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This paper presents a personal, selective, and sometimes critical retrospective

of the history of ABC transporters in multidrug resistance (MDR) of cancer

cells, overrepresenting discoveries of some early pioneers, long forgotten, and

highlights of research in Amsterdam, mainly focussing on discoveries made

with disruptions of ABC genes in mice (KO mice) and on the role of ABC

transporters in causing drug resistance in a mouse model of mammary cancer.

The history is complemented by a list of erroneous concepts often found in

papers and grant applications submitted anno 2020.
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I started with MDR research in 1984. Five years later,

I was sitting in a panel before an audience of some

500 scientists in Bethesda. The enthusiasm was palpa-

ble. Soon, the eternal problem of drug resistance in

treating disseminated cancer would be solved. The

pump, P-glycoprotein (Pgp), caused the resistance, and

soon, we would block the pump and incapacitate the

tumor cell’s defense [1]. I was not so sanguine at the

time about Pgp as most of the panel members. With

my medical training and from teaching chemotherapy

to medical students, I knew that about half the drugs

used to treat cancer patients, the alkylating agents, the

platins, and the antimetabolites, were not transported

by Pgp. It seemed a long shot to expect other pumps

for all of these.

It helped my knowledge of chemotherapy that I had

moved from the University of Amsterdam to the

Netherlands Cancer Institute-Antoni van Leeuwen-

hoek Hospital in 1983. At the time, my experience

with cancer was limited. I had spent most of my thesis

on rigorously demonstrating that mitochondria from

cancer cells were completely normal in all properties

that could be measured in 1958–1961 [2], in contrast

to the concept that mitochondria in cancer cells are

uncoupled, postulated with great authority, but mini-

mal evidence, by the formidable German Nobel laure-

ate Otto Warburg [3]. Fortunately, I discovered the

malate–aspartate shuttle on the side [2,4]. Nevertheless,

I left the cancer field with the impression that cancer

research was one step behind basic research in bio-

chemistry and to be avoided.

So why return to cancer in 1983 and become the

director of a cancer institute? It would be nice if I

could present this move here as part of a career master

plan, but it was not. As I have already admitted else-

where [5–7], my career was a haphazard affair, shaped

by incidents, external circumstances, and occasional

opportunities. In the eighties, conditions for basic

research in the university had rapidly deteriorated and

I felt increasingly stifled by irrational bureaucracy. I

was fed up struggling and had no qualms to leave the

university. Being director of an independent institute
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would at least allow me to take rational decisions

without being overruled by nonscientific managers

above me.

Cancer research in 1983 was also fundamentally dif-

ferent from the field in 1960, when I studied tumor

mitochondria. At the time, we had little idea what was

really wrong in a cancer cell, but in 1983 oncogenes

and tumor suppressor genes had entered the field and

these genes were interesting. They steered the cell

cycle, signal transduction, early development, and the

cell’s decision to multiply. Suddenly, cancer research

was propelled to the leading edge of basic biological

research. This provided not only a golden opportunity

for a cancer institute, but also a risk. Up till the dis-

covery of oncogenes, Dutch universities had been con-

tent with leaving cancer research to the Cancer

Institute, as it was not interesting anyhow. With the

oncogenes came an influx of academic investigators,

because the processes that they were studying were

governed by the genes that were best accessible

through cancer research. Competition intensified, not

only in research, but also for the clinical part of the

Cancer Institute, as treatment of disseminated cancer,

leukemias, and lymphomas with those horribly toxic

drugs became more successful and, hence, more

respectable. It was obvious to me that our Institute

had to become a center of excellence or keel over,

tough assignment for a new director who wants to

spend at least 50% of his time on his personal

research.

