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One of the key challenges of cancer biology is to catalogue and understand

the somatic genomic alterations leading to cancer. Although alternative defi-

nitions and search methods have been developed to identify cancer driver

genes and mutations, analyses of thousands of cancer genomes return a

remarkably similar catalogue of around 300 genes that are mutated in at

least one cancer type. Yet, many features of these genes and their role in can-

cer remain unclear, first and foremost when a somatic mutation is truly onco-

genic. In this review, we first summarize some of the recent efforts in

completing the catalogue of cancer driver genes. Then, we give an overview of

different aspects that influence the oncogenicity of somatic mutations in the

core cancer driver genes, including their interactions with the germline gen-

ome, other cancer driver mutations, the immune system, or their potential

role in healthy tissues. In the coming years, this research holds promise to

illuminate how, when, and why cancer driver genes and mutations are really

drivers, and thereby move personalized cancer medicine and targeted thera-

pies forward.
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medicine; variants of unknown significance

The analysis of the first cancer genomes revealed that

each tumor had acquired hundreds or even thousands

of somatic mutations during its evolution. While at the

time there was already a catalogue of genes known to

be involved in cancer, whole-exome and later whole-

genome sequencing of tumor samples provided the

opportunity to identify cancer genes in an unbiased

and data-driven way. To that end, dozens of computa-

tional biology and bioinformatics groups started devel-

oping tools to analyze these large datasets and

distinguish the genes that contribute to tumor progres-

sion from those that are instead neutral.

Genes in this first category are called driver genes,

those in the latter are named passengers and the same

nomenclature can be used for both individual muta-

tions and other genetic events. Interestingly, despite

the apparent simplicity of this concept, the exact defi-

nition of cancer drivers is still debated, as best evi-

denced by hundreds of papers offering different

practical implementation of algorithms identifying

them. Most of them are based on the idea that drivers

should show evidence of positive selection, which can

be defined by a statistically significant difference

between an observed number of mutations and those
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expected by chance. But the background mutation rate

and its distribution are not known, and different algo-

rithms use different assumptions to estimate it.

More than a decade and tens of thousands of cancer

genomes later, thousands of genes, at some point, have

been defined as potential cancer drivers using different

algorithms. Nevertheless, there is a list of around 300

genes that is consistently identified in almost all analy-

ses: This core list consists of the most important can-

cer driver genes and is unlikely to change in the

future. Encouragingly, many of these genes were first

identified decades ago by molecular biologists and now

are being ‘rediscovered’ by unsupervised analyses. So,

while we have not yet identified the precise catalogue

of cancer driver genes or events, nor do we even agree

on their definition, there seems to be a broad consen-

sus about a ‘core’ group.

Besides lacking a ‘final list’ of cancer driver genes,

we also do not understand many of the cancer-relevant

features of these genes. Arguably, one of the most

important open questions is when a somatic alteration

in a cancer driver gene is truly oncogenic, as personal-

ized cancer care often hinges on its answer. Here, we

will review the recent efforts that address this question

across multiple biological scales. We will first focus on

how different mutations within the same cancer driver

gene might have different effects. Then, we broaden

the scope and summarize recent results supporting the

existence of functional interactions between somatic

mutations in cancer driver genes and other genetic

alterations, either somatic or germline. Finally, we give

an overview of the evidence gathered so far about the

role of the tissue context in determining the oncogenic-

ity of cancer driver mutations.

The most common cancer driver
genes have been identified

Since the creation of the first Cancer Gene Census

(CGC) [1], there have been several major efforts to

compile a comprehensive catalogue of cancer driver

genes. Most of the recent analyses have exploited data

from The Cancer Genome Atlas [2] (TCGA) or the

International Cancer Genome Consortium [3] (ICGC)

and the integration of several computational tools to

identify cancer driver genes [4,5]. Others, like the

aforementioned CGC, have relied on manual curation

of the literature [6]. Over the past 15 years, there have

been dozens of studies aimed at completing the cata-

logue of cancer driver genes [7–10] and, as a result of

these efforts, thousands of genes have been suggested

to drive cancer growth.

