signal proteins are used as ER stress

markers

To confirm whether ER stress exists in cancer cells,

markers of ER stress should first be determined. This

is an equivocal area because ER stress is characterized

by misfolded or unfolded proteins in the ER, and any

Fig. 1. Feedback regulation of the ER stress response. (A) Upon ER stress, misfolded proteins compete for and recruite BiP from

monomeric IRE1a. Then, IRE1a homodimerizes, autophosphorylates and subsequently induces activation of transcription factor XBP1, which

regulates a set of protein folding genes such as BiP and ERdj4. Although ER stress is ameliorated, redundant ERdj4 and BiP forcibly disrupt

the IRE1a dimer into a monomer to repress the UPR. PDIs, such as p-PDI and PDIA6, can also bind to IRE1a and limit excessive IRE1a

activity. (B) Under basal conditions, monomeric IRE1a can be transferred to the SEL1L-HRD1 complex, where it is degraded with the

assistance of OS-9 and BiP. This is a bridge between the UPR and ERAD. (C) When cells recover from ER stress, excess ER subdomains

decorated with SEC62 containing molecular chaperones and folding enzymes will be delivered to the lysosome for clearance. SEC62 serves

as an LC3-II binding protein. Chaperone BiP plays a central role in ameliorating ER stress and negative feedback of the ER stress response

(p, phosphorylation; XBP1s, transcriptionally active XBP1; XBP1u, unspliced XBP1).
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direct measurement remains challenging even though

two methods attempt to bypass this difficulty.

The ER lumen is remarkably enlarged, as can be

observed by electron microscopy during ER stress.

This method has been used to monitor ER stress in

pancreatic b cells [93]. Another method is the use of

fluorescent protein reporter ER-targeted redox-sensi-

tive GFP (eroGFP) to dynamically measure ER redox

status [94]. The ER should maintain an oxidizing envi-

ronment because oxygen is essential for disulfide bond

formation during post-translational protein folding, as

discussed above [95]. As a result, redox changes should

accompany the unfolded protein concentration. Under

oxidizing conditions, eroGFP becomes disulfide-linked

because it has an engineered cysteine pair on adjacent

surface-exposed b-strands, with increased excitation

from 400 nm and decreased excitation from 490 nm.

The ratio of the fluorescence measured from these two

wavelengths reports the ER redox status in ER and

represents the unfolded protein concentration.

Such methods are direct and powerful, although

they are inconvenient with respect to use in complex

research such as clinical studies. Indded, the cells are

described as experiencing ‘ER stress’ if the down-

stream UPR components are positively detected. The

UPR is an ingenious self-regulatory mechanism that

makes it highly coordinated to ER stress levels in cells,

as discussed above. Activation of UPR signal proteins

may represent ER stress levels in cells. Positive detec-

tion of partial components of the UPR has been used

as a marker for ER stress, including under physiologi-

cal or pathological conditions [96,97]. Nevertheless,

the UPR is a complex and dynamic process and the

idea that any UPR protein can be used as a golden

marker remains uncertain.

A review comprising 17 primary studies summarized

ER stress markers in mammalian oocytes and pre-im-

plantation embryos, identifying BiP as the most popu-

lar (11/17) marker for indicating ER stress. Other

markers, such as ATF4, ATF6, XBP1, CHOP, PERK,

IRE1a, ASK1 and GRP94, are also used in related

studies [98]. Another review analyzed 14 types of

human cancer, revealing that almost all studies (23/27)

take BiP as evidence for ER stress and approximately

half of them (11/27) take BiP as the only marker to

indicate ER stress. Other molecules are used, such as

CHOP, GRP94, XBP1, GRP75, HSP60, calreticulin,

HSP90, ATF6, HSP27, HSP70, IRE1a and GADD34

[3]. BiP is not only a central regulator of the three ER

stress sensors, but also the common consequence of

the three parallel signaling branches of the UPR with

respect to increasing protein folding capability. How-

ever, whether BiP is suitable as a golden marker to

diagnose ER stress in cells still requires verification.