My research had to be renewed to some extent as

well. The focus was on trypanosome antigenic varia-

tion, but I did not want to drop that. I like trypanoso-

matids; they are biochemically fascinating organisms

and a fertile ground for discovery [7]. A director of a

cancer institute should also do some research on can-

cer, however, and so I started on MDR. At the time,

the genes involved in MDR had not yet been identified

and we had experience in cloning genes. Moreover,

there were indications that DNA rearrangements were

involved in cancer and in MDR in particular and I

had experience with DNA rearrangements in try-

panosomes [8–10]. At the time, nobody in The Nether-

lands Cancer Institute (NKI) was working on drug

resistance (surprisingly) and I would not be competing

with members of my own staff for Dutch grants. I got

a grant and started with a single student on MDR.

Getting involved with MDR

I do not want to suggest that my entry into the MDR

field was easy. Investigators in the field were not so

generous to the newcomer. I had already done

something useful in science, but in mitochondrial bio-

genesis and antigenic variation in African try-

panosomes, fields that did not resonate much with

most of the scientists working on drug resistance and

drug development, as they were nearly all chemists.

My requests for cell lines made resistant in vitro did

not get me far initially. This changed when I attended

a Gordon Conference on Chemotherapy of Experi-

mental and Clinical Cancer. Tennis proved an impor-

tant pastime in this Gordon Conference and the

highlight of the meeting was the doubles match Yale

against NYU, usually lost by NYU. As a former post-

doc of NYU, I was able to play for my old institute

and we won. After that, I became an accepted member

of the drug resistance community, even though I was

not a card-carrying chemist. I still remember an inci-

dent when one of the major discoveries of the times

was presented: The main target of doxorubicin is the

plasma membrane. This was proven by an ingenious

experiment in which the doxorubicin was immobilized

on beads and shown to kill cells anyhow, even though

it could not enter the cell. When I meekly pointed out

that genetic research had shown already that the main

target of doxorubicin was Topo II, a nuclear enzyme,

and that cells could also become resistant to dox by

overproduction of Pgp, this was dismissed as irrelevant

and mere genetics and molecular biology. Yes, che-

mists dominated the field.

Soon, this would change. Victor Ling, a card-carry-

ing molecular biologist, had discovered Pgp [11], and

several groups were already busy trying to isolate the

genes involved. If I had known about that, I might

have thought twice before entering the MDR field. I

had 20 years of experience in molecular biology and

gene isolation and I thought that I would be able to

compete in this field of chemists with a single graduate

student, isolating genes involved in MDR. Not a bad

project, it was funded, but naive at best. Soon my

enterprising student had managed to clone a set of five

genes overexpressed in MDR CHO cell lines that I

had obtained from Ling [12,13]. We started sequenc-

ing, but in the middle of the ABCB1 gene my poor

student was overrun by 3 steamrollers: The Housman

Lab in Boston with Philippe Gros as the driver [14];

the Roninson, Gottesman, and Pastan group at NIH

[15]; and the collaborative groups of Victor Ling and

Jack Riordan in Canada [16]. We stopped sequencing

ABCB1, but continued with ABCB4, which was coam-

plified with the ABCB1 gene [17]. We later showed

that the two genes are adjacent in the human genome,

explaining their co-amplification [18]. The ABCB4 pro-

ject would become one of the successes of our labora-

tory. The first knockout (KO) mouse made in ABC
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transporters was the mouse homolog of the ABCB4

gene, Mdr2, which we showed—with the help of the

group of Ronald Oude Elferink—to be a phos-

phatidylcholine transferase, essential for making bile

[19]. This was a most unexpected discovery as the

dogma of the time held that the phosphatidylcholine

was passively extracted into bile by the bile salts. We

searched in vain for the human inborn error due to a

dysfunctional ABCB4 gene, which was later shown by

a French group to cause the severe liver disease PFIC,

type 3 [20].

We continued with the mouse Abcb1a and b KOs,

which were also highly informative. I write ‘we’, but it

was postdoc Alfred Schinkel in my laboratory who

pushed these KOs. At the time, making KOs was still

a major and risky undertaking and Alfred took that

risk. We also profited, of course, from the excellent

mouse house of the NKI and the development of a

simplified procedure for making KOs by Te Riele and

Berns [21] in the NKI.

