
REVIEW ARTICLE

Emerging roles of metazoan cell cycle regulators as
coordinators of the cell cycle and differentiation
Yuu Kimata1 , Ma€ıt�e Leturcq1 and Rajaguru Aradhya2

1 School of Life Science and Technology, ShanghaiTech University, China

2 School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India

Correspondence

Y. Kimata, School of Life Science and

Technology, ShanghaiTech University,

Shanghai, China

Tel: +86 021 2068 4508

E-mail: ykimata@shanghaitech.edu.cn

(Received 23 October 2019, revised 17 April

2020, accepted 20 April 2020, available

online 18 June 2020)

doi:10.1002/1873-3468.13805

Edited by Angel Nebreda

In multicellular organisms, cell proliferation must be tightly coordinated with

other developmental processes to form functional tissues and organs. Despite

significant advances in our understanding of how the cell cycle is controlled

by conserved cell-cycle regulators (CCRs), how the cell cycle is coordinated

with cell differentiation in metazoan organisms and how CCRs contribute to

this process remain poorly understood. Here, we review the emerging roles of

metazoan CCRs as intracellular proliferation-differentiation coordinators in

multicellular organisms. We illustrate how major CCRs regulate cellular

events that are required for cell fate acquisition and subsequent differentia-

tion. To this end, CCRs employ diverse mechanisms, some of which are sepa-

rable from those underpinning the conventional cell-cycle-regulatory functions

of CCRs. By controlling cell-type-specific specification/differentiation pro-

cesses alongside the progression of the cell cycle, CCRs enable spatiotempo-

ral coupling between differentiation and cell proliferation in various

developmental contexts in vivo. We discuss the significance and implications

of this underappreciated role of metazoan CCRs for development, disease and

evolution.
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Growth and differentiation are the two major pro-

cesses in the development of multicellular organisms.

Through growth, the organism augments its body

mass, mainly by increasing cell number by passage

through the cell cycle. Through differentiation, the

organism generates a variety of cell types with distinct

forms and functions that make up tissues and organs.

For the proper development and homeostasis of meta-

zoan organisms, these two processes must be tightly

coordinated in time and space.

Through decades of intense research on the molecu-

lar mechanisms that control the cell cycle, the com-

plete set of proteins that regulate key cell-cycle events

has been identified [1] (Fig. 1). Remarkably, these pro-

teins, which are commonly known as ‘cell-cycle regula-

tors’ (CCRs), are found to be structurally and

functionally conserved from simple unicellular organ-

isms, such as yeast, to complex multicellular organ-

isms, such as humans. As CCRs ultimately dictate cell

proliferation by controlling the cell cycle, understand-

ing how CCRs function and are regulated in vivo is

key to deciphering the mechanisms that ensure the cru-

cial coordination between cell proliferation and differ-

entiation in metazoans.

Investigations using various multicellular models

have confirmed the critical importance of CCRs for
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the control of cell proliferation in vivo. During devel-

opment as well as in adulthood, CCRs stimulate cell

proliferation for tissue growth while terminating it

upon the induction of differentiation and cell quies-

cence. The functions of CCRs are also crucial for set-

ting cell division rates by modifying the length of each

cell-cycle phase, and for switching cell-cycle modes, for

example from the mitotic cycle to meiosis or the

endoreplication cycle (also called the endocycle).

Importantly, several CCRs have been identified as

direct targets of various transcription factors (TFs) or

signalling pathways that play pivotal roles in the regu-

lation of tissue development and homeostasis of meta-

zoan organisms. Transcriptional regulation of CCRs

Fig. 1. The functions of the major CCRs in cell-cycle regulation. Cell-cycle progression is tightly controlled by a set of proteins that can

either promote (cell-cycle engines) or inhibit (cell-cycle brakes) this process. Among the cell-cycle engines, the CDKs are known to

phosphorylate a large number of proteins during specific windows of the cell cycle to promote its progression. CDK activity depends on

their association with a cyclin, which accumulates during specific phases of the cell cycle. Thus, upon G1 entry, CDK4/6 associates with

Cyclin D to control G1 progression. Next, Cyclin E begins to accumulate from the middle of G1 phase and interacts with CDK2 to promote

the G1-to-S transition and DNA replication. Correct progression through S phase is ensured by the Cyclin A/CDK2 complex then, during G2,

Cyclin A associates with CDK1 until the transition to M phase. Finally, progression through mitosis is promoted by the Cyclin B/CDK1

complex, and the mitotic kinases, Plks and Aurora A/B (Arks). The kinase activity of CDKs can be inhibited by two groups of CKIs: the Cip/

Kip CKIs inhibiting several CDKs and the Ink CKIs inhibiting CDK4/6. CKIs ensure that cells do not enter any cell-cycle phases prematurely

or with DNA damage. Although CKIs seem to be dispensable for normal cell-cycle progression, they are essential during development. The

fourth group of CCRs is the one formed by the ubiquitin ligase complexes. Several ubiquitin ligase complexes are required to induce the

degradation of CCRs during specific windows of the cell cycle, acting as either engines or brakes according to the protein targeted for

degradation. On one hand, the APC/C complex associates with its co-activator Cdc20 to direct several mitotic events, including

chromosome segregation and mitotic exit through Securin and mitotic Cyclin degradation, respectively. Then, APC/C binds Cdh1 from late

M to the end of G1 phase to regulate G0 and G1 lengths. On the other hand, the SCF ubiquitin ligase associates with several regulatory

subunits to ubiquitinate critical CCRs from the G1-to-S transition to the beginning of mitosis, including Cyclin E, the phosphatase Cdc25 and

Cip/Kip CKIs. Blue arrows indicate proteasomal degradation. Red arrows indicate activation.
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enables the integration of cell-cycle control into the

developmental programme and hence contributes to

the coordination between cell proliferation and differ-

entiation in metazoans [2].