Additionally, there is a fatal logical fallacy if UPR

proteins are used as ER stress predictor. Cells lacking

UPR components are likely to be more stressed

because they are unable to evoke an effective adaptive

response to cope with the accumulated misfolded pro-

tein. This indicates that the development of a direct

and convenient method or marker would be worth-

while.

Numerous exogenous and endogenous stimuli

make it presumable that higher ER stress exists

in cancer cells

Internal insults such as aberrant proteins resulting

from gene mutations and high rates of protein transla-

tion may induce ER stress in cancer cells. Human can-

cer cells possess dozens of nonsynonymous mutations,

on average 100–120 mutations [99], with certain can-

cers such as melanoma and lung cancers harboring

more than 200 mutations [100]. It is well-known that

increased protein synthesis and translocation into the

ER, as a result of hyperactivation of proto oncogenes

or loss-of-function mutations in a tumor suppressor, is

one of the hallmarks of cancer. This comprises a

source of excess misfolded or unfolded protein, which

could overwhelm ER protein folding capacity and

induce ER stress.

Cancer cells usually have more stringent microenvi-

ronment conditions, such as nutrient deprivation (hy-

poxia or glucose deprivation), pathogens or

inflammatory stimuli, which may perturb protein fold-

ing and trigger ER stress. The rapid expansion of the

tumor mass and less efficient vasculature lead to the

generation of hypoxia and a lack of glucose regions in

solid tumors. Disulfide bond formation is a main post-

translational modification during protein synthesis in

the ER. It is evident that, during post-translational

protein folding or isomerization, oxygen is essential

for disulfide bond formation, even though it is formed

rapidly during protein synthesis without oxygen [95].

Glucose metabolism supplies tumor cells with ATP

and functions as a donor for glycosylation. Glucose

deprivation can lead to the efflux of Ca2+ from the ER

because of inhibition of the sarcoplasmic/ER Ca2+-

ATPase pump [101] and improper protein glycosyla-

tion of misfolded proteins. As a result, cancer cells are

presumed to harbor a higher ER stress level.

The ER stress adaptive response has been docu-

mented in many types of human cancer. Understand-

ably, cancer cells are highly secretory and prone to

constitutive UPR activation. Some types of cancer,

including multiple myeloma (MM), can express high
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levels of immunoglobulins. Additionally, many solid

cancers, such as pancreatic, lung, breast, ovarian and

colon cancers, also show evidence of increased expres-

sion of mucin [102,103]. However, ER stress responses

have also been documented in other types of cancer,

such as skin, prostate, brain, gastric, liver and kidney

carcinoma [3]. This indicates that ER stress responses

may play an essential role in cancer at multiple stages.

Role of the ER stress adaptive
response in cancer cells

The ER stress adaptive response is an indispensable

process for cancer development and cancer cells facili-

tate multiple mechanisms to achieve this goal, including

activating the pro-survival branch of the UPR during

neoplastic transformation, bolstering viability under the

harsh microenvironment, stimulating angiogenesis and

promoting metastasis by supporting epithelial-to-mes-

enchymal transition (EMT) or dormancy.

Cancer cell survival

The ER stress adaptive response promotes cancer cell

survival in normal cells in a similar manner. Neoplas-

tic transformation is initiated by overactivation of

oncogenes (H-Ras and c-MYC) or loss of tumor sup-

pressors (p53) driving unrestricted rapid cell division

and protein synthesis, which overwhelms the protein

folding capacity of ER and results in ER stress. This

triggers the ER stress adaptive response to ameliorate

stress and protects cancer cells from apoptosis.

Oncogenic H-Ras during cancer development is a

canonical example. Following the proliferative response

just after H-Ras transduction, primary mouse ker-

atinocytes undergo premature senescence after 7–
10 days. As expected, inhibiting IRE1a or XBP1 using

pharmacological or genetic approaches reduces the pro-

liferation of H-Ras keratinocytes. However, there is an

odd phenomenon where prolonged treatment of H-Ras

keratinocytes with 4-phenyl butyric acid, a molecular

chaperone that can decrease unfolded proteins [104], not

only reduces the UPR activation, but also inhibits prolif-

eration. Further study reveals that the proliferation of

cancer cells requires XBP1 splicing to cope with rapid

protein synthesis, whereas cleavage of helix–loop–helix
transcription factor ID1, one of the RIDD mRNA tar-

gets, drives senescence upon prolonged ER stress [105].

