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Sepsis as life-threatening organ dysfunction caused by microorganisms repre-

sents a dreadful challenge for the immune system. The role of the complement

system as major column of innate immunity has been extensively studied in

various sepsis models, but its translational value remains in the dark. Comple-

ment activation products, such as C3a and C5a, and their corresponding

receptors provide useful diagnostic tools and promising targets to improve

organ function and outcome. However, a monotherapeutic complement inter-

vention irrespective of the current immune function seems insufficient to

reverse the complex sepsis mechanisms. Indeed, sepsis-induced disturbances of

cross talking complement, coagulation, and fibrinolytic cascades lead to sys-

temic ‘thromboinflammation’, ultimately followed by multiple-organ failure.

We propose to reliably monitor the complement function in the patient and to

re-establish the immune balance by patient-tailored combined therapies, such

as complement and Toll-like receptor inhibition. Our working hypothesis aims

at blocking the ‘explosive’ innate immune recognition systems early on before

downstream mediators are released and the inflammatory response becomes

irreversible, a strategy that we name ‘upstream approach’.

Keywords: C3a; C5a; complement activation; sepsis; therapy; Toll-like
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Sepsis comes from the Greek word ‘sepein’ meaning

‘to rot’ reflecting an extreme process of irreversible tis-

sue damage. Others defined sepsis as intoxication of

the blood, emphasizing the dynamic process of sepsis

with exposure to pathogen-associated molecular pat-

terns (PAMPs) generated and released by microorgan-

isms including bacteria, worms, parasites, fungi, and

viruses. In the last three decades, sepsis was defined as

a rather general immune pathophysiologic reaction

with focus on the hemodynamic and pulmonary

response, as well as on temperature and leukocyte

count, clinically known as systemic inflammatory

response syndrome (SIRS) to verifiable bacteria [1].

Only in the last decade, sepsis has been proposed as

life-threatening organ dysfunction caused by a dysreg-

ulated host response to infection [2]. Irrespective of the

definition and modern diagnostic algorithm and inten-

sive care treatment, sepsis remains associated with a

high morbidity and hospital mortality rate reaching

more than 25% in cases of severe sepsis [3]. Thus, sep-

sis represents a major challenge for both clinicians and

scientists.

As for the underlying mechanisms, classical PAMPs

originated from Gram-negative or Gram-positive
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bacteria, such as lipopolysaccharides (LPS) or lipopro-

teins, respectively, were previously in the focus as trig-

gers for sepsis. However, PAMPs from worms,

parasites, fungi, and viruses can also induce sepsis. In

all cases, innate immunity comprising cellular and

fluid-phase defense systems is challenged by microor-

ganisms invading from external (e.g., skin) or internal

(e.g., gut) surfaces via dysfunctional barriers to other-

wise sterile areas of the body [4]. The innate immune

system orchestrates a highly interactive response

against microbes with multiple instruments such as

neutrophils, monocytes and macrophages, dendritic

cells, innate lymphoid cells, and the complement sys-

tem as main players for an effective defense [5]. How-

ever, although designed as protective systems, the

response may become inappropriate and excessively

activated, leading to an unbalanced response that puts

the patient at risk of an overwhelming inflammation

incompatible with life.

The complement system

Complement is part of the host innate defense with a

number of biological effects, many of which contribute

to the inflammatory reaction mainly by activation of

cells like leukocytes and endothelial cells. Previously,

and still correct, complement is regarded as a protec-

tion system against infection, but the recent decades

have shown that complement contributes a number of

other host functions in maintaining the internal tissue

homeostasis [6], including tissue regeneration and ren-

ovation, embryogenesis, neuronal junction regulation

in addition to cross talk with a number of other bio-

logical systems, including the TLRs [7]. However, the

system is a double-edged sword since improper,

enhanced, or uncontrolled activation is disadvanta-

geous and potentially harmful and may be even lethal

for the host in case of septic shock [4].

