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Molecular chaperones are highly conserved proteins that promote proper fold-

ing of other proteins in vivo. Diverse chaperone systems assist de novo pro-

tein folding and trafficking, the assembly of oligomeric complexes, and

recovery from stress-induced unfolding. A fundamental function of molecular

chaperones is to inhibit unproductive protein interactions by recognizing and

protecting hydrophobic surfaces that are exposed during folding or following

proteotoxic stress. Beyond this basic principle, it is now clear that chaperones

can also actively and specifically accelerate folding reactions in an ATP-de-

pendent manner. We focus on the bacterial Hsp70 and chaperonin systems as

paradigms, and review recent work that has advanced our understanding of

how these chaperones act as catalysts of protein folding.
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Pioneering experiments by Anfinsen in the 1950s [1]

demonstrated that a small protein can fold sponta-

neously in the absence of additional factors in vitro.

Subsequent work over the last 50 years has provided

detailed insight into the general principles that govern

protein folding. The conformational search for the

native state is thought to follow a funnel-shaped

energy landscape, driven by the burial of hydrophobic

residues, and the relative stability of native-like inter-

actions that nucleate the folding reaction [2,3] (Fig. 1).

However, a unifying mechanism for protein folding

remains elusive [4]. Current models are not generally

predictive for protein folding pathways, even if sub-

stantial progress has been made toward prediction of

protein folds [5].

Several factors complicate the folding process. The

folding free-energy landscape is rugged: Protein chains

must traverse substantial energy barriers en route to

the native state and consequently populate folding

intermediates (Fig. 1). Off-pathway intermediates and

kinetic traps slow folding, and non-native intramolecu-

lar interactions can lead to stably misfolded states

[6]. Moreover, folding intermediates expose hydro-

phobic surfaces that can engage in nonfunctional inter-

molecular interactions enabling aggregation (Fig. 1).

Biophysical studies of protein folding typically focus

on small model proteins (often < 100 amino acids) that

are simple to express recombinantly and show robust

reversible folding in vitro [7,8]. The intrinsic challenges

associated with folding of the larger, structurally more
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complex proteins that constitute the majority of pro-

teomes [9] may be more pronounced than current fold-

ing models suggest, with misfolding being the rule

rather than the exception.

The folding problem is exacerbated by conditions

in vivo. The high concentration of macromolecules in

the cell enhances the tendency of non-native proteins

to aggregate [10], while proteotoxic stress destabilizes

the native state. Moreover, protein folding occurs in

the context of translation [11], which entails that nas-

cent polypeptides are exposed to the cellular

environment in an incomplete state lacking structural

information needed for stable folding [12,13]. Molecu-

lar chaperones have evolved in response to these

challenges and have in turn contributed to the diver-

sity of proteomes in both prokaryotes and eukaryotes

[14,15]. Chaperone classes use variations of a

common mechanism of action based on transient

binding of sequences enriched in hydrophobic resi-

dues. This activity serves to inhibit aggregation, but

can also influence the intramolecular interactions that

define a protein’s folding pathway. Recent research

has advanced the idea that molecular chaperones can

modulate folding energy landscapes. Here, we

discuss examples of folding catalysis by the ATP-

dependent Hsp70 and chaperonin (Hsp60) class of

chaperones, and explore possible underlying

mechanisms.

Catalysis of folding by the Hsp70
chaperone system

Chaperones of the Hsp70 class (DnaK in bacteria) are

highly allosteric molecular machines that participate in

a range of cellular processes, including protein folding

and refolding, trafficking, translocation, disaggregation,

and degradation [16–18]. These diverse activities exploit
the affinity of Hsp70 for short (5–7 amino acid)

sequence elements enriched in hydrophobic residues

(often flanked by positively charged amino acids) [19]

that are typically exposed by proteins in non-native con-

formations. Reversible binding of hydrophobic peptides

to the C-terminal substrate-binding domain (SBD) of

Hsp70 is regulated by ATP binding and hydrolysis at

the nucleotide-binding domain (NBD) (Fig. 2A). The

ATP-driven conformational cycle of Hsp70 is coordi-

nated by Hsp40-class J-domain proteins (DnaJ in bacte-

ria) and nucleotide exchange factors (NEFs; GrpE in

bacteria) [20]. Hsp40 delivers substrates to the open,

ATP-bound state of Hsp70 (Fig. 2B, state II). Binding

of Hsp40 and substrate protein synergistically triggers

the hydrolysis of bound ATP [21], thereby generating a

stable complex between the substrate protein and Hsp70

in the closed, ADP-bound conformation [22] (Fig. 2).