However, accumulating evidence points towards an

additional mechanism that also contributes to coordi-

nating these two processes, which involves unantici-

pated metazoan-specific roles for CCRs. In addition to

cell proliferation defects and over-proliferation pheno-

types, animals lacking normal CCR functions exhib-

ited a wide variety of tissue-specific phenotypes that

appeared unrelated to misregulations of the cell cycle.

Analyses of these phenotypes have led to the discovery

of novel functions of CCRs in the regulation of fate

specification and differentiation of various types of

metazoan cells. Hereafter, we refer to the roles of

CCRs in non-cell-cycle events such as the regulation of

developmental TFs and cell signalling, cellular specifi-

cation/differentiation and asymmetric cell division, as

‘non-canonical’ functions of CCRs. Of note, these

functions are not thoroughly understood and most of

them are not shared by homologous CCRs in unicellu-

lar organisms. Combining some of these non-canonical

functions with their conserved cell-cycle-related func-

tions, metazoan CCRs spatiotemporally couple cell-

type-specific specification/differentiation processes to

cell-cycle events, thereby acting as the intracellular

coordinators between cell proliferation and differentia-

tion. Despite its potential significance for metazoan

biology, this emerging role of metazoan CCRs has not

yet received due recognition.

Here, we review the current knowledge of the roles

of metazoan CCRs as the intracellular proliferation-

differentiation coordinators, featuring their non-canon-

ical functions in the control of cellular specification/

differentiation. Due to space constraints, we focus on

four groups of CCRs: cyclin-dependent kinases

(CDKs), mitotic kinases, CDK inhibitors (CKIs) and

ubiquitin ligases anaphase-promoting complex/cyclo-

some (APC/C) and Skp1-Cullin1-F-box (SCF), which

constitute the ‘core’ cell-cycle machinery (Fig. 1).

Nonetheless, most of the concepts discussed herein are

likely applicable to other CCRs. We discuss only those

coordination mechanisms in which CCRs regulate cell-

type-specific differentiation processes and the cell-cycle

progression by employing both their non-canonical

and cell-cycle-regulating functions in the same cell

population. We do not mention any mechanisms in

which CCRs affect differentiation through their cell-

cycle functions, for example by changing the length of

a certain cell-cycle phase or by converting cell-cycle

modes. Similarly, the role of cell death and senescence,

which may also be induced by some CCRs, in cellular

differentiation is not discussed either, although these

events take significant part in development and tissue

homeostasis [3–5]. Readers interested in these topics

should refer to other reviews, including the two

reviews in this special issue [6,7,8].

Cell-cycle engines

Protein phosphorylation is the main modification

involved in the control of the eukaryotic cell cycle.

The conserved family of serine-threonine kinases

CDKs, bound to regulatory subunit cyclins, phospho-

rylates a large number of proteins to modify their

activities, stabilities and interactions during specific

windows of the cell cycle. Through these phosphoryla-

tion events, CDKs drive cell-cycle progression and,

therefore, are often referred to as ‘cell-cycle engines’

[1] (Fig. 1). Another set of kinases commonly called

mitotic kinases, such as Polo-like kinases (Plks) and

Aurora-related kinases (Arks), also cooperates with

CDKs preferentially during mitosis and regulates vari-

ous mitotic events to ensure accurate chromosome seg-

regation and cell division (Fig. 1).

The active roles of CDKs in cellular processes

beyond cell-cycle control have been widely acknowl-

edged. In particular, CDKs are known to play a cru-

cial role in the regulation of general transcription.

CDK1 phosphorylates components of the general

transcription complex globally to suppress transcrip-

tion during mitosis [9]. Moreover, some CDK family

members, such as CDK7 and CDK9, function exclu-

sively in transcription control [10]. However, besides

these roles in the control of general transcription,

accumulating evidence suggests that metazoan CDKs,

as well as mitotic kinases, also regulate cell-type-speci-

fic transcription, thereby impacting cell fate specifica-

tion and differentiation in various metazoan cells. In

addition, recent studies have also indicated various

post-transcriptional mechanisms by which these cell-

cycle kinases influence cell fate choice upon the induc-

tion of differentiation. Notably, some of these func-

tions do not even require the enzymatic activity of

these kinases, unlike their functions in cell-cycle regu-

lation.