Complement comprises approximately 50 soluble

and surface bound proteins, acting together in a highly

specific manner and is kept under strict control by reg-

ulatory proteins (Fig. 1). The complement system can

be activated through three pathways (upper part of

Fig. 1), all converging to the cleavage of C3 to gener-

ate C3a and C3b (middle part of Fig. 1). The classical

pathway (CP) is typically activated by antibodies, but

also pentraxins including C-reactive protein (CRP),

serum amyloid P component (SAP), and pentraxin 3

(PTX3) can activate C1. The lectin pathway (LP) is

activated through recognition of carbohydrates by

mannose-binding lectin (MBL), and other collectins as

well as ficolins. Furthermore, LP activation may be

mediated through IgM antibodies, for example, by

those directed against damaged self-antigens. The

alternative pathway (AP) is activated by foreign or

damaged own cells, facilitated by the continuous spon-

taneous hydrolysis of C3. AP also has an important

function in the complement system providing an

amplification loop enhancing C3 activation indepen-

dent of which pathway has been initially activated.

This effect is mainly due to properdin (FP), the only

positive regulator in the complement system, which

stabilizes the C3 convertase. Activation of C3 leads to

formation of a C5 convertase, cleaving C5 into C5a

and C5b.

The anaphylatoxins C3a and C5a bind to the recep-

tors C3aR, C5aR1, and C5aR2, leading to down-

stream production of inflammatory mediators (lower

left part of Fig. 1). C5b initiates the formation of the

terminal C5b-9 complement complex (TCC), which

forms the membrane attack complex if inserted into a

membrane (bottom part of Fig. 1). This may lead to

lysis of bacteria and cells or in sublytic doses to activa-

tion of cells. The cleavage and inactivation of C3b

generate iC3b, which binds to complement receptors

CR3 (CD11b/CD18) and CR4 (CD11c/CD18), facili-

tating phagocytosis, oxidative burst, and downstream

inflammation (right part of Fig. 1). The complement

system is tightly regulated by soluble inhibitors

(marked in yellow in Fig. 1), including C1-inhibitor

(C1-INH), factor H (FH), factor I (FI), C4b-binding

protein (C4BP), anaphylatoxin inhibitor (AI), vit-

ronectin (Vn), and clusterin (Cl), keeping the continu-

ous low-grade activation in the fluid phase in check.

Host cell membranes are equipped with a number of

inhibitors to protect them against attack by comple-

ment (right part of Fig. 1), including membrane cofac-

tor protein (MCP;CD46), complement receptor 1

(CR1;CD35), decay accelerating factor (DAF;CD55),

controlling C4 and C3 activation, and CD59 protect-

ing against final assembly of the C5b-9 complex.

Investigation of complement
activation mechanisms in ex vivo
sepsis ‘surrogate’ models

Sepsis is a clinical condition, requiring the whole body

of the host to interact with the microbes, which are

growing in the circulation and infiltrating organs

through a disturbed vascular endothelium. Since

ex vivo models do not fulfill the criteria for the term

sepsis as a multi-organ response, they are not termed

sepsis models, but rather models for bacteria-induced

inflammation. These can be highly reductionistic,

studying the interaction of the microbe with specific

cell population in purified systems. Such models are
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valuable to study ligand–receptor interactions and the

subsequent intracellular signaling pathways. Targeting

specific molecules in these signal pathways are useful

to test potential therapeutic approaches both by block-

ing (antagonists) and by enhancing (agonists) the

actual signaling pathway. Various microbe–cell interac-
tion models both with single cells and more complex

cell cultures have been reviewed [8].

We have developed a more holistic ex vivo model

based on freshly drawn human whole blood, which is

anticoagulated with lepirudin, which is a highly speci-

fic thrombin inhibitor [9]. Traditional anticoagulants

like EDTA and citrate bind calcium, thus precluding

them for being used when that aim is to explore the

interaction between the various biological systems of

which most are dependent on free calcium. Heparin

interferes not only with many steps of the coagulation

cascade, but also with the complement system and

should be used with great caution. Our lepirudin-based

model inhibits only thrombin, the second last step of

coagulation. Thus, despite the limitation of the model

that the role of thrombin cannot be evaluated, it is as

close to a physiological system as is possible to come

using whole blood.