Subsequent NEF-binding catalyzes ADP/ATP exchange

and facilitates substrate release, with the resulting fold-

ing intermediate progressing either directly to the native

intermediates

native

en
er
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(kinetically trapped) 
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nascent/unfolded 
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promoted by ATP-dependent chaperones

inhibited by chaperones

Fig. 1. Molecular chaperones shape the

energy landscape of protein folding.

During folding, proteins navigate a rugged,

funnel-shaped potential free-energy

surface en route to the native state. The

accumulation of on- and off-pathway

intermediates slows folding and entails the

risk of misfolding into kinetically trapped

states that are prone to form

thermodynamically stable aggregates.

Molecular chaperones inhibit aggregation,

resolve kinetically trapped conformations,

and provide kinetic assistance to folding

by lowering free-energy barriers that

separate folding intermediates from the

native state. Figure modified from Ref. [9].
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state or being transferred to other chaperone systems,

such as a chaperonin or Hsp90 [23,24] (Fig. 2B, state

III). The structure and function of Hsp70 and its cofac-

tors have recently been reviewed [16–18]. Here, we focus

on ways in which the functional cycle of Hsp70 can be

leveraged to accelerate client protein folding.

A fundamental function of the Hsp70 chaperone sys-

tem is to inhibit protein aggregation, thereby indirectly

facilitating (re)folding via kinetic partitioning [25]. In

this model, binding to Hsp70 prevents aggregation by

shielding hydrophobic regions in non-native proteins,

and efficient folding upon Hsp70 release occurs when

the folding rate constant is higher than the rate of

rebinding to Hsp70. Aggregation remains suppressed as

long as rebinding of folding intermediates is faster than

aggregation. However, this basic function of aggrega-

tion prevention does not account for an additional

important activity of chaperones: their ability to acceler-

ate folding beyond the folding rate observed in the

absence of aggregation (such as under single-molecule

conditions). Notably, recent work has revealed that the

Hsp70 system can also accelerate the folding of the

model multidomain protein firefly luciferase (FLuc) up

to ~ 20-fold [26]. Importantly, in these experiments fold-

ing was studied under conditions that excluded aggrega-

tion, allowing a comparison of folding rates with and

without chaperones.

How does the Hsp70 system catalyze folding? Accu-

mulated evidence suggests that two complementary

activities are involved: unfolding of misfolded states by
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Fig. 2. Structure and reaction cycle of the

Hsp70 chaperone system. (A) Structure of

the bacterial Hsp70, DnaK. ATP binding to

the NBD stabilizes the open state of DnaK

(left; PDB 4B9Q) [104], in which the a-

helical lid of the SBD is associated with

the NBD. Upon hydrolysis of ATP to ADP,

Hsp70 transitions from the open state

with high on- and off-rates for peptide

substrate, to the closed state (right; PDB

2KHO) [105], in which NBD and SBD are

separated and the a-helical lid is closed

over the peptide-binding cleft (low on- and

off-rates for peptide substrate). Bound

nucleotide (ATP or ADP) and bound model

peptide (sequence NRLLLTG) are shown

in space-filling representation. (B) Reaction

cycle of the bacterial Hsp70 system. A

non-native protein is captured by Hsp40

(DnaJ) dimer and delivered to ATP-bound

DnaK (state I), leading to a transient

ternary complex between the DanJ, DnaK:

ATP and substrate (state II). Interaction

with DnaJ triggers ATP hydrolysis on

DnaK, generating the closed state and

stabilizing an expanded conformation of

the substrate in complex with DnaK:ADP

(state III). Multiple copies of DnaK may be

bound simultaneously. ADP release

catalyzed by the nucleotide exchange

factor GrpE, and rebinding of ATP, triggers

substrate release for folding or possible

transfer to downstream chaperones, such

as GroEL. Note that nucleotide exchange

may not occur simultaneously in all Hsp70

molecules, resulting in a stepwise

substrate release (state IV).