Below, we will first introduce evidence for the regu-

lations of cell-type-specific specification or differentia-

tion events by non-canonical functions of the main

cell-cycle-regulating CDK members, CDK1, CDK2

and CDK4/6, and two mitotic kinases, Plk1 and Aur-

ora A, and discuss how these cell-cycle engines com-

bine these functions and the positive regulation of the

cell cycle to couple cell specification/differentiation

processes to cell division.
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CDK1

CDK1 (also known as CDC2) is undoubtedly the most

well-known CCR, which binds A-type and B-type

cyclins and phosphorylates numerous proteins, includ-

ing other CCRs, during the cell cycle (Fig. 1). Impor-

tantly, CDK1 is the sole CDK member whose

function is absolutely essential for the proliferation of

all eukaryotic cells ever examined [11]. CDK1 activity

is normally rate-limiting and required for early mitotic

events, including mitotic entry (the G2-to-M transi-

tion). However, in the absence of other CDKs, CDK1

can compensate for the loss of their activities and also

drive the G1-to-S phase transition [11,12].

The first evidence of the role of CDK1 in cell differ-

entiation came from a study on the Drosophila CDK1

mutant allele cdc2E51Q [13]. In wild-type Drosophila

neuroblasts (NBs), a number of proteins, including a

cell fate determinant Numb, localise asymmetrically,

accumulating on the apical cortex during mitosis [14].

However, in cdc2E51Q mutant NBs, these proteins are

distributed uniformly throughout the cell cortex during

mitosis [13]. In addition, these NBs cannot align the

mitotic spindle with the apicobasal axis, unlike the

wild-type [13]. As these mutant NBs are able to com-

plete cell division, this observation suggests that

CDK1 regulates cell fate determinant localisation and

spindle orientation in asymmetrically dividing NBs,

independently of its cell-cycle function.

In line with this finding, subsequent studies in the

early-stage Caenorhabditis elegans embryo also uncov-

ered multiple functions of CDK1 in the regulation of

asymmetric cell division. In four-cell-stage embryos,

the endomesoderm (EMS) blastomere divides asym-

metrically along the anterior-posterior axis, generating

two daughter cells that are destined for different cell

fates [15]. When the EMS enters mitosis, WRM-1, a

worm b-catenin homologue, accumulates specifically

on the anterior domain of the cell cortex and orients

the mitotic spindle along the anterior-posterior axis

[15]. It was shown that CDK1 directly phosphorylates

WRM-1 and promotes its dissociation from the poste-

rior cortex, which allows the accumulation of WRM-1

on the apical cortex [15]. CDK1 also regulates the

asymmetric distribution of cell fate determinants in the

earlier one-cell-stage worm embryo by inducing the

degradation of OMA-1 [16,17]. OMA-1 is a zinc finger

RNA-binding protein that is necessary for oocyte mat-

uration and needs to be degraded during the first mito-

sis of the zygote to allow the asymmetric cytoplasmic

accumulation of cell fate determinants including PIE-1

[17]. It was shown that hypomorph CDK1 mutations

or depletion of Cyclin B3 stabilises OMA-1 and causes

the transformation of the C blastomere, which pro-

duces skin and muscle, to the EMS blastomere, result-

ing in the formation of extraintestinal tissue [16].

Moreover, the precise temporal control of CDK1

activity is also critical for the successful completion of

asymmetric division of the C. elegans embryo. It was

shown that the CDK1 inactivation during late mitosis

is required for displacement of the mitotic spindle

towards one side of the cortex, to produce differently

sized daughter cells after cytokinesis [18]. Importantly,

during asymmetric division of the mouse oocyte, the

CDK1 inactivation during anaphase is required for the

spindle movement towards the cortex; in addition,

CDK1 inactivation also induces F-actin polymerisation

in the cytoplasm of the oocyte, which is required for

spindle protrusion into the plasma membrane and the

subsequent formation of the polar body [19]. These

results strongly suggest that CDK1 also regulates

asymmetric division of the oocyte in mammals.

These observations underscore the pivotal role of

metazoan CDK1 in asymmetric cell division: CDK1

promotes various subcellular events that are specifi-

cally required for the asymmetric division of each cell

type while driving mitotic progression, thereby coordi-

nating cell fate specification and cell division in these

cells (Fig. 2). In all the examples above, the mutations

or the inactivation of CDK1 appears not to block

mitotic progression, suggesting that the functions of

CDK1 to regulate the asymmetric division-specific pro-

cesses are functionally independent of its cell-cycle

function [13,15,16]. However, molecular mechanisms

underlying these functions of CDK1 in asymmetric

division, including its targets, remain largely unknown,

and data for the differentiation function of CDK1 are

still scarce, particularly in vertebrates. This lack of evi-

dence may be due to the technical difficulties inevitably

associated with studying the function of a gene essen-

tial for cell viability, such as CDK1. Alternatively,

compared with other CCRs, CDK1 may be highly spe-

cialised in cell-cycle control because of its absolute

requirement for cell proliferation.