The Abcb1a KO [22] mice entered with a splash, as

often recounted [23]: When the animal caretakers

sprayed the mice with ivermectin, all homozygous KOs

died. This showed that Pgp in the blood–brain barrier

(BBB) is essential to protect mice and us from nasty

chemicals [22]. Of course, it had been shown before

that there was Pgp in the BBB, but that it would pro-

tect every single capillary in the brain from nasty drugs

had not really gone across. I was made aware of that

when I presented the KO results at the European

Blood-Brain Barrier Meeting in Amsterdam. This was

before we had published anything, but my colleague

Douwe Breimer, co-organizer of the Meeting, had

pushed me at the last minute into the program. Before

my talk, there was a long review by a physical chemist

in which he presented detailed models why some large

amphipathic molecules did not pass the capillary mem-

brane. It was all explained with sophisticated chem-

istry: dipole moments, van der Waals forces, and the

like. I then got onto the podium and explained that it

was a pump. Pandemonium followed. Some members

in the audience had spent part of their lives to formu-

late intricate chemical rules why compounds, such as

taxanes or doxorubicin, would not go through the

membrane and they were not pleased to see their inge-

nious explanations demolished by a biochemist, worse

an MD, PhD. ‘Did I check that every capillary in the

brain contained Pgp?’ No, I had not checked, but our

WT mice were fully protected against ivermectin, and

that could only happen if Pgp protected the entire

blood–brain barrier. It was known in 1993 that Pgp

was present in the BBB, but the full protective effect

only became apparent in the KO mouse.

Our analysis of the function of Pgp in the gut had

even more impact [24–27]. It was known that Pgp was

present in the gut epithelium, but not how important

it was in drug uptake. Our KO mouse became a major

tool to study that in the pharma industry, after we

had shown its importance in (partially) preventing

uptake of taxanes [28] and other drugs. Our discovery

that Pgp affected drug uptake from the gut eventually

led to the development of a protocol for oral treat-

ment with taxanes [29], which has now reached the

clinic after several modifications [30].

Looking back, this was one of the more exciting

periods of my scientific life. An endearing feature of

KO mice is that you never know where they will lead

you. For biochemists who like diversity, it is a way to

visit very different areas of biochemistry. In 1992, at

the time of the first two KOs, I was writing articles

not only about the blood–brain barrier [26] and bile

formation [19], but also about nucleotide chemistry, as

we had finally established the structure of the new base

that we had discovered in the DNA of trypanoso-

matids, base J [31], a busy time indeed, as I was also

running the NKI.

Alfred Schinkel continued the study of the role of

Pgp in drug pharmacokinetics with great success as an

independent investigator. My group shifted to the

ABCC (multidrug resistance-associated protein, MRP)

family of ABC transporters. We tried to clone ABCC1

(MRP1), but Susan Cole and Roger Deeley got there

first [32]. My fault, because I designed a too sophisti-

cated and time-consuming cloning approach. In

science, one should always take the high road in moral

issues, but the low road usually suffices for experi-

ments.

MRP1 spawned a rich MRP progeny, but before

dealing with that a little more history. My first

encounter with MRP1 was with Susan Cole in front of

a poster at a meeting. She had isolated a highly drug-

resistant MDR cell line and was unable to detect Pgp

in it. This was the heyday of Pgp, and the investigators

who passed by her poster had told her to look harder

for Pgp. I found Susan’s data convincing, however. It

helped that I was already getting fed up with the

omnipresent Pgp and open to the possibility that other

pumps might exist. I knew about the work on the

canalicular multispecific organic anion transporter

(cMOAT) that had been studied by liver lovers (later

unfortunately renamed MRP2; cMOAT was a better

description of this pump than MRP2). Early vesicular

transport experiments with erythrocyte membranes

had shown that the transport of glutathione S-conju-

gates required ATP [33]. That smelled of an ABC

transporter. Toshi Ishikawa [34] then pointed out in a
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letter to TIBS that his experiments demonstrated that

this GSH-conjugate pump could not be a product of

the Mdr1 gene. This was followed by an insightful

review, in which Ishikawa [35] emphasized that many

drugs are conjugated to very hydrophilic ligands in

our cells and that the hydrophilic conjugates formed

would need organic anion transporters to get out of

the cell.