Cancer angiogenesis

Neovascularization is a limiting factor for solid can-

cers that are unable to grow beyond 1–2 mm without

angiogenesis. The UPR has been shown to play a vital

role in cancer angiogenesis.

Silencing PERK, IRE1a and ATF6 can strongly

suppress cancer angiogenesis induced by hypoxia or

nutrient deprivation [106–108]. This may result from

the XBP1, ATF4 and cleaved ATF6, which can

directly bind to the promoter or enhancer sites of the

vascular endothelial growth factor-A (VEGFA), the

predominant mediator of angiogenesis, and transcrip-

tionally upregulate its expression [109]. In addition to

VEGFA, other pro-angiogenic factors such as inter-

leukin (IL)-6 and fibroblast growth factor (FGF)2 are

also suppressed when knocking down PERK or ATF4

in an orthotopic squamous cell carcinoma upon glu-

cose deprivation treatment [107]. Similar to PERK,

underexpression of IRE1a or XBP1 is also correlated

with the downregulation of prevalent pro-angiogenic

cytokines such as FGF2, IL-1b, IL-6 and IL-8, which

likely contributes to the reduction of angiogenesis in

malignant glioma and triple-negative breast cancer

[106,108]. However, in contrast to IRE1a-XBP1 activ-

ity, improved IRE1a-RIDD activity via mutation in

glioblastoma multiform suppresses cancer angiogene-

sis. This highlights the dual RNase function of IRE1a
[110].

Cancer metastasis

EMT is a cell-biological program, where polarized

epithelial cells lose their adhesion property and obtain

mesenchymal cell phenotypes. It not only is involved

in embryogenesis, but also plays an important role in

cancer invasion and metastasis [111]. Abnormal acti-

vation of EMT during cancer metastasis loses con-

tacts between cells and upregulates extracellular

matrix proteins, thus facilitating the migration and

invasion of cancer cells that are confirmed to be

related to activation of PERK. Cancer cells that are

hypersecretory undergo EMT and it is reasonable to

oberve constitutive activation of PERK–eIF2a–ATF4

signaling upon EMT [112]. Furthermore, pretreat-

ment of metastatic 4T1 cells with a PERK inhibitor

diminishes their metastatic capacity, as assessed by

lung tumor burden after tail-vein injection. Addition-

ally, ATF4 was reported to protect EMT cells from

anoikis, a type of apoptosis following matrix detach-

ment, via inducing the expression of the major

antioxidant enzyme heme oxygenase 1 and promoting

metastasis [113].

The function of IRE1a-XBP1 in EMT of cancer

cells is complex. Expression of EMT genes and ATF4

target genes is strongly correlated in breast, colon, gas-

tric, lung cancers and metastatic cancers of various
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origins. Nevertheless, no significant correlation was

observed between the expression of EMT and other

branches of the UPR, such as the IRE1a-XBP1 path-

way [112]. Another study induced EMT via overex-

pression of lysyl oxidase-like 2 (LOXL2) in MDA-

MB-231 and Hs578T basal-like carcinoma cell lines,

indicating the crucial roles of IRE1a- XBP1 in EMT.

The accumulation of LOXL2 in ER sequesters BiP

and activates IRE1a-XBP1, which transcribes EMT-

TFs such as SNAI1, SNAI2, ZEB2 and TCF3 directly.

Furthermore, inhibition of XBP1 with 4l8c, a blocker

targeting IRE1a RNase activity, can reduce LOXL2-

mediated loss of E-cadherin, a cell adhesion marker

[114].

Even if cancer cells invade stromal cell layers and

enter the circulatory system successfully, their growth

may be restrained because of the inhospitable tissue

microenvironments. They can remain in this quiescent

state for years, or even several decades, until microen-

vironmental conditions improve [115]. This process is

referred to as tumor dormancy and overexpression of

the UPR marker, BiP, has been reported in dormant

cancer cells [116]. Increased p38 activity activates a

pro-survival mechanism in dormant HEp3 squamous

carcinoma cells via upregulating BiP and activating

PERK. This allows dormant cells to resist chemother-

apy inducing apoptosis by preventing Bax activation

[117]. Constitutive ATF6 activation is also documented

in dormant HEp3 cells rather tumorigenic HEp3 squa-

mous carcinoma cells, which is related to cell survival

via the Rheb and mTOR pathway [118].