Several reports point to a role of CDK1 in the regu-

lation of cell differentiation through epigenetic control

in human cells. It was shown that CDK1 directly

phosphorylates EZH2 methyltransferase to inhibit its

enzymatic activity as well as its assembly into the

Polycomb-Repressive Complex 2 and that in an

in vitro osteogenesis model, CDK1 promotes the dif-

ferentiation of mesenchymal stem cells into osteogenic

lineages concurrently with the derepression of EZH2

target genes [20]. However, there are controversies in

the CDK1 phosphorylation sites of EZH2 as well as

the effects of CDK1-dependent phosphorylation on
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EZH2 activity [20–22]. Clarifying the role of CDK1-

dependent phosphorylation of EZH2 functions in vivo

may provide additional evidence for the role of CDK1

in the proliferation-differentiation coordination in ver-

tebrates.

CDK2

CDK2 and its partner cyclins, Cyclin E and Cyclin A,

are expressed in virtually all proliferating cells; in the

late G1 phase, Cyclin E and Cyclin A accumulate in

the cell and activate CDK2 to initiate DNA replication

[1,23] (Fig. 1). It has been shown that CDK2 activity

is rate-limiting for the G1/S transition in mouse

embryonic fibroblasts (MEFs) [24–26]. CDK2 is also

essential for Drosophila embryogenesis [27], supporting

the essential role of CDK2 for cell proliferation in

metazoans. However, surprisingly, in mice CDK2 and

Cyclin E are largely dispensable for embryogenesis and

the proliferation of many cell types [24–26]. This is

owing to the compensatory functions of other CDKs

and cyclins [11,28,29], exemplifying the high degree of

functional redundancy between different forms of

CDK complexes in mammals.

Besides the roles in cell proliferation control,

CDK2-Cyclin A/E complexes have been found to pos-

sess the additional molecular function to regulate gene

expression. CDK2 physically interacts with various

transcription regulators and modulates their transcrip-

tional activities through phosphorylation [30-41]. Stud-

ies in in vivo and in vitro differentiation systems have

shown that, by regulating cell-type-specific TFs

through phosphorylation, CDK2 impacts the differen-

tiation of various progenitor cells. In vertebrates,

CDK2 inhibits the differentiation of neural progenitors

by regulating the proneural basic helix-loop-helix

(bHLH)-type TF Neurogenin2 (Ngn2); Xenopus

CDK2 (possibly also CDK1) directly phosphorylates

Ngn2 and inhibits its DNA-binding activity, and hence

its capacity to induce proneural genes [42]. Similarly,

recent studies demonstrated that CDK2 also phospho-

rylates the proendocrine bHLH TF Neurogenin3

Fig. 2. The roles of cell-cycle engines in coupling the regulation of cell fate determination and cellular differentiation with cell-cycle

progression. Through transcription-regulating functions, CDKs can impact the differentiation of various cell types both positively and

negatively. The G1 complex Cyclin D/CDK4-6 inhibits myoblast, granulocyte and endoderm differentiation but promotes retinal and

neuroectoderm differentiation. Although CDK2 associated with either Cyclin E or Cyclin A mainly acts as an inhibitor of cell differentiation, it

is a positive regulator of asymmetric cell division by regulating the localization of cell fate determinants. A few reports point towards the

positive role of CDK1 in osteogenic differentiation. So far, CDK1 has been shown to promote asymmetric cell division through the regulation

of both cell fate determinant localisation and spindle orientation. Finally, the mitotic kinases Aurora A (AurA) and Plk1 impact cell fate mainly

through the regulation of asymmetric cell division and the control of the mitotic spindle orientation by phosphorylating various target

proteins.
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(Ngn3) on multiple sites, which destabilises Ngn3 and

suppresses its transcriptional activity [43,44]. In mouse

and human pancreas development models, an unphos-

phorylatable mutant of Ngn3 promotes the differentia-

tion of ductal-endocrine progenitors into the endocrine

lineage more robustly than the wild-type Ngn3 protein

[43]. These data underpin the key roles of CDK2 in

promoting self-renewal of different types of progenitor

cells by suppressing the transcriptional activities of lin-

eage-specific bHLH TFs while promoting the G1/S

transition in these progenitors (Fig. 2).

Besides the regulation of transcription regulators,

CDK2 has been shown in invertebrates to impact cell

fate choice through two additional types of regulation.

First, like CDK1, CDK2 also promotes asymmetric

cell division (Fig. 2). In Drosophila embryos, CDK2-

Cyclin E is required for the asymmetric division of the

thoracic NB, NB6-4t [45]. A mutation in cyclin E

causes a conversion of the division mode of NB6-4t

from asymmetric to symmetric, resulting in the forma-

tion of two glial precursors instead of one neuron and

one glia; conversely, overexpression of Cyclin E in the

abdominal NB NB6-4a, which normally divides sym-

metrically, transforms its division from symmetric to

asymmetric [45]. CDK2-Cyclin E also promotes asym-

metric cell division of C. elegans one-cell embryo.