With hindsight, MRP1 was not the first MRP to be

cloned. In an off-shoot of my trypanosome project, we

had been studying methotrexate and arsenite resistance

in Leishmania [36–38] and found it to be associated

with a plasmid [39]. Postdoc Marc Ouellette then did

an audacious experiment: He isolated the plasmid and

hybridized it with a mammalian Pgp cDNA probe. I

had advised against this experiment for good reasons.

Leishmania is very far from us in evolution, much fur-

ther than yeast or even plasmodium. The odds were

near zero that homology would be detected between

the Pgp genes of Leishmania and mammals. Hence,

Marc was delighted when he showed me the blot with

a weak signal. The gene was sequenced and called

Pgp-A [40]. Only when Susan Cole noted in her

Science paper that Leishmania Pgp-A looked like a

typical MRP [32] did we realize that Pgp-A was not

an authentic Pgp. Leishmania Pgp-A was duly

renamed MRP-A and, thanks to the persistence of

Marc as an independent investigator in Canada,

became fully characterized. It is actually a transporter

of metal-glutathione-like conjugates, which it trans-

ports into the Leishmania vacuole, resulting in modest

resistance [41]. Interestingly, MRP-A has been shown

to cause resistance against antimony, used to treat

Leishmaniasis in patients [42]. This may still be the

only MRP that has been proven to regularly cause

resistance in patients, but I hope that other MRPs

may eventually follow, as MRPs are certainly protec-

tive in mice. For instance, Mrp1 does help in protect-

ing mice against drug-induced damage [43,44].

After our failure to clone MRP1, we went on to

look for other MRPs and soon there was an MRP

family [45–47]. We contributed to the cloning and

characterization of ABCC2-5 and made the corre-

sponding KOs. I have often been ridiculed for invest-

ing time in the unimaginative experiment of making

KO mice, double KOs, triple KOs, but looking back I

still think that it was a good investment. The KO mice

have yielded more useful information about MDR and

drug pharmacokinetics than many more sophisticated

approaches. The decision to invest in KO mice was

also inspired by the institute I worked in, which had

an excellent mouse house and a highly experienced

and competent pharmacology group, always willing to

do the necessary pharmacokinetic studies. The alterna-

tives looked less attractive: I was skeptical of the

mechanistic studies that occupied most of my col-

leagues, as I expected these soon to be overtaken by

the detailed structures of transporter proteins being

generated by structural biologists.

The work on MRPs in my laboratory received a

boost when postdoc Koen van de Wetering started to

use the KOs as a tool to find new endogenous sub-

strates by metabolomics [48,49]. This worked like a

charm. Let me just mention the two most recent high-

lights: Koen and postdoc Robert Jansen found a range

of new substrates for ABCC5 [50], including a class of

lactoyl-amino acids, not seen before in mammals [51].

The second highlight was the discovery of the function

of ABCC6 by Robert and Koen. This project started

with my hypothesis about the nature of the substrate

of ABCC6 [52] that was soon proven to be completely

wrong [53], after which Robert and Koen (without fur-

ther interference from me) showed that ABCC6 medi-

ates the excretion of ATP from the liver [54,55]. This

discovery not only solved how the absence of ABCC6

causes the enigmatic inborn error of metabolism, Pseu-

doxanthoma elasticum (PXE), but also pointed the

way to new therapies for this slowly developing, but

eventually debilitating disease [56]. That was a rather

satisfying end to my 30-year stint in the ABC trans-

porter field.