Figure modified from Ref. [9].
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Hsp70 binding, and biasing of the folding pathway

toward a fast trajectory initiated from the Hsp70-

bound state. ATP-driven unfolding of substrate pro-

teins by the Hsp70 chaperone system has been demon-

strated based on protease susceptibility [27],

measurements by nuclear magnetic resonance (NMR)

spectroscopy [28], and hydrogen/deuterium exchange–
mass spectrometry (H/DX-MS) [26,29]. Fluorescence-

resonance energy transfer experiments further support

unfolding as evidenced by extreme conformational

expansion of the substrate protein [26,30,31]. The

observed expansion has been attributed to steric repul-

sion arising from the binding of multiple Hsp70 mole-

cules, driven by the free energy of ATP hydrolysis [32]

(Fig. 2B, state III). This ‘unfoldase’ activity allows the

chaperone system to resolve kinetically trapped, mis-

folded states, but does not fully explain the function

of Hsp70 in accelerated folding.

The experiments with FLuc showed that folding ini-

tiating from the Hsp70-bound state was kinetically

more efficient – for a fraction of molecules – than

folding from denaturant, implying that the chaperone

shaped the folding pathway [26]. We propose two non-

mutually exclusive explanations for this experimental

result. First, Hsp70 may allow acquisition of, and sta-

bilize, partial (native-like) structure in the bound state

prior to substrate release, thereby hastening subse-

quent folding (Fig. 2B, state III). Consistent with this

possibility, transient secondary structure has been

detected by NMR in DnaK-bound hTRF1, a 53-resi-

due model client [33], and H/DX-MS experiments sug-

gested residual structure in DnaK-bound FLuc [26].

Indeed, residual structure in the denatured state

ensemble [34,35] can substantially influence the path-

way and outcome of folding [36–38].
A second possible mechanism for accelerated folding

is that stochastic, asynchronous release of Hsp70 mole-

cules from the substrate protein prevents simultaneous

collapse and misfolding of regions of the polypeptide

chain that form separate domains in the native state

(Fig. 2B, state IV). This hypothesis is supported by

pulsed-label H/DX-MS of FLuc folding [26] and is

consistent with NMR analyses of hTRF1 [39,40].

hTRF1 can bind between one to three DnaK (Hsp70)

molecules, which would result in conformational

heterogeneity at the onset of folding, providing access

to alternative folding trajectories that may be poorly

sampled in the absence of the chaperone.

Is this folding mechanism general for Hsp70 sub-

strates? Hsp70 chaperones interact with a substan-

tial fraction of the proteome (~ 30%) in bacteria

and eukaryotes [41,42]. Thus, the mechanism

described above might accelerate the folding of

many client proteins, in particular those that popu-

late stably misfolding intermediates (see ‘Folding

problems and chaperone solutions’ below). Studies

of Hsp70 function have so far been restricted to a

relatively small number of model proteins. Going

forward it will be important to study a broader

range of substrates, including endogenous clients of

the chaperone and especially those comprising mul-

tiple domains. It also formally remains to be estab-

lished whether the eukaryotic Hsp70 machinery can

catalyze folding reactions. Eukaryotes use a large

number (> 40) of diverse J-proteins to tune the sub-

strate specificity of Hsp70s [43,44], which may also

modulate the function of the chaperone in acceler-

ating folding.

Beyond de novo folding, the concept of accelerated

folding by Hsp70 has important implications for pro-

tein homeostasis. Recent work has shown that Hsp70

plays a critical role in stabilizing heat-labile proteins

against thermal denaturation in Escherichia coli [45],

and to maintain the native state of such proteins

in vitro at the expense of ATP hydrolysis, even under

conditions that would otherwise be denaturing [26,46].

By resolving kinetically trapped, misfolded states that

are populated during stress-induced unfolding and by

accelerating their refolding, the Hsp70 system effec-

tively remodels the energy landscape in favor of the

native state.