The role of complement in the inflammatory reac-

tion in human whole blood has been extensively stud-

ied in this model using both Gram-negative and

Gram-positive bacteria. Various complement inhibitors

as well as whole blood form otherwise healthy C5-defi-

cient individuals were used to study the effect of com-

plement activation on the inflammatory reaction

including leukocyte and platelet activation, cytokine

release, oxidative burst, receptor expression, and

arachidonic acid production [10]. Complement activa-

tion, in particular of C5 with release of C5a and subse-

quent binding to its receptor C5aR1, was responsible

for a number of the secondary inflammatory mediators,

in particular those related to neutrophil activation like

Fig. 1. Overview over the complement system. The content of the figure is described in detail in the section entitled ‘The complement

system’.
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oxidative bust and granula release, receptor expression,

and IL-8 release. The effect of the rest of the cytokine

panel was less complement driven. This led us to search

for the role of another important upstream recognition

system of innate immunity, the Toll-like receptor (TLR)

system. CD14 is an important coreceptor for several

TLRs, including TLR4 and TLR2, both of which are

important sensors of PAMPs [11]. Thus, we used the

same whole blood model and inhibited the same panel

of inflammatory markers induced by the same bacteria

using an anti-CD14 antibody [10]. We then found a dif-

ferential pattern with the most extensive effects on the

typical pro-inflammatory cytokines including IL-6,

TNF, and IL-1b. Most importantly, we found that a

combined inhibition of C5 and CD14 virtually abol-

ished the whole inflammatory reaction.

Based on these data, we developed the hypothesis

that dual blockade of both complement (e.g., C3, C5,

or C5aR1) and the TLR molecule CD14, binding LPS

captured by LPS-binding protein (LBP) in plasma

bringing it to TLR4, was a potent way of attenuation

the overwhelming inflammatory response induced by

Gram-positive as well as Gram-negative bacteria [12].

In a number of studies, we showed that this combined

inhibition was a promising strategy for future therapy,

reviewed in [13,14], paving the way for animal experi-

ments described below. In order to investigate how

potent this combined regimen was, we performed a

microarray study of human whole blood exposed to

Escherichia coli (E. coli) in the absence or presence of

the combined treatment approach [15]. In this model,

2335 genes significantly responded to E. coli. by on

average 80%. Combined inhibition significantly

reversed 70% of these transcriptional changes by an

average of 80%, underscoring an extensive and broad-

acting effect of this inhibition in a bacterial model.

Determination of the effects of
complement modulation during sepsis
in animal models

Rodents

Multiple models exist for the scientist to simulate sys-

temic inflammation following an infectious insult.

However, in real world, the clinician usually faces a

more complex immune pathophysiology induced by

other situations than just an artificial LPS intoxication

or inoculation of a single specific bacterium. To simu-

late sepsis in a clinically more relevant manner, cecal

ligation and puncture (CLP) in rodents [16] or cecum

incision in pigs [17] (see below) seems rather reliable

and considered currently as a golden standard for

translational meaningful polymicrobial sepsis research

[18]. In rodent CLP sepsis, acute-phase protein,

transferrin, and C3 production by the liver was

increased as early as 16 h after CLP induction as deter-

mined in ex vivo hepatic perfusion analyses [19] and

remained more than twofold even 96 h after induction

of sepsis [20]. Systemic complement activation with gen-

eration of the complement activation products C3a and

C5a was shown in many studies in rodent sepsis [21].

However, blockade of C3 or C4 by genetic deficiency

resulted in impaired endotoxin clearance and worsened

the septic course and outcome in an LPS intoxication

model [22]. Furthermore, C3 knockout mice were also

very susceptible to CLP-induced sepsis [23]. In contrast,

C5 inhibition by antibodies and C6 deficiency in rats

significantly improved animal survival [24]. Another

study reported some protection in C3-deficient mice

undergoing CLP sepsis but no survival advantage of

C5-deficient mice [25]. In line, a recent CLP sepsis study

revealed that upregulation of microRNA-574 which

gen-targets and downregulates C3, attenuated septic

lung injury and reduced sepsis-induced stress of the

endoplasmic reticulum [26].

There are several studies indicating improved cellular

function, organ performance, and survival of CLP

sepsis mice by several inhibition strategies of the inter-

action between C5a and the corresponding receptor

C5aR1 or C5aR2 [27–30]. Of note, in severe sepsis, syn-

chronic inhibition of both, C5aR1 and C5aR2, revealed

a survival benefit over single blockade strategy [28].