In the end, I think our research on MDR led to

some useful results in the elucidation of the biochemi-

cal basis of inborn errors and in improving our insight

into the role of ABC transporters in drug pharmacoki-

netics. I have to admit, however, that my long-term

aims to solve mechanisms of drug resistance and to

develop predictive markers to guide the application of

drugs in cancer chemotherapy have not been reached

[57]. We still do not know what determines whether a

tumor responds to taxanes and why it becomes resis-

tant during treatment [58]. Notwithstanding the incred-

ible armamentarium developed in molecular biology in

the past 35 years, such elementary problems have still

not been solved and not for lack of trying. It would

therefore be fair to conclude that my MDR efforts

have failed to reach their major goals. There were

many useful spin-offs, but the main goals were not

reached. This holds, of course, for the entire field: that

pumps would fully explain drug resistance has proven

an illusion, but not everybody subscribes my sour con-

clusion. See Ref. [59] and the other reviews in this vol-

ume for a more optimistic picture and a more

balanced historic overview of the ABC transporter

field. Enough about my mistakes and failures of the

past and on to the present.
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Mistakes to be avoided now

The opinions expressed in this section reflect my per-

sonal views and not those of any organization I may

belong to, or of any of my expert colleagues (including

reviewers of this paper).

1 Please, do not start your papers or grant applications

with the claim that MDR caused by ABC trans-

porters is important in human cancer. It is not. This

unfortunate finding has made life hard for scientists

who invested their efforts in Pgp, and it remains one

of the most remarkable results of MDR research.

Remarkable, because Pgp provides an excellent mech-

anism for resistance against the drugs that Pgp trans-

ports. This was already shown by early work with

rodent cell lines, and it was confirmed by Rottenberg

and coworkers [60] in a mouse model of breast cancer

that resembles human breast cancer [61]. In fact, these

tumors upregulate Pgp so readily that it is impossible

to get other mechanisms of drug resistance against

drugs transported by Pgp without inactivating Abcb1a

and Abcb1b genes [62]. Why then is MDR in human

tumors rare? Two factors probably contribute, mul-

tidrug treatment and low Pgp expression in most

tumors. Multidrug treatment is the basis of cancer

therapy in human patients, and these drug cocktails

always contain drugs not transported by Pgp, such as

platins, other alkylating agents, and antimetabolites.

The low expression of Pgp in most human tissues

relative to rodent tissues should be another factor.

Gene expression is known to fluctuate in mam-

malian cells, and if there is some Pgp produced, the

cells with the highest levels may withstand the first

attack by drug and be selected out. Repeated selec-

tion will then lead to transcriptional activation, as

seen in the mouse mammary tumors. In contrast,

the ABCB1 gene appears to be tightly shut down in

most human tissues, no expression fluctuation, noth-

ing to select from. Only a drastic DNA rearrange-

ment, hooking the silent ABCB1 gene up to an

active promoter, is able to activate expression [63].

Of course, there are exceptions of rigorously docu-

mented patients in whom Pgp plays a role in resis-

tance [59], but unfortunately these are rare.

Moreover, the extensive work on Pgp has alerted

the pharma industry to the transporters that new

drugs may encounter. Developing drugs that avoid

being transported by Pgp or ABCG2 has become a

priority. A good example is the introduction of the

third-generation ALK inhibitor alectinib in the

clinic. Patients who receive the older ALK inhibitors

eventually develop drug resistance; a subset of these

patients were shown to have high levels of Pgp in

their tumors [64]. Alectinib, which is not a Pgp sub-

strate, was more effective in these patients [65], also

against brain metastases.
2 Please, do not start the history of ABC transporters in

cancer with the discovery of Pgp, undoubtedly a land-

mark discovery, but not the start. MDR started with

Kessel [66] and Biedler and Riehm [67] describing the

phenomenon. Then came the outstanding work of

Keld Dano. With elegant experiments, he showed that

MDR was due to an energy-requiring process lower-

ing intracellular drug concentration by export of the

drug from the cell, presumably caused by a promiscu-

ous drug transporter [68]. He actually wrote the word

‘daunomycin-pump’, not bad for a medical student,

working in a Department of Internal Medicine.