Prior to the first mitotic division of this embryo, cen-

trosomes migrate towards the posterior cortex of the

embryo, where they provide a local signal to the cortex

to initiate the polarisation process [46]. It was shown

that CDK2-Cyclin E accumulates at the migrating cen-

trosomes and recruits SPD-2 and SPD-5 proteins,

which is necessary for the centrosomes to induce the

cortical polarisation [46]. Depletion of CDK2 or

Cyclin E causes the loss of the cortical polarity, result-

ing in defective asymmetric division of the embryo

[46]. Although these studies did not identify the direct

phosphorylation targets of Cdk2-Cyclin E, the mutant

NBs and the embryos with CDK2 or Cyclin E deple-

tion were able to initiate DNA replication and com-

plete cell division [45,46]. Thus, given the requirement

of Cdk2 activity for the division of these cells, Cdk2-

Cyclin E is likely to promote asymmetric division

through the mechanisms that are independent of its

cell-cycle functions.

The second type of regulation by which CDK2-

Cyclin E impacts differentiation is through modulation

of cell responsiveness to extracellular signals (Fig. 2).

It was shown that Drosophila CDK2-Cyclin E pro-

motes the maintenance of female germline stem cells

(fGSCs) by stimulating decapentaplegic (Dpp) sig-

nalling Drosophila tumour necrosis factor [TGF]-b/
BMP signalling) in the fGSCs [47]. The fGSC clones

carrying cdk2 or cyclin E mutations become arrested

in the G1 phase, but also frequently undergo prema-

ture differentiation, due to their reduced response to

Dpp ligands secreted from the somatic cells in the stem

niche [47]. C. elegans CDK2-Cyclin E also regulates

GSC maintenance through the modulation of another

extracellular signalling pathway, the Notch pathway

[48,49]. It is known that, in the C. elegans gonad,

Notch ligands presented by the distal tip cells promote

the proliferation of GSCs and prevent their premature

differentiation [50–52]. As GSCs move away from the

distal tip, Notch signalling is attenuated due to the

translational repression of the Notch receptor by the

GLD-1 protein [53]. It was shown that Cyclin E is

highly expressed in the GSC population near the distal

tip and promotes GLD-1 degradation, thereby main-

taining high responsiveness of the GSCs to Notch

ligands for their self-renewal [48,49]. Interestingly,

once accumulated in GSCs, GLD-1 also represses

Cyclin E translation, thereby inducing the robust com-

mitment of the GSCs to the meiotic programme

through a positive feedback loop [54]. These results

strongly suggest that CDK2-Cyclin E promotes stem

cell self-renewal by increasing cell responses to various

extracellular signals (Fig. 2). However, these studies

did not examine the effects of a cell-cycle arrest on

GSC differentiation. Thus, the possibility that CDK2-

Cyclin E may promote self-renewal of the GSCs

through acceleration of the cell cycle cannot be ruled

out.

In essence, while promoting cell proliferation

through the induction of DNA replication, metazoan

CDK2 complexes positively and negatively regulate

cell differentiation through multiple modes of regula-

tion, such as regulation of TFs, asymmetric cell divi-

sion and regulation of signal responses, in different

cell types, including neural progenitors, GSCs and

early-stage embryos (Fig. 2). Thus, metazoan CDK2

complexes may function to couple the choice between

symmetric or asymmetric cell division to the cell’s

commitment to a new round of the cell cycle. Further

studies are needed to uncover molecular details of the

cell-type-specific functions of CDK2 complexes and to

assess the importance of temporal coupling between

cell specification events and S phase progression.

CDK4/6

Unlike CDK1 and CDK2 complexes, CDK4/6-Cyclin

D is a metazoan-specific CDK complex. Early studies

in cultured mammalian cells established a well-ac-

cepted model of the subcellular event leading to the

entry into a new round of the cell cycle [55]. In this
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model, CDK4/6-Cyclin D is assigned to the central

role in initiating this process; during the early G1 (or

late G0) phase, it phosphorylates the retinoblastoma

(pRb) transcription repressor, which releases E2F1 TF

to induce the expression of genes required for DNA

replication and mitosis [55]. However, subsequent

studies unexpectedly discovered that CDK4/6-Cyclin

D is mostly dispensable for cell proliferation in vivo

[56–59]. Mice lacking CDK4, CDK6 or Cyclin D only

develop defects in a small number of tissues, and

MEFs derived from these animals proliferate at a rate

comparable to wild-type MEFs, only showing a delay

in S phase initiation after serum starvation [56–59].
Thus, CDK4/6-Cyclin D is not universally required for

cell-cycle control and rather is likely to be a cell-type-

dependent CCR, which regulates cell-cycle progression

only in specific cell populations or microenvironments.

It is noteworthy that Drosophila CDK4-Cyclin D has

been proposed to promote cell-cycle progression indi-

rectly, by accelerating cell growth rate [57,60,61]; the

growth-promoting activity of CDK4-Cyclin D may

also be conserved in the human counterpart [62].