Catalysis of folding by the GroEL/ES
chaperonin

Chaperonins (also referred to as Hsp60s) are large oli-

gomeric complexes that function as nanocages for sin-

gle protein molecules to fold in isolation [47–51]. They
participate in folding ~ 10% of the cytosolic proteome,

including essential proteins that fail to reach their

native state spontaneously and cannot utilize other

chaperone systems [52–56]. The bacterial chaperonin

GroEL consists of two rings of seven identical

~ 60 kDa subunits, stacked back-to-back. Each sub-

unit comprises an equatorial ATPase domain, an inter-

mediate hinge domain, and an apical domain that

exposes hydrophobic residues for binding non-native

substrates (Fig. 3A). The folding chamber is created

by interaction with GroES, a lid-shaped heptamer of

~ 10 kDa subunits that binds to the apical domains of

GroEL (Fig. 3A).

The two rings of GroEL function sequentially as

folding chambers regulated allosterically by the GroEL

ATPase [47,51] (Fig. 3B). Non-native substrates are

captured by interaction with multiple apical domains

of GroEL. Binding of ATP and GroES then displaces
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the substrate into a cavity capped by GroES (the cis-

ring) (Fig. 3B). Due to a negative allosteric coupling

of the rings [51], this step is accompanied (in vitro) by

transient separation of the GroEL rings [57]. Extensive

conformational changes enlarge the cis-ring cavity and

alter the physical properties of its inner surface from

hydrophobic to hydrophilic [58]. The negative allostery

between rings facilitates substrate release from the

trans-ring and disfavors the formation of symmetric

complexes with both rings being GroES-capped, which

are compromised in substrate capture [57]. Following

encapsulation, proteins up to ~ 60 kDa in size are

allowed to fold for the time it takes the GroEL cis-

ring to hydrolyze its 7 ATPs to ADP (~ 2–7 s depen-

dent on temperature) [59] (Fig. 3B). Binding of ATP

to the trans-ring then induces an allosteric signal that

causes ADP and GroES to dissociate from the cis-ring.

Folded protein is released, while incompletely folded

or misfolded molecules may rapidly rebind for another

folding cycle. During cycling, the protein spends most

of its time (> 80%) in the encapsulated state where

folding occurs [59]. Some aspects of GroEL/ES func-

tion, such as the relative importance of symmetric and

asymmetric complexes, are a matter of ongoing

research (reviewed in Ref. [47]). Here, we focus our

discussion on recent work that has advanced the con-

cept that GroEL/ES is a catalyst of protein folding.

It is well established that by encapsulating single

protein molecules in its central cavity, GroEL/ES

allows folding to proceed unimpaired by aggregation.

Work over the past two decades has moved our under-

standing beyond this fundamental principle and

demonstrated that the chaperonin nanocage represents

a privileged folding environment in which formation

of kinetically trapped intermediates that would other-

wise slow or halt spontaneous folding is avoided

[55,60–62]. As a result, GroEL/ES provides kinetic

assistance to the folding process and accelerates the

folding of various proteins ~ 20- to 100-fold above

their spontaneous folding rate. These include

7 ADP
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2-7 s

folding
intermediate native

ADP

ADP

GroEL/GroES-ADP
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Fig. 3. Structure and reaction cycle of the GroEL/ES chaperonin. (A) Left, crystal structure of the asymmetrical GroEL:ADP:GroES complex

(PDB 1AON) [58] in space-filling representation. One subunit in each GroEL ring is displayed schematically, with the equatorial domain in

blue, the intermediate domain in yellow, and the apical domain in red, the interacting subunit of GroES is shown in magenta. Middle,

conformation of the GroEL subunit in the open state trans-ring. Right, conformation of the GroEL subunit in the GroES-bound state (cis-ring)

in ribbon representation. (B) Reaction cycle of GroEL/ES. Substrate protein binds to the trans-ring of the GroEL:ADP:GroES complex,

followed by encapsulation upon ATP-dependent GroES binding. This step is accompanied by transient separation (dashed double-arrow) and

subsequent reassembly of the GroEL rings. The protein is free to fold within the chaperonin nanocage for the time required to hydrolyze the

7 ATPs in the GroEL cis-ring. ATP binding to the trans-ring then triggers release of ADP and GroES, allowing folded protein to exit,

completing the cycle. Incompletely folded protein is rapidly recaptured by GroEL. Figure modified from Ref. [9].
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destabilized variants of maltose-binding protein (MBP)

[59,60,63–65], Rhodospirillum rubrum Rubisco [66,67],

bacterial proteins with topological knots [68], the

E. coli prolidase enzyme PepQ [62], and several E. coli

proteins with a (ba)8 TIM-barrel fold [55,61]. In all

cases, the slower rate of spontaneous folding was not

due to transient aggregation, implying that the chaper-

onin altered the folding energy landscape for these

substrates.