Unfortunately, Dano’s brilliant work was long over-

looked and was rarely quoted, also by me. I only

found out about it in 1991. An obvious reason for this

lack of appreciation is that Dano’s work was not

quoted in the paper of Juliano and Ling [11] describ-

ing the discovery of Pgp. Had Ling not missed Dano’s

paper, he would not have coined the misnomer per-

meability glycoprotein for Pgp. Juliano and Ling [11]

write in their paper that it seemed unlikely that a sin-

gle glycoprotein would be able to bind structurally

unrelated different drugs. They therefore opted for

the explanation that Pgp modulated the fluidity of the

plasma membrane reducing the entry of drugs, hence

permeability glycoprotein. How a tiny amount of

membrane protein would be able to alter the fluidity

of the entire membrane is not explained.

3 Please, do not forget about Philippe Gros, if you

write about the early history of MDR. Philippe was

the first to demonstrate that MDR can be caused by

a single protein. He isolated the cDNA of the mouse

Mdr1a gene, sequenced it, and then did the crucial

transfection experiment to demonstrate that the

overexpression of this cDNA caused MDR [14]. If I

had to choose 3 landmark papers from the early

MDR literature, the Nature letter with the experi-

ments of Gros would be one of them, the other two

being the Dano paper [68] and the Juliano and Ling

[11] paper with the discovery of Pgp.

4 Please, PLEASE, do not ask your student to

develop a new inhibitor of Pgp for clinical applica-

tion. The ones we have are fine. Also do not write

that we do not know whether the available inhibi-

tors actually work in real tumors. Rottenberg and

coworkers [60] tested that in the murine breast cancer

model and doxorubicin resistance, caused by Pgp

upregulation, is completely reversed by the third-gen-

eration Pgp inhibitor tariquidar.
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5 Please, do not use extracted mRNA or total tissue

protein to determine whether there is an ABC trans-

porter in a tumor. Tumors are full of stroma, and

stromal cells may contain the transporter. A good

example is breast cancer. There are numerous

reports about the presence of Pgp in breast tumors,

based on total tissue extracts. The one paper in

which the Pgp in individual cells was painstakingly

analyzed by microscopy with MABs and adequate

controls saw no Pgp whatsoever in the tumor cells.

All Pgp was in stroma, especially the macrophages

invading the tumor were rich in Pgp [69]. The best

test would be to measure the drug levels directly in

the tumor cells. That approach was never pushed,

because of the difficulty of determining drug concen-

trations in individual cells of a heterogeneous tumor.

Studies that do exist suggest that drug levels might

vary as much as ten-fold.

6 Please, do not claim that a transporter is fulfilling an

important function, because it gets upregulated. This

is one of the most frequent mistakes in papers about

drug resistance in cancer. Transporters are usually

part of a network of proteins that are controlled by

the same set of transcriptional activators. The selec-

tion may operate on any member of the network, if

the network gets upregulated, not necessarily a trans-

porter. A nice historic example is the upregulation of

the lung resistance protein, later known as the major

vault protein (MVP), in many tumors. The level of

MVP correlated very well with drug resistance, and

Scheper and coworkers [70] postulated that the MVP

was a new protein involved in drug resistance. I was

not convinced, as MVP did not look like it had any

business with drugs and upregulation by itself means

little. What is required to prove involvement in drug

resistance is transfection experiments. These were

finally done by a former postdoc of Scheper with

unambiguously negative results [71].