Other roles of the adaptive ER stress response in

cancer cells

Similar to its dual role in normal cells, the ER quality

control system can promote cancer cell survival or

death in a context-dependent manner. Nevertheless,

for better development, some special strategies may be

taken by cancer cells to suppress UPR-induced apop-

tosis and promote survival.

Similar to normal cells, acute ER stress activates the

three UPR branches (IRE1a, PERK and ATF6) to

promote cancer cell survival via reducing misfolded

protein levels. IRE1a and ATF6 activities are rapidly

attenuated upon chronic ER stress, whereas PERK

signaling, including the expression of pro-apoptotic

transcription regulator CHOP, was maintained, which

triggers apoptosis in normal cells [119]. However, in

melanoma cells, IRE1a and ATF6 are reported to sus-

tain activation by increasing activation of the MEK/

ERK pathway and protecting cancer cells from ER

stress-induced apoptosis [120].

Under mild/acute ER stress, IRE1a self-associates

into dimmers and activates XBP1 to ameliorate ER

stress. Under severe/chronic ER stress, IRE1a sur-

passes an oligomerization threshold to induce RIDD

and induce apoptosis. Those cell processes occur in

normal cells. However, in some human cancers, the

activity of IRE1a with respect to inducing RIDD is

inhibited by IRE1a mutants that can still splice XBP1

mRNA [121]. Hence, cancer cells escape from ER

stress-induced apoptosis at the same time as sustaining

their pro-survival function.

Another cancer-supporting role of the UPR is to

help cancer cells escape from the immune defense by

decreasing the MHC I-peptide presentation. Decreased

surface expression of MHC I was found upon ER

stress even though intracellular MHC I proteins were

not changed. An impaired MHC I-peptide presenta-

tion is more related to global translation attenuation

regulated by p-eIF2a, reducing the overall peptide

pool for MHC I loading [122].

The role of ERAD and ER-phagy in cancer devel-

opment and progression remains largely unknown.

SEL1L is upregulated in colorectal cancer [123],

whereas ectopic SEL1L induction in pancreatic cancer

cells leads to G1 phase cell cycle arrest via the induc-

tion of a phosphatase and tensin homolog. Moreover,

high levels of SEL1L in pancreatic cancer cells also

lead to a reduction in invasiveness, possibly by modu-

lating genes related to cell–matrix interactions [124].

Another well-studied ERAD component in cancer cells

is OS-9, which was proposed as an important link

between hypoxia regulation and cancer progression by

mediating the degradation of HIF-1a [125]. The roles

of ER-phagy receptors, FAM134B and Sec62, in can-

cer cells have been reported. Mutations in FAM134B

have been observed in various malignancies and may

play a dual role. FAM134B loss may promote colorec-

tal cancer cell tumorigenicity [126], whereas it acts as

an oncogene and promotes cancer development in eso-

phageal squamous cell carcinoma [127]. The Sec62

gene is also amplified in several cancers, including lung

adenocarcinomas, prostate, thyroid, and head and

neck squamous cell carcinoma [128,129]. However, its

molecular role in cancer remains undefined.

Therapeutics targeting ER stress
response: current strategies and
undesired side effects

Cancer cells may require an appropriate UPR activa-

tion level to protect from stress and promote survival.

Either increasing ER stress or decreasing the UPR

activation level should tip the balance and induce
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apoptosis. Hence, there are two main anticancer thera-

peutics exploiting the UPR. The first approach com-

prises ER stress inducers, which raise ER stress to a

critical level and trigger cell apoptosis. The second

approach involves protective pathway antagonists,

which block the adaptive response acting as a pro-sur-

vival mechanism. Small molecule inhibitors are

designed based on those strategies, as discussed in

many reviews [130,131]. Some of them not only inhibit

the UPR, but also simultaneously increase ER stress.