For blockade of the C3aR in CLP sepsis, little is

known. One study showed in murine endotoxin shock

an enhanced mortality rate when C3aR was absent

[31]. Another study in LPS-induced shock with sys-

temic inflammation demonstrated an early enhanced

lethality rate of C3aR-deficient mice, but after a 72-h

observation period, no changes could be detected

between the wild-type and C3aR-deficient littermates

[32]. In experimental meningococcal sepsis, a differen-

tial role for the C3aR and the C5a receptors has

recently been reported: whereas C5aR1 and C5aR2

aggravated the disease immune pathology, C3aR was

rather protective [33]. Thus, C3a seems to reveal some

protective effects, possibly by activating the hypothala-

mus–pituitary–adrenal axis and by inhibition of neu-

ronal cell death [32].

In striking contrast, C5a seems to induce all classical

signs of inflammation and has been proposed to be

harmful when excessively produced [34]. Mechanisti-

cally, C5a generation during sepsis as a most potent

chemotactic factor for neutrophils can switch the

endothelium from antiadhesive to pro-adhesive for

inflammatory cells by upregulation of various selectins
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[35]. C5a can also result in the disruption of the

endothelial barrier by neutrophil protease-mediated

degradation of VE cadherin [36]. Furthermore, C5a

can transform leukocyte surfaces to a pro-coagulatory

platform [37,38]. Upon recruitment, C5a can activate

leukocytes to mount an oxidative burst, which is not

only microbicidal but also host-attacking. However,

during advanced sepsis and upon exposure to excessive

C5a, neutrophils become ‘paralysed’ and may not

response to chemotactic signals. Their NADPH oxi-

dase activity will be lost by translocation defects of

key activation enzymes (e.g., p47phox) and lead to an

impaired phagocytotic activity and bacterial clearing

[27,39]. Therefore, bacteria can further expand, drive

sepsis progression, and worsen clinical outcome [27].

Sepsis in the clinical setting is currently defined as

(multiple) organ dysfunction [2]. In this context, C5a

has detrimental effects to several organs as previously

shown [40]. During rodent CLP sepsis, pulmonary gas

exchange was compromised, liver enzyme levels ele-

vated, urine output and glomerular filtration rate

reduced with ultrastructural changes of the glomerular

filter, and lactic acidosis present. All these pathological

changes could be prevented by blockade of systemic

C5a [17]. Furthermore, sepsis-induced coagulopathy

could be alleviated by anti-C5a therapeutic strategies

[41]. In addition, applying a C5a-neutralizing mirror

image (L-) aptamer (C5a-Spiegelmer; an RNA frag-

ment binding and blocking C5), mice with CLP-in-

duced sepsis exhibited less signs of gut barrier

dysfunction and multiple-organ failure even when

applied 6 h after the infectious insult [29]. With the

same C5a-neutralizing strategy, pneumococcal pul-

monary sepsis in mice could also be improved [42].

Using anti-C5a antibodies, the delayed application of

the immune modulation could last up to 12 h after

CLP and still resulted in an improved outcome [43].

Remarkably, C5a seems also to be involved in devel-

opment of septic cardiomyopathy with dysfunction of

cardiomyocytes, which could be almost normalized by

neutralizing C5a [44].

Taken together, C5a inhibitory strategies in small

animals with sepsis simulation seem promising on a

cellular, immune, and multiple-organ levels and, there-

fore, have been translated to higher species so as to

assess its potential for clinical application (Fig. 2).

Large animals

In contrast to rodents, very few studies have been per-

formed using complement inhibitors in large animal

sepsis studies. Some reports on C1-inhibition have

been published, but since the C1-inhibitor is not a

specific complement inhibitor, but inhibits all plasma

cascade systems, we have not included these here. It is

well known that the pathophysiology caused by C1-in-

hibitor deficiency is due to bradykinin formation from

the contact activation system [45].