If you want to know whether upregulation of a

transporter is contributing to resistance in the tumor

of your patient, DNA sequencing may help. If the

upregulation is in cis, that is, only in one of the alleles

encoding the gene and associated with a gene rear-

rangement, there are good reasons to assume that the

upregulation was selected for during the growth of

the tumor. This principle was first formulated by Tito

Fojo et al. and used to demonstrate upregulation of

ABCB1 in some human leukemia samples [63]. More

recently, upregulation, associated with DNA rear-

rangement, was found in 8% of the tumor samples of

high-grade serous ovarian cancer patients, who

relapsed on chemotherapy including a taxane [72].

Even upregulation in cis is not unambiguous without

additional evidence. A case in point is the adriamycin

resistance-associated (ARA) gene found upregulated

in doxorubicin-resistant cell lines. This turned out to

be an authentic red herring. Marcel Kool showed in

our laboratory that the ARA gene was a truncated

(inactive) version of ABCC6 [73]. As we found the

ABCC6 gene located next to the ABCC1 gene [73],

the resistance attributed to ARA was caused by co-

amplification of ABCC1. ABCC6 does not transport

MDR drugs. Hence, even if upregulation occurs in

cis, it is necessary to verify that resistance is not due

to co-amplification of an adjacent gene.

7 Please, do not write that ABCB4 does not transport

drugs and is only a phosphatidylcholine translocator

involved in lipid transport. Kazu Ueda and coworkers

[74] discovered that ABCB4 can transport some drugs

and that finding was extended in my laboratory [75].

In fact, ABCB4 transports quite a few anticancer

drugs and its substrate specificity is reminiscent of

ABCB1, albeit that B4 is far less proficient as a drug

transporter than B1 [75]. Since ABCB4 came late in

ABC transporter evolution and is adjacent to ABCB1

in the genome, it may have arisen by gene duplication

and the drug transport could be an echo of its origin.

Whether this drug transport function plays any physi-

ological role remains to be sorted out. ABCB4 has

been linked to drug resistance in rare cases, but the

evidence is not compelling in my opinion [76].

8 Please, do not write that ABCG2 is a major deter-

minant of human MDR, because all evidence for

that comes from in vitro experiments and there is no

proof yet that it plays any role in MDR in human

tumors, although I should add that the clinical issue

has still not been rigorously scrutinized. There is no

doubt, however, that ABCG2 plays a major role in

protecting our body against toxins/drugs, often in

close collaboration with Pgp, for instance in the

BBB [77,78]. It is a major pharmacokinetic player

[79], but not an MDR player.

9 Please, do not claim that the members of the ABCC

family are important determinants of MDR in human

tumors. There is a large body of evidence that these

MRPs can cause resistance to various drugs in cell line

in the test tubes and even in mice, and my laboratory

has amply contributed papers to the topic [45,80].

Proof that these transporters contribute to drug resis-

tance in human tumors is sorely lacking, however.

MRP8 could be an exception, as it is a really good tax-

ane transporter [81] and it has not been as intensely

studied as some of the other members of the ABCC

family. It causes taxane resistance in tumors in mice
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[81], but I have not seen conclusive evidence that

human tumors make use of it.

10Please, do not write that Pgp is a dual function pro-

tein, pump and chloride channel. Although this mis-

take has virtually disappeared from the literature, it is

worth recounting. In 1992, the group of Chris Higgins

published a spectacular finding: Pgp could also func-

tion as a chloride channel. The discovery was pub-

lished in Nature [82] and Cell [83], and these papers

soon were among the ones most quoted in the field,

not surprisingly, as Higgins was known as one of the

undisputed leaders in the field. He even coined the

name ABC transporters. Higgins had used one of our

cell lines and we repeated the experiments, helped by

Kees Jalink, a postdoc from another group in the

Cancer Institute, who knew how to do the electro-

physiology required for looking at channels. The

results were completely negative. I know from experi-

ence that experiments can be hard to repeat. There is

even a repeatability crisis in science [84], but this is

usually not caused by sloppy experimentation, or

occasional fraud. Biochemical experiments are intrin-

sically messy; animals are never identical, and proce-

dures may be difficult to exactly duplicate; and we

often do not know all parameters that are critical. It

is therefore not useful to sulk if you cannot repeat an

experiment, but find out why the experiment does not

reproduce. This is what we did. I contacted Chris Hig-

gins and I went with Jalink to Cambridge to compare

experiments. We spent a whole day with postdocs

combing through experimental details, and in the

course of the day, it became clear that experimental

results in Cambridge varied. Rather, often the same

negative result was obtained as we had seen in Ams-

terdam, but this was booked as a failed experiment.