How does GroEL/ES catalyze protein folding? The

following features of the chaperonin system have been

implicated in accelerating folding: (a) unfolding of sub-

strate protein upon binding and ATP-dependent apical

domain movements [67,69,70]; (b) the net negative

charge of minus 42 of the cis-cavity GroEL wall

[55,59,60,63,64]; (c) the volume of the folding chamber

relative to the size of the encapsulated substrate

[63,64]; (d) and the dynamic C-terminal extensions that

extend from the equatorial domains of each subunit

into the central cavity [62,64,71]. The relative contribu-

tion of these factors may be substrate-dependent.

In the context of the chaperonin reaction cycle, the

distinctive structural features of GroEL/ES implicate

several nonmutually exclusive mechanisms in folding

catalysis. Prior to encapsulation, stretching of bound

substrate by ATP-mediated apical domain movements

may prime the substrate for efficient folding upon

encapsulation [67,69,70]. This step would also occur

upon substrate rebinding in consecutive chaperonin

cycles, but was found to be dispensable for accelerated

folding of mutant MBP [70]. Moreover, folding is also

accelerated upon stable protein encapsulation without

GroES cycling [59,61,64,66].

Steric confinement in the GroEL/ES cavity is pre-

dicted to smooth the folding energy landscape by

restricting the conformational freedom of the encapsu-

lated substrate [72–74]. In support of this idea, photo-

induced electron transfer/fluorescence correlation spec-

troscopy and H/DX-MS experiments have demon-

strated reduced chain mobility of mutant MBP upon

encapsulation, facilitating native interactions [59,65].

Additionally, engineered intramolecular disulfide

bonds that mimic the confinement effect have been

shown to accelerate spontaneous folding of MBP to

the degree achieved by GroEL/ES, with no further rate

acceleration upon encapsulation of the disulfide-

bonded protein [60]. Encapsulation promotes segmen-

tal acquisition of structure in the TIM-barrel core of

DapA [61] and allows MetF to fold into an oligomer-

ization-competent monomer that does not otherwise

form in free solution, even in the absence of aggrega-

tion [55]. Folding enhancement by confinement is

likely to be most significant for proteins that populate

conformationally dynamic intermediates (see ‘Folding

problems and chaperone solutions’ below).

During folding, the encapsulated substrate may

additionally be remodeled by hydrophobic interactions

with the disordered C-terminal tails of GroEL, which

contain the conserved repeat motif Gly-Gly-Met

[62,64,71]. While these sequences have also been impli-

cated in substrate binding [75,76], how exactly they

modulate folding remains to be determined. The highly

charged character of the GroEL/ES cis-cavity was

found to be critical in restricting chain mobility of

encapsulated protein [59] and has been proposed to

promote hydrophobic compaction by inducing ordered

structure in water molecules associated with the cavity

wall [77]. However, experimental evidence for the exis-

tence of cavity-confined water is still lacking [78].

Although catalysis of folding by GroEL/ES has so

far been observed for a relatively small set of proteins,

it is striking that the folding of obligate, endogenous

substrates of the chaperonin is most strongly acceler-

ated. Some of these proteins, sharing the TIM barrel

topology, tend to fold in just a few cycles of chaperone

action, implying that coevolution of substrate and

chaperonin has optimized the in vivo folding rate. Such

mutual adaptations would be limited by the intrinsic

folding properties of a specific substrate, and by the

fact that the chaperonin must be able to fold numer-

ous different substrates [79]. Proteins with the TIM-

barrel fold, which form a large group of topologically

similar substrates of GroEL/ES in E. coli [52,54,80],

may have been more successful in optimizing their

chaperonin-assisted folding than proteins with less fre-

quent topologies. Further studies on endogenous sub-

strates with different topologies will be required to

establish general principles underlying the function of

GroEL/ES as a folding catalyst.