We established a pig model of intravenous E. coli

sepsis with the aim of investigating a broad panel of

physiological, inflammatory, and hemostatic parame-

ters [46]. At that time, we already had established the

Fig. 2. Possible complement modulatory

strategies for excessive complement

activation and the subsequent signs of

cellular and organ dysfunction during

sepsis. Blue arrows: activation/stimulation;

red arrows: inhibition.
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complement and CD14 dual blockade. Thus, we inves-

tigated the efficacy of blocking C5 alone or in combi-

nation with an anti-CD14 antibody. To block C5, we

used Ornithodoros moubata complement inhibitor

(OmCI), also known as coversin. Anti-CD14 (mAb

MIL-2) was modified by making it a chimeric IgG2/4,

which did not show diverse effects due to Fc-mediated

effector functions, but completely neutralized CD14

[47]. Of interest, C5 blockade not only completely

inhibited complement terminal activation, but also

abolished leukotriene B4 formation, and significantly

reduced granulocyte tissue factor expression. Forma-

tion of thrombin–antithrombin complexes and forma-

tion of TNF and IL-6 were efficiently inhibited by

OmCI alone, supporting a cross talk with coagulation,

that is, ‘thromboinflammation’. When anti-CD14 was

added together with OmCI, these mediators were vir-

tually abolished, indicating the potency of the dual

inhibition. Additionally, the combined therapy attenu-

ated the formation of plasminogen activator inhibitor-

1 (P < 0.05), IL-1b, and IL-8, increased the formation

of IL-10, and abolished the expression of wCD11R3

(CD11b) and the fall in the neutrophil cell count.

Finally, the combined treatment also improved the

cardiopulmonary functions by delaying the increases in

the heart rate and mean pulmonary artery pressure.

We then investigated the effects of the combined inhi-

bition on the local inflammatory response in liver, kid-

ney, lung, and spleen from these animals [48]. All

cytokines were reduced in all organs and the therapy

attenuated upregulation of C5aR in the heart and

lungs, which could explain the beneficial effects on the

cardiopulmonary functions.

Similar to the model described above, we tested the

dual inhibition in Neisseria meningitis sepsis by

intravenous infusion of escalating doses of bacteria

[49]. The dual inhibition markedly attenuated the

cytokine storm, which developed rapidly in the

untreated animals, similar to the human meningococ-

cal sepsis, by significantly inhibiting interferon-

gamma, TNF, IL-8, IL-10, IL-12p40, and granulocyte

CD11b (CR3) expression. Thus, inhibition of C5 and

CD14 may be beneficial in treatment of Gram-nega-

tive sepsis in general.

In clinical medicine, polymicrobial sepsis is com-

mon, frequently presented with several Gram-negative

and Gram-positive bacteria, typically seen in sepsis

originated from peritonitis. As described above, we

have tested mice with the CLP model of sepsis and

found that dual inhibition both increased survival

and decreased inflammation as compared to single

inhibition. Though, this mouse model is regarded as

a highly relevant model for sepsis, ‘mice are not man’

[50]. Thus, in order to move closer to the clinic, we

developed a peritonitis model in pigs by making a

2 cm cut in cecum [17]. Peritonitis developed rapidly

and led to polymicrobial severe sepsis, septic shock,

and many deaths throughout the 8-h observation per-

iod. Treatment was performed with the same inhibi-

tors of C5 and CD14 as described for the Gram-

negative bacteria studies. Dual inhibition improved

cardiopulmonary function, reduced the cytokine

storm, and, most importantly, significantly improved

survival. Of the 12 animals in each group, nine sur-

vived in the treatment group and four in the non-

treated group.

Even closer to humans are nonhuman primates. In a

primate study of E. coli sepsis, an anti-C5a antibody

was shown to attenuate the septic shock and reduced

leukocyte-mediated lung edema [51]. In a well-estab-

lished baboon model of intravenously induced E. coli

sepsis, inhibition of C3 by the small molecule comp-

statin, the authors investigated the effect of comple-

ment inhibition on hemostasis [52]. C3 inhibition

reduced leukopenia and thrombocytopenia and low-

ered the accumulation of macrophages and platelets in

organs. It decreased the coagulopathic response by

downregulating tissue factor and PAI-1, diminished

global blood coagulation markers like fibrinogen, fib-

rin degradation products, and APTT, and preserved

the endothelial anticoagulant properties. Furthermore,

compstatin effectively reduced tissue damage as evalu-

ated by histopathology.