In this review, some representative ones are taken as

examples (Fig. 2).

ER stressors

As a result of intrinsic and extrinsic insults, cancer

cells usually stay in a chronic or severe ER stress state

and are pushed near the apoptotic threshold. Other

stimuli such as ER stress inducers act as the straw that

breaks the camel’s back. Tunicamycin is a canonical

ER stress inducer via inhibition of UDP-N-acetylglu-

cosamine:dolichyl-phosphate N-acetylglucosamine-

phosphotransferase (GPT), which can transfer GlcNAc

to dolichol phosphate in ER and disrupt protein N-

glycosylation. Based on this mechanism, tunicamycin

has been identified as a potential anticancer drug. It

Fig. 2. Pharmacological targeting of the ER stress response. EGCG, epigallocatechin gallate; 3,6-DMAD, N9-(3-(dimethylamino) propyl)-N3,

N3,N6,N6-tetramethylacridine-3,6,9-triamine; HAA (hydroxy-aryl-aldehydes); DHA, docosahexaenoic acid; AEBSF, 4-(2-aminoethyl)

benzenesulfonyl fluoride; GPT, UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosamine-phosphotransferase.
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has been reported that tunicamycin treatment alone

could promote autophagy and apoptosis in several

cancers. Moreover, tunicamycin increases chemother-

apy and radiation therapy-induced apoptosis by

increasing basal ER stress in cancer cells [132,133].

Other ER stress inducers include PDI inhibitors (3-

methyltoxoflavin, CCF642, E64FC26, LOC14,

PACMA31) [131], ER Ca2+ATPase noncompetitive

inhibitor thapsigargin [134] and brefeldin A, which is a

very common inducer of ER stress by inhibiting pro-

tein transport from the ER to the Golgi apparatus

[135]. Celecoxib, a COX-2 selective nonsteroidal anti-

inflammatory drug approved by the US Food and

Drug Administration for treating the pain and inflam-

mation, could lead cancer cell to death through induc-

ing ER stress [136].

Rescuer blockers

XBP1 mRNA splicing is the main activation product

of IRE1a and promotes cell survival, as discussed

above. STF083010 is an IRE1a inhibitor that blocks

the IRE1a RNase domain without affecting its kinase

activity and oligomerization. It can form a covalent

bond with IRE1a K907 in the RNase catalytic site

and disrupt its endoribonuclease activity for XBP1

mRNA and RIDD. Treatment of human MM cells

with STF-083010 alone showed cytotoxic activity in

various in vitro and in vivo models [137]. MM cells

may under inherent ER stress. STF-083010 blocks

XBP1 and hampers the protective function, making

cells intolerant to the existing stress and tipping the

balance toward apoptosis. However, a recent study

reported that pretreating gastric cancer cells with STF-

083010 considerably relieved ER stress-induced autop-

hagy and apoptosis induced by melatonin [138]. Other

rescuer blockers include IRE1a inhibitors (MKC-3946,

4µ8C, toyocamycin, 3,6-DMAD, HAA, irestatin,

A106, APY29, sunitinib, quercetin, compound 3) [139],

ATF6 inhibitors (ceapins, AEBSF) [140], PERK inhi-

bitors (GSK2656157, GSK2606414, 6-shogaol) and p-

eIF2a inhibitors (ONC201, ISRIB) [141].

Multifunctional inhibitors

Small molecule inhibitors targeting ERAD usually

result in the accumulation of misfolded proteins and

cause ER stress-related apoptosis. Eeyarestatin I (EerI)

is an ERAD inhibitor targeting p97. It has two func-

tional domains. One is an aromatic domain responsi-

ble for localizing EerI to the ER membrane and

improving its target specificity. Another is a nitrofu-

ran-containing group responsible for binding to the

p97 ATPase [142]. EerI has been shown to have antitu-

mor activity in malignant myeloma cells and HER2

positive breast cancer cells. However, p97 protein

expression is decreased in almost all primary lung can-

cers. Moreover, EerI treatment induces ER stress and

potently activates an EMT-like state in cells, which

contributes to chemoresistance and poor survival [143].