Folding problems and chaperone
solutions

Protein folding is slowed by energy barriers that sepa-

rate folding intermediates from the native state

(Fig. 1). Broadly, intermediates can be characterized

as either stably misfolded or conformationally

dynamic. Both classes of intermediate bury hydropho-

bic surface and are therefore stabilized by high solvent

entropy relative to the unfolded state. However,

because folding intermediates are only marginally

stable, other forces can tip the balance to influence the

rate of folding. Misfolded intermediates are character-

ized by long-lived, non-native main- and side-chain

interactions (hydrogen bonding, Van der Waals con-

tacts and electrostatic interactions) that are
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enthalpically favorable. In contrast, intermediates that

are dynamic relative to the native state have limited

stable structure (native or non-native) and their stabil-

ity is enhanced by their high configurational entropy.

Recent analysis of chaperone-catalyzed folding sug-

gests that the Hsp70 system preferentially attends to

proteins that populate misfolded states while the

GroEL/ES chaperonin system promotes folding of

proteins that tend to populate conformationally

dynamic folding intermediates (Fig. 4).

Interdomain misfolding is thought to be a wide-

spread cause of slow folding and would be especially

prevalent in proteins with large domain–domain inter-

faces [81–83]. Research on the model protein FLuc has

advanced our understanding on how the Hsp70 system

resolves such misfolded states. FLuc spontaneously

misfolds upon stress-induced unfolding, with non-na-

tive interactions between the subdomains of its large

N-terminal domain frustrating subsequent refolding

[26,84,85]. As described above, Hsp70 cooperates with

its cochaperones to both unfold these misfolded inter-

mediates and smooth the energy landscape of subse-

quent folding. Interestingly, this Hsp70 mechanism is

highly efficient during cotranslational folding of FLuc,

unfolded

native state
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Fig. 4. Function of Hsp70 and GroEL/ES in accelerating folding. The Hsp70 and GroEL/ES chaperone systems attend to protein subsets that

populate different types of kinetically trapped folding intermediates. Stably misfolded intermediates (left) are resolved by conformational

expansion, driven by the ATP-hydrolysis-dependent binding of multiple Hsp70 molecules. Additional features of the Hsp70 system, such as

stabilization of native-like secondary structure in the bound substrate protein and/or stepwise release of Hsp70 molecules, bias subsequent

folding to a fast trajectory for a fraction of molecules. Intermediates that are conformationally dynamic (right) are instead destabilized by

confinement in the GroEL/ES cavity. C-terminal extensions of GroEL protruding into the cavity contribute to accelerated folding. Proteins

that fail to fold rapidly with assistance by Hsp70, which functions upstream in the folding pathway, can partition to GroEL/ES. The effect of

chaperones on the folding free-energy landscape is illustrated in the lower panel. For both Hsp70 and GroEL/ES, selective acceleration of

the folding reaction is realized by destabilization of intermediate states (I) relative to the transition state (TS), without altering the free

energy of the native state (N).
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facilitating sequential folding of the N-terminal subdo-

mains as they emerge from the ribosome [86,87]. The

Hsp70 chaperone system would also correct cotransla-

tional misfolding when domain folding at the ribosome

does not synchronize with translation rate [88–91].
Consistent with Hsp70 and GroEL catering to pro-

teins having different folding problems, the Hsp70 sys-

tem cannot deal with the obligate substrates of

GroEL/ES. Although aggregation of these proteins is

inhibited by cycles of Hsp70 binding and release, fold-

ing is very inefficient, if it occurs at all [52,55,61,64].