To evaluate whether there is a consensus on which

genes are true drivers and how much we have learned

during the genomic era of cancer, we have compared

four of the most cited lists of cancer driver genes that

spanned different time points across the last seven years

[4-5,7,10], as well as the first [1] (2004) and the current

[6] (2019) versions of the CGC (Fig. 1). Of note, the

genes linked to cancer only by means of germline muta-

tions or somatic translocations were excluded from both

CGC lists, as these are not analyzed by most cancer dri-

ver detection tools. These lists together contain 741

genes, and there is a set of 280 genes common to two or

more lists. The original CGC contained 94 genes (after

the filtering mentioned above). Of these, 26 have been

consistently found in all subsequent studies, including

‘classical’ cancer driver genes such as TP53, KRAS,

NRAS, HRAS, EGFR, and BRAF. The remaining 68

are divided between those found at least once in the fol-

lowing 15 years (32 genes), and those that were never

re-identified as somatic drivers (36). Although one might

think that this last group of genes represents false posi-

tives, it includes genes with known germline roles in can-

cer such as FANCCA, FANCD2, FANCF, XPC,

ERCC3, and ERCC5.

There are 48 genes that were not part of the original

CGC but have been found in all following studies and

are now included in the CGC. Among them are some of

the most important discoveries from the first cancer geno-

mics era, for instance, B2M, STAG2, IDH1, IDH2,

ARID1A, SPOP, KDM6A, RHOA, CASP8, or PIK3R1,

as well as genes that were initially linked to cancer only

via translocations and are now known to be altered by

somatic single nucleotide variants, such as EP300.

Notably, the number of unique genes found in each

list has been shrinking over the years, from 122 unique

genes (Tamborero et al. [5], 2013) to 54 and 56 genes

Box 1. Take-home messages

• We are nearing an almost-complete catalogue of

cancer driver genes

• The main drivers were discovered decades ago,

but we still do not understand many aspects of

their biology

• Cancer driver genes have many variants of

unknown significance

• The germline genome interacts with the somatic

variants

• Cancer driver genes interact also with each other

• The oncogenicity of cancer driver genes and

mutations depends on the tissue and overall con-

text (e.g., germline mutations, immune status of

the individual)
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(Martincorena et al. [7] and Bailey et al. [4], 2018),

suggesting that the number of false positives is

decreasing over time and that the identification of new

cancer driver genes is plateauing (Fig. 1B). In fact,

most of the cancer driver genes found in two studies

were discovered in the first TCGA analyses (Tam-

borero et al. [5] and Lawrence et al. [10]; Fig. 1C).

Thus, it seems likely that the most common cancer dri-

ver genes have already been discovered. However, as

we will see in the following sections, this does not

mean that we understand their role in oncogenesis.

Variants of unknown significance in
cancer driver genes

The type and distribution of somatic mutations within

cancer driver genes strongly depends on their oncogenic

role [11]. Oncogenes usually have clear hotspots that are

strongly enriched in somatic activating missense muta-

tions (e.g., KRAS G12, PIK3CA E545, BRAF V600).

On the other hand, tumor suppressor genes tend to be

affected by frameshift or truncating mutations that

completely abrogate the function of the encoded pro-

tein. Tumor suppressor genes can also have somatic

mutation hotspots that inactivate their function, but

these are rarer and tend to affect genes that can be both

oncogenes and tumor suppressors, depending on the

context. Hence, it is easy to know whether a mutation is

oncogenic, as identifying frameshift and truncating

mutations is relatively straightforward and there are cat-

alogues of which missense mutations in a given hotspot

have oncogenic effects [12].