Although the precise role of CDK4/6-Cyclin D in

cell-cycle progression remains obscure, a substantial

number of reports have demonstrated the profound

role of CDK4/6-Cyclin D in gene regulation. It has

been shown that CDK4/6-Cyclin D directly phospho-

rylates various TFs and components of transcriptional

coactivator/corepressor complexes to regulate their

activities and/or protein stability [37,41,63–65]. Sur-

prisingly, unlike CDK2-Cyclin A/E, some of these

transcription-regulating functions of CDK4/6-Cyclin D

do not require its kinase activity or even complex for-

mation. For example, CDK4 inhibits androgen-medi-

ated transactivation by competing with the androgen

receptor for the binding site on the histone acetyltrans-

ferase, p300/CREB binding protein-associated factor

(PCAF) [66,67]. The mutant form of Cyclin D1 that

cannot bind CDK4/6 represses transcriptional activa-

tion by the proneural bHLH TF NeuroD [68], whereas

Cyclin D directly binds both the oestrogen receptor

and PCAF, and mediates their complex formation to

stimulate oestrogen-induced transcription [69]. Fur-

thermore, the studies using a cyclin D knock-in mouse

demonstrated that Cyclin D, as a monomer, acts as a

cell-type-specific transcriptional regulator: it binds gene

promoter regions in a tissue-specific manner and mod-

ulates developmentally regulated gene expression

[70,71].

Further studies of the role of CDK4/6-Cyclin D in

various specific cell types have illustrated the ability of

CDK4/6-Cyclin D to control the differentiation of

these cells through transcription regulation. In an

in vitro myogenesis model, CDK4-Cyclin D inhibits

myogenic differentiation by repressing the transactiva-

tion activity of the myogenic bHLH protein MyoD

through both phosphorylation-dependent and phos-

phorylation-independent mechanisms [72–76]. In

mouse embryonic stem cells (mESCs), CDK6-Cyclin D

cooperates with CDK2-Cyclin E to maintain pluripo-

tency by stabilising the pluripotency factors through

phosphorylation; mESCs lacking both Cyclin D and

Cyclin E gradually lose pluripotency while proliferat-

ing at a normal rate [77]. The critical role of the tran-

scription-regulating functions of CDK4/6-Cyclin D in

differentiation has also been confirmed by in vivo stud-

ies. It was shown that Drosophila CDK4 mutant

embryos fail to express some segmentation genes such

as even-skipped, exhibiting a maternal effect phenotype

of the loss of abdominal segments, similar to JAK/

STAT pathway mutants; CDK4-Cyclin D binds

STAT92E and stimulates its transcriptional activity

[78]. Also, in the developing chicken spinal cord,

Cyclin D1 promotes the differentiation of motor neu-

ron progenitors, which appears to be caused by the

upregulation of expression of the pro-neurogenic

bHLH TF Hes6 by Cyclin D1, independently of its

cell-cycle function [79]. Note that this proneural func-

tion of Cyclin D1 stands in contrast to its role in the

developing mouse cerebral cortex, where CDK4-Cyclin

D is thought to inhibit the differentiation of neural

progenitors by accelerating the G1-to-S transition [80],

suggesting that CDK4/6-Cyclin D may differentially

regulate neural differentiation through either a cell-cy-

cle-dependent or a cell-cycle-independent mechanism,

depending on the type of neural progenitors.

This growing body of evidence supports the critical

role of CDK4/6-Cyclin D in the regulation of cellular

specification/differentiation through transcriptional

regulation in metazoan organisms. A key question

concerning the non-canonical functions of CDK4/6-

Cyclin D is how these functions of CDK4/6-Cyclin D

are related to its cell-cycle function, which seems to be

also cell-type-dependent: do non-canonical and cell-cy-

cle functions of CDK4/6-Cyclin D coincide in some

cells, or do they work totally independently, operating

in distinct cell populations? Several pieces of evidence

argue that the two types of functions of CDK4/6-

Cyclin D indeed cooperate in certain cell populations.

It was shown that Cyclin D1 knockout (KO) mice

exhibit a decrease in retinal cell number due to the

reduced proliferation rate of retinal precursor cells,

which indicates that CDK4/6-Cyclin D is rate-limiting

for cell-cycle progression in these precursors [59,81].

Importantly, in addition to the cell number reduction,

the mutant retina also exhibits defects in cell fate
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specification, which are partially restored by the forced

activation of Notch signalling [56,59,81]. It was previ-

ously shown that in the developing retina, Cyclin D1

accumulates in the upstream regulatory region of the

Notch1 gene to stimulate its expression, independently

of CDK4/6 [70]. Thus, the cell-cycle function and the

transcription regulation function of CDK4/6-Cyclin D

may collaborate in the mouse retinal precursors to

coordinate the proliferation and specification of these

cells. Recent studies of human pluripotent stem cells

(hPSCs) provide another example of cooperation. Tri-

ple knockdown of Cyclin D1, D2 and D3 blocked the

proliferation of hPSCs, indicative of the essential role

of CDK4/6-Cyclin D in cell-cycle progression in

hPSCs [82]. It was shown that CDK4/6-Cyclin D also

regulates the choice of cell fate upon differentiation

induction in hPSCs. The hPSCs differentially

responded to the same differentiation-inducing signal

in different cell-cycle phases: the hPSCs preferentially

committed to the endodermal or mesodermal lineage

in the early G1 phase and to the ectodermal lineage in

the late G1 phase [82]. CDK4/6-Cyclin D regulates

this differential response of hPSCs through two dis-

tinct mechanisms: first, CDK4/6-Cyclin D promotes

the nuclear export of Smad2 and Smad3 through

direct phosphorylation to inhibit TGF-b/Activin sig-

nalling, which is inhibits ectoderm differentiation [82].