What distinguishes chaperonin substrates from those

of Hsp70? Proteins that depend on GroEL/ES to fold

are primarily 35–60 kDa in size, consistent with the

volume of the chaperonin cavity, and typically have a/
b and a+b domain topologies that are stabilized by

long-range interactions [52,54,80,92]. Proteins with

large domains and high topological complexity are

likely to undergo indiscriminate hydrophobic collapse

at early stages of the folding reaction. The resulting

intermediates tend to be stabilized by high solvent and

configurational entropy. Theory predicts that for

domains ≥ 200 amino acids, the hydrophobic forces

are no longer sufficient to reduce the effective confor-

mational space to a size that allows folding at a bio-

logically relevant time scale [93]. Confinement in the

GroEL/ES cavity uniquely addresses this particular

cause of slow folding by lowering the entropic compo-

nent of the folding energy barrier and reducing the

search time for native contacts [59–61] (Fig. 4).
In some cases, the kinetic trap may be so deep that

spontaneous folding is essentially undetectable under

standard in vitro conditions, even in the absence of

aggregation. This phenomenon has been observed for

the GroEL-substrate MetF and for actin, a major obli-

gate substrate of the eukaryotic chaperonin TRiC

[55,56]. TRiC provides steric information through

chaperonin subunit-specific interactions that direct the

folding of actin [56,94]. We speculate that extreme

dependence on (specific) chaperones for folding is a

consequence of coevolution of chaperone and sub-

strate. In these cases, the sequence space of the sub-

strate protein may also be constrained by obligate

cofactor binding (as in MetF), or extensive function-

ally critical protein–protein interactions (actin).

How are the different chaperone activities in the

bacterial cytosol coordinated into a functional net-

work? GroEL acts downstream of the more abundant,

general cytosolic chaperones trigger factor and Hsp70

[23,41,95–97]. Proteins that do not fold efficiently with

the upstream chaperones are maintained by Hsp70 in

a soluble state competent for folding upon transfer to

GroEL, such that the network functions as a ‘selective

percolator’. It is also possible that optimal folding of

some bacterial proteins requires sequential processing

by multiple chaperone systems. Indeed, a subset of

E. coli proteins were shown to require the combined

action of trigger factor, the Hsp70 system and GroEL/

ES for maximum solubility in a reconstituted system

[98]. Conceivably, resolution of misfolded intermedi-

ates by Hsp70 could generate dynamic states that are

primed for accelerated folding by GroEL/ES (Fig. 4).

Likewise, under certain conditions the refolding yield

of an Hsp70 substrate can be enhanced by cooperation

of Hsp70 with the chaperone Hsp90 [24]. Direct physi-

cal interactions between chaperones may enhance the

efficiency of the network and favor sequential process-

ing of some substrates [99].

Conclusions and perspectives

Accumulated evidence has now shown that molecular

chaperones can shape the energy landscapes of protein

folding to accelerate folding reactions. This observa-

tion emphasizes the fact that not only the yield, but

also the rate of folding is critical in vivo. Optimally,

protein biogenesis is rate-limited by protein synthesis.

Slow folding proteins are at risk of aggregation or pre-

mature degradation, and it is our view that catalysis of

protein folding by chaperones is a vital function that

harmonizes folding speed with the rate of translation.

Recent work has begun to illuminate the fascinating

mechanisms by which chaperones stimulate folding. A

key finding is that the major chaperone systems of the

bacterial cytosol attend to different categories of fold-

ing problem: The Hsp70 system catalyzes the folding

of stably misfolded species, while confinement in

GroEL/ES accelerates the conversion of conformation-

ally dynamic intermediates to the native state.

Although technically challenging, further insight will

come from mapping the conformational progression

during folding for a greater variety of authentic in vivo

chaperone clients.

Besides Hsp70 and the chaperonins, other chaperone

systems offer additional solutions to distinct folding

problems. Eukaryotic Hsp90, for example, and its

cochaperones play a critical role in the conformational

maturation of specific clients such as protein kinases,

stabilizing metastable states that are poorly populated

in the absence of these chaperones [100]. Furthermore,

ATP-independent chaperones such as small heat shock

proteins, trigger factor, and Spy (in the bacterial peri-

plasm) have been shown to modulate protein folding

pathways, although whether and how these chaperones

accelerate the folding of endogenous substrates is at

present unclear [101–103]. Finally, it will be important
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to recapitulate the full complexity of folding in vivo,

by studying chaperone action also in the context of

translation. For instance, the ribosome has been

shown to directly modulate protein folding [11] and

may thus dictate how chaperones interact with nascent

proteins [12].
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