Nevertheless, there are many cases where a tumor car-

ries a variant of unknown significance (VUS) in a cancer

Fig. 1. The quest for new cancer driver

genes is approaching its end. (A) Upset

plot showing the overlap of six different

sets of cancer driver genes published

during the last 15 years. (B) Barplot

showing the fraction of cancer driver

genes that is either unique to each set

(orange) or found in at least another study

(gray). (C) Barplot showing the number of

high-confidence driver genes (i.e., those

found at least twice) was found for the

first time in the analyzed dataset
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driver gene. These are often missense mutations located

in tumor suppressor genes or outside the known muta-

tional hotspots in oncogenes. To put this in perspective,

patients from TCGA have a total of 44 607 somatic

mutations in cancer driver genes. Only 5435 of these are

in OncoKB [12], leaving the oncogenicity of the remain-

ing 39 172 (88%) unknown. Even if we assumed that all

frameshift and truncating mutations in cancer driver

genes are oncogenic, there would remain 28 238 mis-

sense mutations of unknown significance (63% of all

somatic mutations in these genes; Fig. 2A).

There are two main approaches to analyze the role

of these variants of unknown significance: experimen-

tal and computational. Experimental methods are

more time consuming, but recent advances in satura-

tion mutagenesis, CRISPR technology and automation

of cell culture make the high-throughput analysis of

thousands of mutations more accessible to researchers.

In fact, a subset of cancer driver genes has been ana-

lyzed using deep mutational scans that test virtually all

potential mutations in a certain gene. This has been

done, for example, for TP53 [13,14], BRCA1 [15],

HRAS [16], PTEN [17], and MAPK1 [18]. There are

also other analyses that, while not comprehensively

studying individual proteins, have reported the onco-

genicity of thousands of somatic mutations in dozens

of different genes [19,20].

Computational methods have also been extensively

explored. Their main advantages are that they are

orders of magnitude faster and less expensive than

experimental methods, allowing researchers to study vir-

tually any mutation. For example, using 12 different

computational tools, we predicted the role of all mis-

sense mutations in the cancer driver genes from TCGA

[4]. These predictions had a large agreement with

OncoKB [12] annotations (Fig. 2B), with the advantage

that they gave information on 28 238 missense somatic

mutations not annotated in OncoKB. Importantly, 4864

missense mutations in cancer driver genes from TCGA

with no data in OncoKB are predicted to be oncogenic

(Fig. 2B).

According to the type of data employed, there are

four different groups of computational methods to

predict the effects of VUS (Table 1). Group I consists

of methods that use sequence information to distin-

guish between benign and disease-associated muta-

tions. These tools have not been designed specifically

for cancer but, instead, to separate mutations associ-

ated with rare diseases, diabetes, asthma, and cancer,

among others, from those that are benign. Methods in

Group II also use sequence information but have been

trained specifically to distinguish between passenger

and driver mutations using cancer-specific data. The

distinction between disease-associated (Group I) and

oncogenic mutations (Group II) seems important, as

the performance of each group of methods in separat-

ing passenger and driver mutations is different [4].

Group III includes those methods that predict cancer

driver mutations using data from three-dimensional

protein structures. These methods seem to be more

accurate than those that use only sequence data [4],

but they can only be applied to mutations where the

structure is experimentally determined or can be rea-

sonably modeled. Finally, there is a fourth group of

methods (Group IV) that combine linear and three-di-

mensional features using machine-learning approaches.

Whenever possible, it is important to couple compu-

tational predictions with experimental data. For exam-

ple, most EGFR mutations in brain tumors

(glioblastoma and lower grade glioma) are located

near its dimerization interface (Fig. 2C). However, we

only have experimental annotations for a small subset

of all of these mutations. Putting side by side the

experimental results and the computational predictions

(Fig. 2D), a reasonable agreement between the two,

albeit with some discrepancies, comes to light.

Historical contingency and cancer
driver genes

The paths that life can follow are constrained by previ-

ous events, including seemingly inconsequential genetic

variations. This phenomenon, also known as historical

contingency [21], has implications in tumor evolution,

as a mutation might be beneficial in a certain genetic

background and detrimental in another. Similarly, a

tumor might only be able to access certain genotypes,

if it has previously acquired other mutations. As we

will see in the following paragraphs, cancer cells are

also subject to historical contingency: The evolutionary

paths that a tumor can explore depend on the genetic

variations it has acquired over time [22].