We followed this track by investigating the effect

of C5 inhibition in the same baboon E. coli sepsis

model [53]. C5 cleavage was blocked by RA101295, a

2-kDa macrocyclic peptide. RA101295 reduced the

E. coli-induced ‘oxidative burst’, as well as leukocyte

activation, without affecting phagocytosis. RA101295

treatment reduced the LPS content in plasma, imply-

ing reduced complement-mediated bacteriolysis,

whereas treated animals showed slightly improved

bacterial clearance during the bacteremic stage com-

pared with controls. Treatment also improved con-

sumptive coagulopathy, preserved endothelial

anticoagulant and vascular barrier functions, and

reduced cytokines. Overall, RA101295 treatment was

associated with significant cardiovascular improve-

ment and organ protection and, most importantly,

markedly reduced mortality as four of five animals

survived in this 100% lethal model. We therefore con-

clude that inhibition of C5 cleavage during the bac-

teremic stage of sepsis could be an important

therapeutic approach to prevent sepsis-induced

inflammation, consumptive coagulopathy, and subse-

quent organ failure and death.
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Translational approaches of
complement monitoring and
modulation in clinical sepsis

Various clinical studies have demonstrated in patients

with severe sepsis a robust complement activation with

enhanced concentrations of complement factor B [54]

and generation of C3a, C4a, and C5a. The anaphyla-

toxin production in particular seems to be associated

with a bad outcome [55–62]. In patients suffering from

necrotizing soft tissue infections with or without septic

shock, complement activation was evident and high

levels of the C4c/C4 ratio, C3bc, and the C3bc/C3

ratio were associated with an enhanced long-term mor-

tality [63]. Patients with severe tissue trauma also

exhibited enhanced C3a and C5a plasma levels espe-

cially when they developed septic complications

[64,65]. The systemic concentrations of C3 and C5

dropped whereas C3a and C5a significantly increased

early during sepsis and normalized when successfully

treated [66].

C3a was the best variable to differentiate between

sterile SIRS and sepsis in humans with a maximal sen-

sitivity of 86% and a specificity of 80% [67]. For C5a,

the discriminatory power to reliably diagnose sepsis

versus systemic inflammation or healthy conditions is

problematic. Likely, most of the excessively generated

C5a is rapidly bound to the almost ubiquitous

expressed C5a receptors (C5aR). In contrast, expres-

sion of the C5aR on neutrophils seems a rather sensi-

tive tool. Injection of E.coli LPS (2 ng�kg�1 body

weight) into healthy volunteers resulted among others

in a decrease of the C5aR associated with functional

cellular impairment [68]. First reports in patients with

sepsis indicated that a decreased C5a-C5aR interaction

on neutrophils occurred during sepsis development

[69]. Meanwhile, determination of C5aR1 or C5aR2

on neutrophils by flow cytometric methods seems a

reliable tool for various intensive care patients to early

diagnose sepsis with a satisfying sensitivity and speci-

ficity [62,70–72]. Human neutrophils, central in the

first line of cellular defense, exhibit only minor func-

tional changes when activated by C3a, resulting, for

example, in mounting of an oxidative burst [73]. Fur-

thermore, LPS exposure is capable to upregulate C3aR

on neutrophils and thereby inducing neutrophil extra-

cellular trap (NET) formation [74].

In striking contrast, presence of C5a results in multi-

ple changes of human neutrophils [75] including depo-

larization of the membrane potential [76] shape

changes [77], phagocytosis, and generation of reactive

oxygen radicals (ROS). Furthermore, C5a seems to

function as a switch of the pH resulting in intracellular

alkalinization followed by enhanced glycolytic flux and

production of a lactic acidosis in the extracellular

microenvironment of the cells [78]. In accordance, neu-

trophils isolated from patients with severe sepsis

revealed an elevated intracellular pH [78]. Based on all

the reported small and large animal studies, where C5a

inhibitory strategies revealed some cellular and organ

protection and improved outcome it was rational to

transfer these results from the scientific platform into

the clinics. Thus, an extracorporeal immunoabsorption

device to clear LPS, IL-6, and C5a was tested and

could successfully reduce systemic C5a levels from ca.

300 to ca. 80 ng�mL�1. Moreover, impairment of

monocytic function was reversed and some improve-

ment of the organ functions achieved [79]. Further-

more, a sepsis study ‘Studying Complement Inhibition

in Early, Newly Developing Septic Organ Dysfunction

(SCIENS)’ has been performed in patients with

advanced sepsis using a humanized monoclonal anti-

body against human C5a (NCT02246595). Although

the recruitment phase has been finished, the results are

pending.