EerI not only acts as an ERAD inhibitor hampering

misfolded protein degradation activity, but also results

in increased accumulation of misfolded protein in the

ER, making the ER stress tenser. Bortezomib (BTZ) is

similar to EerI in this respect. It not only targets to

ERAD, but also is an ER stress inducer approved by

the US Food and Drug Administration for treating

MM and mantle cell lymphoma. The sensitivity of

BTZ is related to the amount of immunoglobulin

retained within MM cells. Preplasmablasts do not syn-

thesize high levels of immunoglobulin and are resistant

to BTZ [144]. Other multifunction inhibitors include

p97 inhibitors (DBeQ, ML240, CB-5083, NMS-873)

[145] and proteasome inhibitors (carfilzomib, nelfi-

navir, marizomib, MLN9708, NPI-0052, falcarindiol,

MG132) [146].

Therapeutics targeting cell-surface BiP (csBiP) in

cancer cells

Another therapeutic targeting ER stress is BiP, which

can be overexpressed on the surface of cancer cells but

not normal cells [147]. Multiple csBiP ligands, such as

prostate apoptosis response-4, isthmin1, plasminogen

Kringle5, secreted BiP, synthetic peptides and mono-

clonal antibodies, have been identified. They play mul-

tiple roles, including pro-proliferation, pro-survival

and pro-apoptosis, even though the transduction

mechanism is unclear [148]. PAT-SM6, a human mon-

oclonal IgM antibody isolated from a gastric cancer

patient, has shown promising results in early-stage

clinical trials of relapsed or refractory MM [149,150].

The antibody can induce cancer cell death by comple-

ment-dependent cytotoxicity and antibody-dependent

cellular cytotoxicity by selectively targeting csBiP of

MM cells [151]. Moreover, csBiP auto-antibodies

decrease the metastatic properties of cancer cells in

ovarian cancer patients [152]. Other BiP blockers

include DHA, arctigenin, MAb159, EGCG, versipelo-

statin, SubAB and HA15 [153].

Limitations and side effects of therapeutic

approaches targeting the ER stress response

The ER stress adaptive response is an essential mecha-

nism for cancer cell survival. As a result, it is a
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promising target for cancer therapy. However, some

special characteristics should be considered.

Different cancer types have different ER stress levels

and, even in the same cancer tissue, different cancer

cells could have different ER stress levels. ER stress

inducers or UPR antagonists only selectively kill cells

with a lower threshold. As noted above, several small

molecule inhibitors targeting ER stress function as an

anticancer drug in some cancer types, whereas they

have anti-apoptosis effects or induce chemoresistance

in others [138,143].

When ER stress inducers or UPR antagonists push

cancer cells toward death thresholds, normal cells that

are dependient on the protective mechanism of the UPR

may suffer the same stress insults, especially secretory

organs such as the pancreas. GSK2656157 is an ATP

mimetic PERK kinase inhibitor with respect to blocking

PERK autophosphorylation and phosphorylation of

eIF2a. GSK2656157 exhibits significant antitumor effi-

cacy in multiple human tumor xenograft growths in

mice. However, the pharmacological inhibition of PERK

in adult mice by GSK2656157 causes damage to pancre-

atic exocrine acinar cells and islet cells, which limits its

application in cancer therapy [154].

Conclusions and perspectives

In recent decades, great progress has been made in the

identification of key components of the ER stress

response, as well as the underlying mechanisms. How-

ever, important aspects such as the feedback regulation

of the ER stress response remain incompletely under-

stood. As a fundamental adaptive response, tumor

cells hijack the ER stress response to protect them-

selves from various insults occurring during cancer ini-

tiation and progression. The ER stress response

represents a promising target for anticancer therapies

and dozens of molecules targeting every branch of the

ER stress response have been developed. However,

most of them have not reached the clinic because of

insufficient efficacy or obvious negative side effects,

with the latter likely arising as a result of the compen-

satory functions of the ER stress response. Thus, new

and more specific targets that can distinguish normal

cells from malignant neoplastic cells are urgently

needed. We still have a long way to go before target-

ing of the ER stress response can become an effective

anticancer therapy.
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