The genetic background of a cancer cell includes

both the somatic variants it has acquired over time

and the germline variants that, by definition, were pre-

sent before any somatic variant ever occurred. For

example, each individual carries between 20 000 and

30 000 coding germline variants, some of which even

completely disrupt entire proteins [23]. Moreover, each

individual also has hundreds or thousands of germline

noncoding variants that influence gene expression,

including cancer drivers [24]. Finally, once somatic

evolution begins, it can add hundreds of coding

somatic variants and thousands of noncoding ones,

and the order in which some of them are acquired will

determine the final phenotype of the cancer cell.

4236 FEBS Letters 594 (2020) 4233–4246 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Understanding cancer driver genes and mutations E. Porta-Pardo et al.



Fig. 2. Predicting the oncogenicity of somatic mutations. (A) Number of missense somatic mutations in cancer driver genes in TCGA,

according to their oncogenicity annotation in OncoKB. (B) Computational prediction of the oncogenicity of all somatic missense mutations in

cancer driver genes found in TCGA. Each column represents an OncoKB category. (C) Subset of somatic missense mutations in the

dimerization interface of EGFR found in glioblastoma and lower grade glioma patients from The Cancer Genome Atlas. Mutations are

colored according to their OncoKB annotations. (D) A consensus classification of some somatic mutations in EGFR, including all those from

panel a. Each tile is colored according to the classification of the corresponding mutation as annotated in OncoKB (bottom), a computational

analysis (middle) and a potential consensus between the two (top)
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The germline genome can interact with cancer driver

mutations both in cis and in trans (see [25] for an in-

depth review of the topic). Cis interactions are those

that happen between variants of the same locus, and

such functional interactions have been described for a

few cancer driver genes. One of the first examples of

germline–somatic cis interactions was described for the

JAK2 somatic mutation V617F. This mutation, which

transforms JAK2 into driver of myeloproliferative neo-

plasms, is much more likely to happen in the haplo-

type with the minor allele of rs12343867 [26]. Similar

interactions have been described for somatic EGFR

exon 19 deletion, which is three times more likely in

individuals with the minor rs712829 allele, located in

the gene promoter [27]. Finally, it is worth noting that

deep mutational scans could help discover many cis

interactions between germline and somatic variants.

This has been recently shown in TP53, where the effect

of dozens of somatic missense mutations depends on

the allele of the germline ultra-rare rs35163653

(MAF < 1e-5, p.V217M) [14].

Cancer driver mutations can also interact in trans

with germline variants. This phenomenon has been

recently explored using data from TCGA [28], identify-

ing 28 germline variants associated with changes in the

frequency of 20 somatic variants, suggesting an inter-

action between the two. One of the better character-

ized interactions in that study is that between the

germline variant rs25673 and somatic PTEN muta-

tions. Individuals with the minor germline allele at

rs25673 are five times more likely to have a PTEN

somatic mutation in their tumors. The likely reason is

that these individuals have an intrinsic higher expres-

sion level of STK11 and/or GNA11. When adding

information at the pathway or protein interaction net-

work, the possible connection between these two genes

becomes apparent, as they are both upstream of

PTEN, so their higher expression could make a

somatic PTEN mutation more oncogenic than it would

be in a different genetic background [28]. These results

highlight the importance of accounting for protein

interactions and signaling pathways, already routinely

used by many approaches that analyze either germline

[29-33] or somatic [34-39] variants alone, when inte-

grating both.

Interactions between the germline and somatic gen-

omes could also have consequences for genetic risk

prediction. For example, 25 germline SNPs associated

with glioma and glioblastoma have been recently

tested for their association with the most frequent

somatic alterations in these cancer types: IDH1

R132H and 1p/19q deletions [40]. Based on this analy-

sis, the authors were capable of building a polygenic

risk score that predicted not only risk to glioma but,

specifically, to IDH1-driven glioma. Given the signifi-

cant biological differences between IDH1-mutated and

IDH1 wild-type brain tumors, whether this can be

extended to other combinations of cancer types and

somatic driver events remains to be seen. Nevertheless,

these are significant first steps toward a comprehensive

understanding of the interactions between the germline

genome of cancer patients and the somatic mutations

acquired by their tumors.