Second, independently of CDK4/6, Cyclin D1 binds

and recruits coactivator/corepressor complexes onto

specific genome regions to induce neuroectoderm genes

and to repress endoderm genes [83]. Thus, CDK4/6-

Cyclin D appears to coordinate G1 phase progression

and cellular responsiveness to external signals in

hPSCs by combining its cell-cycle and non-cell-cycle

functions. However, both in hPSCs and mouse retinal

precursors, the importance of the coupling between

cell-cycle progression and the transcriptional events

remains unclear.

In summary, while promoting cell-cycle progression

in a cell-type-dependent manner, CDK4/6-Cyclin D, as

a whole complex and as individual components, also

regulates cell specification/differentiation through tran-

scription regulation (Fig. 2). Considering that the

established cell-cycle function of CDK4/6-Cyclin D is

also mediated by transcription control (regulation of a

transcription repressor pRb), it is tempting to specu-

late that, during evolution, CDK4/6-Cyclin D might

have initially emerged as a CDK specialised in the reg-

ulation of cell-type-specific transcription and might

have later extended the transcriptional function to the

regulation of the cell cycle or cell growth. In this

respect, future studies may aim to decipher molecular

mechanisms underlying cell-type-specific functions of

CDK4/6-Cyclin D, as well as upstream regulatory

mechanisms that orchestrate these cell-type-specific

functions. Given that CDK4/6-Cyclin D is the first

CCR that has been clinically validated as an anti-can-

cer drug target [84], a further understanding of its

in vivo functions is crucial to gain insight into the roles

of CCRs in tumour development as well as their

potentials as anti-cancer targets.

Mitotic kinases, Plk1 and Aurora A

During the cell cycle, mitotic kinases Plk1 and Arks

regulate a variety of mitotic events, including spindle

assembly, chromosome segregation and cytokinesis,

which involve reorganisation of subcellular structures

such as chromosomes, cytoskeletons and organelles [1]

(Fig. 1). Mitotic kinases orchestrate these events

through protein phosphorylation, functioning in paral-

lel with, or downstream of, CDKs [1], often by phos-

phorylating additional sites on the proteins that have

been phosphorylated (‘primed’) by CDKs [85]. In addi-

tion to these cell-cycle functions, mitotic kinases have

also been implicated in a wide range of cellular pro-

cesses that coincide with cell division to influence the

fates of newly generated daughter cells. Mounting evi-

dence, mainly from studies using invertebrate models,

highlights the regulation of asymmetric cell division as

a common route through which mitotic kinases couple

cell fate decision to the passage through mitosis

(Fig. 2).

Mitotic kinases control multiple aspects of asymmet-

ric cell division. First, Plk1 and Aurora A control the

localisation of cell fate determinant proteins, in most

cases by directly phosphorylating the fate determinants

or their adaptor proteins. For example, Drosophila lar-

val NBs carrying hypomorph mutations in polo (Dro-

sophila Plk1 orthologue) or Aurora A, fail correctly to

localise several cell fate determinants on the cell cortex

during mitosis to asymmetrically segregate them into

the two daughter cells; consequently, the mutant NBs

continue self-renewing, eventually forming brain

tumours [86–89]. It was shown that Polo phosphory-

lates the Partner of Numb protein, an adaptor protein

for the Notch signalling inhibitor Numb, to localise

Numb at the basal cortex during mitosis, whereas Aur-

ora A phosphorylates Par6 to promote assembly of

the PAR complex, which in turn dissociates Numb

from the anterior cortex [86,89,90]. Aurora A also reg-

ulates Numb localisation through Par6 phosphoryla-

tion in Drosophila sensory organ precursors [89,90].

Thus, in these progenitors, Plk1 and Aurora A affect

daughter cell fate by facilitating unequal segregation

of Numb into two daughter cells, which leads to
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differential Notch signalling activation between the

two daughters. Interestingly, it was shown that human

Plk1 also binds and phosphorylates the human ortho-

logue of Numb [91,92], raising the possibility that Plk1

may also regulate Numb segregation in human cells.

In C. elegans one-cell embryos, Plk1 was shown to

promote the formation of a polarised gradient of cell

fate determinants in the cytoplasm (cytoplasmic polar-

ity) during mitosis [93,98]. Upon entry into mitosis,

Plk1 binds the RNA-binding protein MEX-5 preferen-

tially to accumulate in the anterior cytoplasm of the

embryo; Plk1 then phosphorylates a germplasm pro-

tein, POS-1, which increases the intracellular mobility

of POS-1 in the anterior cytoplasm and creates a per-

missive environment for its retention only in the poste-

rior cytoplasm [93]. A failure to establish the polarised

POS-1 gradient disrupts subsequent embryonic devel-

opment [93].