Taken together, C5aR status on neutrophils, rapidly

assessed by flow cytometric methods, may be useful to

monitor the risk to develop infectious complications in

ICU and sepsis patients [62,70,72]. However, the bene-

fit of C5a inhibitory strategies in human sepsis in clini-

cal reality remains to be proven.

Future perspectives

Sepsis-induced multiple-organ dysfunction

syndrome

Concerning sepsis-induced multiple-organ dysfunction

syndrome (MODS), barrier dysfunction seems a major

underlying immune pathophysiological driver. Comple-

ment activation products may cause or at least help

impair endothelial organ barriers, clinically manifested

as capillary leakage syndrome [80,81]. Thus, one

important future goal is to modulate the complement

in order to treat capillary leakage. Immunoadsorption,

hemofiltration, or hemodialysis approaches to remove

complement activation products [82–84] may reduce

systemic inflammation and thereby result in an

improved outcome. Further clinical trials need to

address and assess this potential.

Indirect modulation of systemic complement activa-

tion may also improve cellular and organ performance

and outcome. For example, sIL-1R antagonist attenu-

ated generation of C3a and thrombin–antithrombin

complexes, as well as key fibrinolysis markers, during

sepsis in humans [85].
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Attention should be paid to potential cardiotoxic

effects of complement activation products. It has been

shown that C3a or C5a generated during sepsis in

humans can alter cardiomyocyte function [86,87] and

may be directly involved in causing hemodynamic dis-

turbances and a fatal outcome [88]. Here, further

research on the proposed cardiocomplement cross talk

is required.

Both basic research and clinical research are neces-

sary to better define the role of complement during

fungus-induced sepsis. Although considered in general

harmful during sepsis [34], C5a may also control early

fungal invasion by promoting recognition and clear-

ance of fungi by neutrophils [89]. However, the com-

plement defense is also time-dependent and, in later

periods of sepsis, C5a may play a different role [89].

Thus, irrespective of the complement modulatory strat-

egy used, it seems mandatory to monitor actual com-

plement function in accordance to the principle

‘measure what your target’. Here, bedside tests are

needed to reliably assess actual complement activity or

depletion. Rebalancing the activity of complement

could be useful as a potential immunomodulatory

therapy.

Summary—specific therapeutic approach in

sepsis is to ‘look upstream’

Sepsis is a complex spectrum of clinical entities, a big

challenge when it comes to clinical trials. Except

antibiotics and supportive therapy, there is no specific

treatment for sepsis. Due to the diversity of the dis-

ease, it is unsurprising that all clinical using specific

inhibition of single downstream inflammatory media-

tors such as TNF, IL-1b, or IL-6 trials has failed [14].

Similarly, also single inhibition of TLR4 (Eritoran)

[90] or activated protein C (Xigris) [91] has failed.

Stratification of patients is also a big problem: It is

vital to determine at which stage of the process leading

from infection to septic shock treatment needs to be

started. Knowing the cause of sepsis is crucial as well

to find an appropriate therapy. Thus, all of these fac-

tors should be carefully weighed when designing a

treatment regimen for sepsis.

Our hypothesis is to block the complement system

in sepsis, but, based on the data presented above, we

frankly admit that this is not sufficient. Complement is

important, but the other recognition systems are

important as well, and a combination of inhibition of

other upstream molecules like CD14 in the TLR sys-

tem seems to be a promising approach [14,92]. During

development of sepsis, the innate immune system,

including the plasma cascades, gradually reaches a

point where it is impossible to save the life of the

patient—the so-called ‘the point of no return’. These

cascades represent undetonated bombs, which may

detonate in sepsis. A prerequisite for our hypothesis is

that inhibition should be given long before ‘the point

of no return’ is reached. To avoid an explosive sepsis,

we need to treat the patients at high risk, ideally

before they develop sepsis. High-risk patients include

those undergoing abdominal surgery with postopera-

tive peritonitis, or patients with open heart surgery or

after major trauma. Treatment should be initiated

before development of SIRS and eventually sepsis has

occurred, so that the cytokine storm may be pre-

vented.
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