Sex of the patient and their ancestry also correlate

with the type and outcomes of many cancers, high-

lighting the importance of historical contingency and

germline–somatic interactions in tumor evolution. The

prevalence of many cancer types differs between males

and females: Thyroid cancer is three times more likely

to occur in women than in men, whereas bladder can-

cer is twice more likely in men than in women, for

example. While this could be attributed to differences

in the environment of each gender, such as prevalence

of smoking or differences in hormone levels, multiple

lines of evidence also point to genetics [41]. For exam-

ple, the frequency of certain somatic driver mutations

depends on the sex [42]. Also, the sex chromosome X

contains multiple oncogenes and tumor suppressors

that can contribute to sex bias and other cancer phe-

notypes by escaping X-inactivation in females [43,44].

Similarly, the genetic ancestry of an individual also

correlates with the prevalence of cancer driver muta-

tions. For example, somatic mutations in TP53 and

Table 1. List of driver prediction algorithms and their classification

(see text for details)

Method Group References

SIFT I [79]

PolyPhen-2 I [80]

MutAssessor I [81]

transFIC I (Ensembl) [82]

CADD I (Ensembl) [83]

MCAP I [84]

REVEL I (Ensembl) [85]

VEST I [86]

FATHMM II [87]

CanDrA II [88]

CHASM II [89]

ParsSNP II [90]

HotMAPS III [91]

HotSpot3D III [92]

3DHotspots.org III [93]

e-Driver3D III [94]

CATH-FunFams III [95]

CHASMplus IV [96]
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CCNE1 are more common in cancer from African

Americans than in those from Europeans, whereas the

opposite is true for somatic variants in PI3KCA [45].

Finally, the order in which somatic mutations

occurred can also influence their phenotype. One of

the first examples of this phenomenon was described

in a model of colorectal cancer, where tumors only

develop when somatic mutations are acquired in a pre-

cise order [46]. Similarly, renal tumors seem to be con-

strained to only few evolutionary pathways [47].

Which one of these pathways is taken by the tumor

seems to be determined by the initial somatic driver

event. Recently, using TCGA data, this has been sys-

tematically studied in dozens of different cancer types.

The TCGA analysis provided indirect evidence of

somatic historical contingency, as somatic mutations

can either be clonal (i.e., they are acquired in the pri-

mary neoplasm and are thus present in all tumor cells)

or subclonal (i.e., they are acquired after the tumor

started its expansion and are only present in a subset

of cells) [22]. An even more dramatic example is seen

in myeloproliferative neoplasms. There are two key

driver genes that, when mutated somatically in a mye-

loid progenitor, they can potentially become malig-

nant: JAK2 and TET2. However, the final phenotype

of the patient depends on the order in which these

mutations are acquired. If a mutation in JAK2 is

acquired before the TET2 mutation, there is an expan-

sion of hematopoietic stem and progenitor cells as well

as a blockage of the expansion of erythroid progeni-

tors. On the other hand, if the order is inverted, there

is an expansion of megakaryocytes and blockage of

the hematopoietic cell pool [48].

Overall, it seems clear that the evolutionary trajecto-

ries of cancer cells are constrained by the genetic vari-

ants already present in their genomes, regardless of

their somatic or germline origin. Understanding and

predicting such constraints could have significant

impact in both, the diagnosis (as seen for the polygenic

risk scores for IDH1 mutations) as well as the treat-

ment of cancer [49].

The relationship between the immune
system and cancer driver genes

Following the explosion of immune-based therapies to

treat cancer, we are now also improving our under-

standing of the complex relationship between the

immune system and somatic cancer driver mutations.

The relationship between the two seems to be bidirec-

tional, as the immune system has a strong effect in

determining which cancer driver mutations can happen

in a cancer patient [50] while, at the same time, the

presence of certain driver mutations correlates with the

quantity and composition of immune cells in the

tumor microenvironment (TME) [51].