We went home confident that the channel function of

Pgp would meet its Brexit and that is what happened

[85]. Science is self-correcting, politics unfortunately

not, at least in the case of the real Brexit. The channel

function became firmly established in the medical

community, however. Whenever I would lecture to a

medical audience, I would get questions about it.

Why did I not talk about this interesting channel

function of Pgp? I felt guilty toward Jalink, but he did

not suffer. He became staff member in the Cancer

Institute, professor, and he is now Head of the Divi-

sion of the Cancer Institute in which I work, that is,

my boss.

All these stories illustrate what counts in science:

evidence, not authority. Always keep in mind that

complex problems have simple, appealing, INCOR-

RECT solutions, to paraphrase Mencken.

There are more mistakes than 10 and many more

beyond the MDR field. Let me just add one from the

platin field. Do not write that cisplatin resistance can be

caused by pumps extruding platins from cells. The mem-

brane glycoprotein overexpressed in cisplatin-resistant

cells described by Ling’s Lab [86] should not be quoted,

as it has not survived more detailed scrutiny, Ling has

told me. MRP2 has been linked to cisplatin extrusion

from cells, but it has never been shown to be a contribu-

tor to resistance in human tumors. The same holds for

some non-ABC transporters [87]. A possible role in

resistance might be played by VRAC, an organic anion

channel that can promote entry of platins into cells [88].

There is suggestive evidence that the loss of this channel

might contribute to cisplatin resistance [88], but this

needs confirmation with more clinical samples.

How about the future?

I have no idea, and I have learnt to avoid speculating.

Predictions about the future of biology are either triv-

ial extrapolations of existing trends, or just wrong. Let

me remind you of the famous paper by molecular biol-

ogist Gunther Stent: ‘That was the molecular biology

that was’ [89]. In 1968, Science published his predic-

tion that molecular biology was nearly done [89]. We

knew how nature basically worked, only some mop-

ping up was required. Indeed, some pretty famous

molecular biologists at the time switched to neurobiol-

ogy and came to regret it. Neurobiology proved more

intractable than they had anticipated and molecular

biology thrived. Since 1970, we have seen a spectacular

series of unexpected discoveries that have changed our

views of biology.

It is not hard to see why profound predictions in

biology are always wrong. We live in a Darwinian

world shaped by mutation selection, and mutation is

random. Nature cannot make big jumps and can only

make new organisms by tinkering, as Jacob [90] has

called it. The direction that mutations and tinkering

happen to take is intrinsically unpredictable.

How about the trends? I can only offer my extrapo-

lations of current trends. The last ABC transporter

meeting in early March 2020 in Innsbruck was domi-

nated by structure of ABC transporters. That trend

may still accelerate with cryo-EM, which has simplified

the analysis of complex structures, but it will not last

forever. In the end structure is only really interesting

in the context of function and the underlying biology.

I think other trends will soon prevail: the analysis of

the role of ABC transporters (variations) in drug phar-

macokinetics and in disease, inborn errors,
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personalized medicine and even cancer. Yes, cancer,

but not in the naive fashion in which we started. There

will come a time that cancer chemotherapy will be

strictly based on tumor properties, DNA, RNA pro-

tein analyses, and precision medicine will prevail.

Then, the inhibitors of ABC transporters may make a

modest comeback as part of a sophisticated highly tar-

geted therapy cocktail.
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