Regarding the influence of the immune system in the

presence of cancer driver mutations, it is mostly medi-

ated by the fact that all somatic mutations can create

neoantigens: peptides that have not been previously

presented to immune cells via HLA and that, there-

fore, can be identified as foreign by the immune sys-

tem. If presented in the appropriate context, these

neoantigens can trigger an immune response that ends

in the elimination of the cell that carries them, a pro-

cess known as immunoediting. As any other somatic

mutation, those located in cancer driver genes are not

exempt from immunoediting. In fact, driver somatic

seem to have been selected to be poorly presented in

the majority of both, class I [50] and class II HLA

alleles [52]. At the individual patient level, a common

immune-evading mechanism of cancer cells is the loss

of expression of HLA alleles that can present their dri-

ver mutations [53]. In fact, the effect of immunoediting

is so strong that it can be seen at the population level:

The frequency of a cancer driver mutation is nega-

tively correlated with the frequency of the HLA alleles

that present the peptides derived from it [52].

However, as explained above, the presence of certain

cancer driver mutations correlates with differences in

the quantity and composition of the immune infiltrate

in the tumor microenvironment [51,54]. Whether these

correlations are causal or not remains to be seen in

most cases, but some molecular mechanisms have been

proposed for a few cases. For example, somatic muta-

tions in driver genes with known roles in immune sig-

naling, such as CASP8 or HLA, are generally

associated with higher levels of immune cells in the

TME, likely because these mutations are, indeed, an

immune-evading mechanism. In other cases, however,

the connection can be more obscure, as in the case of

colorectal tumors with KRAS mutations. These

tumors are known to have low levels of immune infil-

trate and be resistant to immune-checkpoint blockade.

These phenotypes could be due to KRAS repressing

the interferon regulatory factor 2 (IRF2), leading to

high CXCL3 expression and the recruitment of mye-

loid-derived suppressor cells to the tumor microenvi-

ronment [55]. Another group of cancer driver

mutations with a likely mechanism to link them with

changes to the immune infiltrate of the TME are those

in the Wnt/beta-catenin pathway. Tumors with muta-

tions in this pathway, particularly in CTNNB1, have

low levels of immune cells across multiple cancer

types, likely through the exclusion of BATF3-derived

dendritic cells from the TME [56]. Overall, however,
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the relationship between somatic driver mutations and

the immune response against cancer cells will likely be

an important topic in the coming years.

Interactions between the tissue of
origin of the tumor and cancer driver
genes

The cell of origin of the tumor also influences the

oncogenic potential of cancer driver mutations. This is

evident, for example, in the differences in the preva-

lence of a given mutation across different cancer types

(Fig. 3). Out of the 299 cancer driver genes recently

described in the Pan-Cancer Atlas analysis of TCGA,

only TP53 has a median somatic mutation frequency

over 10% across all cancer types (35%) and only ten

other genes have a median frequency above 1%

(ARID1A, ATM, BRAF, KMT2C, KRAS, NF1,

PIK3CA, PTEN, RB1, and SMARCA4). The remain-

ing 288 cancer driver genes have a median mutation

frequency below 1%. Moreover, the mutation fre-

quency of each cancer driver gene is highly variable.

For example, BRAF has a frequency above 50% in

melanoma and thyroid adenocarcinoma but below

10% in all other cancer types (Fig. 3). Something simi-

lar happens with EGFR, with relatively high mutation

frequencies in glioblastoma (24%), lung adenocarci-

noma (7%) and glioma (6%), but below 1% in the

remaining 30 cancer types. Overall, there are 43 cancer

driver genes that have a mutation frequency above

10% in at least one cancer type, but whose median fre-

quency is below 1%.

Moreover, even if somatic driver mutations are

shared across cancer types, their role and interactions

can differ depending on the tissue. This is the case of

BRAF V600E, which is present in melanoma and col-

orectal adenocarcinoma patients. Yet, these two tumor

types differ in their sensitivity to the BRAF inhibitor

vemurafenib. Melanoma patients initially respond very

well to the treatment [57], but colorectal cancer

patients do not [58]. Similarly, some driver mutations

seem to cooperate in some cancer types but are mutu-

ally exclusive in others. This is the case, for example,

of KRAS and TP53, which co-occur in pancreatic ade-

nocarcinoma but are mutually exclusive in lung adeno-

carcinoma [59].

Cancer driver genes can also show different muta-

tional patterns depending on the cancer type [60].

These differences could be caused by the distinct muta-

tional processes active in each cancer type. This has

been shown in TP53, where the prevalence of the dif-

ferent missense mutations in different cancer types

depends, not only on the effect of the mutation, but

also on the mutational signature active in that cancer

type [13]. Another possibility is that the molecular pro-

cesses altered by different mutations within the same

gene can have varying tissue-specific degrees of onco-

genicity, as could be the case for PIK3CA mutations

[61,62] (Fig. 4).

All of the above is likely to have a significant impact

also on personalized cancer care. For example, germ-

line mutations in BRCA1 and BRCA2 predispose to

multiple cancer types, specifically to ovarian and

breast cancer in women and prostate cancer in men.

Using a synthetic lethality screen, Jonsson et al. dis-

covered that breast cancer cells with mutations in these

two genes are sensitive to PARP inhibitors [63]. Since

BRCA mutations are relatively common in many other

cancer types, it was hoped that the synthetic lethality

interaction between PARP and BRCA would also

extend to these other cancer types. Nevertheless, it

seems that the lethal interaction only happens in speci-

fic cell lineages, specifically the same ones where germ-

line BRCA1 and BRCA2 mutations predispose to

cancer. This highlights the importance of tissue speci-

ficity, not only to understand oncogenesis [64,65], but

also in determining the success of targeted therapies

[66].

Healthy cells can carry driver
mutations

One of the most paradoxical and surprising results

about cancer driver genes is the discovery of healthy

cells with somatic driver mutations. This was first

shown in skin cells carrying the BRAF V600E muta-

tion [67], but has been later extended to cells from the

esophagus with NOTCH1 truncating mutations [68],

with more recent studies extending the work to healthy

colon [69], the colon of patients with inflammatory

bowel disease [70], or the endometrium [71]. In fact,

two analyses have studied somatic mutations in the

entire human body [72,73]. The authors identified

somatic mutations from RNAseq coming from 29 dif-

ferent tissues of over 500 healthy donors that were

part of the GTEx project (https://www.gtexportal.org/

home/). Virtually all tissues seemed to carry cancer dri-

ver somatic mutations in some individuals, even if

none of them had been diagnosed with cancer. The

most extreme example of this phenomenon is probably

the recently described role of somatic PTEN, KMT2D,

and ARID1A mutations in healthy liver [74]. These

genes are known cancer drivers, but recently Zhu et al.

showed that, under certain circumstances, somatic

mutations in these genes are actually beneficial to the

homeostasis of the liver [74]. Liver cells that have
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Fig. 3. Cancer driver genes are tissue-specific. Each boxplot in the x-axis represents the distribution of mutation frequencies for a cancer

driver gene across the 33 cancer types of TCGA. Out of the ten most frequently mutated cancer driver genes (average across all tissues)

are highlighted in orange. Only TP53 has an average mutation frequency above 10%

Fig. 4. Mutation-hotspot prevalence of PIK3CA depends on cancer type. (A) The mutation frequency of different hotspots (E545, in blue,

H1047, in red, and the N-terminal domain, in yellow) differs depending on the cancer type (left). (B) Location of the different hotspots in the

PIK3CA–PIK3R1 dimer (in white and green, respectively) structure from PDB file 3HMM
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somatic mutations in PTEN, KMT2D or ARID1A

have higher fitness. When the liver is under stress and

needs to be regenerated, these cells can expand faster

than their nonmutated counterparts and, thus, regener-

ate the tissue in less time.

Overall, it seems that somatic cancer driver muta-

tions are pervasive in healthy organs. But, in that case,

how is it possible that all of us have thousands of cells

with oncogenic mutations and not develop cancer? The

most accepted theory to explain this is that a cell

requires multiple somatic insults before becoming

malignant. This agrees with observations from prema-

lignant stages of certain tumors, where cells already

have some driver mutations, but it is not until they

reach a minimum threshold, or certain specific driver

mutations that they actually become malignant [75].

This is the case, for example, of age-related clonal

hematopoiesis, which is a natural phenomenon in

which the pool of hematopoietic stem cells becomes

dominated by a few clones as individuals age. When

such clonal expansion is accompanied by somatic

mutations in driver genes, it can eventually cause acute

myeloid leukemia (AML). However, not all driver

mutations carry the same risk to cause AML: While

TP53 and U2AF1 significantly increase the risk of

AML, mutations in DNMT3A or TET2 seem to lead

to less aggressive cell phenotypes [76]. Moreover, hav-

ing two or more of these mutations increases the risk

proportionately [76]. Along the same line, most tumors

from adult patients harbor between 5 and 10 cancer

driver mutations irrespectively of their overall muta-

tion rate [77], suggesting that many tumors need a

minimum number of driver mutations before becoming

oncogenic. However, another interesting alternative is

that the germline genome could modulate the onco-

genic potential of somatic mutations. As we have

shown before, there is evidence of interactions between

somatic and germline variants, so it is possible that

driver mutations are only oncogenic when they happen

in the right germline genetic background. Finally, as is

oftentimes the case, all of these mechanisms are not

mutually exclusive but, in fact, are likely interacting

with each other.

Conclusions and Perspectives

As we near the end of the beginning of cancer geno-

mics, new questions emerge around the role of cancer

driver genes and their associated somatic mutations.

One of the most pressing questions that we need to

answer is, probably, which mutations are truly onco-

genic and which are not, as many aspects of personal-

ized cancer care hang from it.

Here, we have reviewed the features that seem to

influence the oncogenic role of cancer driver muta-

tions. First, we have shown that cancer driver genes

have many variants of unknown significance, many of

them potentially benign from the clinical point of view.

However, although new experimental methods, such as

deep mutational scans, can give us insights into the

oncogenic potential of virtually all mutations in a can-

cer driver gene, computational tools are still the only

practical alternative in most cases.

Then, we have reviewed the recent evidence about

the role of historical contingency and interactions with

the germline genome in determining the oncogenicity

of cancer driver mutations. The same somatic muta-

tion in a cancer driver gene might have different

effects depending on which other genetic variants are

already present in the cell. This includes both inherited

germline variants, as well as other somatic variants

that the (pre)cancerous cell has acquired over time.

Moreover, the genetic background of the patient,

namely the pre-existing germline variants, is also likely

to affect the oncogenicity of the somatic mutations

that happen later in life [78], as evidenced by the dif-

ferences in somatic mutation patterns in individuals

with different sex or ancestry. While we already have

numerous examples of such phenomena, we are only

beginning to grasp its importance.

We have also discussed the importance of the tissue

where driver mutations arise. All cancer driver genes,

with the exception of the omnipresent TP53, are fre-

quently mutated only in a single or few tissues. More-

over, as shown for PIK3CA and EGFR, the mutation

patterns within a gene can also change depending on the

cancer type. This, together with evidence that the same

driver mutation in different tissues might lead to very

different phenotypes (such as drug sensitivity as in the

case of BRCA1 and BRCA2), highlights the tissue of

origin of somatic mutations must be taken into account

in order to properly assess their oncogenic roles.

Another important question that we will need to

address in the coming years is the bidirectional rela-

tionship between the immune system and cancer driver

mutations. Understanding this relationship can be key

to find, among others, new drug combinations that

extend the scope of immune-based therapies.

Finally, we have also discussed the growing evidence

showing that somatic mutations, including those linked

to cancer, seem to be pervasive throughout the body of

healthy individuals. This can potentially be explained if

each cancer cell would require a minimum amount of

driver mutations to become tumorigenic. However, the

sheer number of cells that seem to carry potentially

oncogenic mutations, together with the surprising
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results showing the regenerative role of PTEN,

ARID1A, and KMT2D somatic mutations in healthy

liver, suggest that other phenomena are likely interven-

ing in the process.

In conclusion, while we have probably already iden-

tified the core cancer driver genes, in the coming years

addressing all of these questions will help understand

how, when, and why cancer driver genes and muta-

tions are really drivers.
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