Second, Plk1 and Aurora A also direct the orienta-

tion of the mitotic spindle during asymmetric cell divi-

sion. The spindle orientation is critical for daughter

cell fate, as it ensures accurate partitioning of cellular

components into the two daughter cells and also posi-

tions each of the daughter cells in the proper local

environment after division. It was shown that Droso-

phila Polo and Aurora A mutant NBs not only mislo-

calise fate determinants but also fail to align the

spindle with the apicobasal axis [87,88]. Importantly,

this function is clearly separable from the established

mitotic functions of Polo and Aurora A; the mutant

NBs still form a bipolar spindle and complete cell divi-

sion [86–88]. There is evidence that this function may

be conserved in vertebrates. It was shown that in the

developing mouse cortex, Plk1 inhibition causes spin-

dle misorientation in neural progenitors [95], and that

in the adult mouse mammary epithelium, Aurora A

regulates spindle orientation of mammary stem cells

through Notch signalling activity [96]. However, the

direct phosphorylation substrates of Plk1 and Aurora

A that are responsible for the spindle misorientation

phenotypes have not been identified. In Drosophila

wing and ovarian follicular epithelial cells, phosphory-

lation of the Lethal(2) giant larvae (Lgl) protein by

Aurora A is required to align the mitotic spindle along

the epithelium during symmetric division of these cells.

However, Lgl phosphorylation is not required for spin-

dle orientation in NBs [97,98]. Thus, mitotic kinases

are likely to regulate spindle orientation through dif-

ferent substrates in different cell types.

Lastly, mitotic kinases also promote asymmetric cell

division by setting up cell polarity, the event that is a

prerequisite for asymmetric cell division. During the

oocyte-to-embryo transition in C. elegans, Plk1 and

Aurora A collaborate to establish the first polarity in

the embryo through three distinct steps. First, during

oocyte maturation Plk1 and Aurora A inhibit preco-

cious cortical accumulation of the PAR complex to

suppress premature symmetry breaking [99–101]; Plk1
phosphorylates a PAR complex subunit Par3, which

suppresses its oligomerisation as well as the assembly

of the PAR complex [101]. Second, soon after the

embryo enters mitosis, the mitotic kinases localise at

the centrosomes to trigger the initial symmetry-break-

ing event, downstream of the aforementioned function

of CDK2-Cyclin E [46]; after centrosomes reach the

proximity of the posterior cortex, Aurora A is then

released from the centrosomes into the cytoplasm and

locally inhibits the actomyosin assembly at the poste-

rior cortex, which creates a polarised cortical actin

flow that is required for the establishment of cortical

polarity [99,102]. Finally, after the initial polarity for-

mation, Aurora A then spreads through the entire

cytoplasm and globally inhibits cortical actomyosin

assembly, which prevents a spontaneous polarity rever-

sal caused by a centrosome-independent cue [99,102].

Although evidence in vertebrate is still limited, the

substantial body of evidence outlined above has estab-

lished mitotic kinases as the main coordinators

between mitotic progression and subcellular events

required for asymmetric cell division (Fig. 2). Given

that their main role in cell-cycle regulation is also to

couple structural reorganisation of various subcellular

structures to the progression of mitosis, it might be

reasonable to assume that mitotic kinases have

extended this coupling function to various subcellular

processes that are specific to metazoan cells over the

course of evolution. Plk1 and Aurora A have also

been shown to phosphorylate various TFs, epigenetic

regulators and signalling pathway components [103–
106]. It is important to determine the roles of these

phosphorylation events in cell specification/differentia-

tion and how these events coincide with mitosis.

Of note, mitotic kinases also play a role in some

non-mitotic cells. It was shown that Plk1 regulates

transcriptional repression and intracellular transport in

the maturing Drosophila oocyte [107,108] and that

Aurora A stimulates neurite extension through phos-

phorylation of Par3 and NDEL1 in mammalian neu-

rons [109,110]. In postmitotic mammalian cells, Plk1

and Aurora A also regulate assembly of the primary

cilium, a metazoan-specific organelle that is involved

in cell motility, cell polarity, signal transduction and

mechanosensing [111–113]. In dividing cell, the kinase

activity and expression of Plk1 and Aurora A are nor-

mally downregulated during interphase [1]. Thus, addi-

tional cell-type-specific regulatory mechanisms should

2069FEBS Letters 594 (2020) 2061–2083 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies

Y. Kimata et al. Metazoan CCRs couple cell cycle and differentiation



exist in the non-mitotic cells to uncouple the functions

of the mitotic kinases from the cell cycle. Subcellular

localisation appears to be one of these mechanisms; in

the C. elegans oocyte, Aurora A accumulates at the

cortex, colocalising with cortical microtubules, which

is not observed in dividing cells [99].

Cell-cycle brakes and ubiquitin ligases

During the cell cycle, CKIs bind and inhibit the kinase

activities of CDKs and two Cullin-RING type ubiqui-

tin ligase complexes, APC/C and SCF, destabilise vari-

ous CCRs, including cyclins and mitotic kinases,

through ubiquitin-mediated proteolysis (Fig. 1). Thus,

CKIs and the ubiquitin ligases often, if not in all situa-

tions, act as negative regulators of cell-cycle progres-

sion, hence ‘cell-cycle brakes’. Cellular differentiation

commonly accompanies a semi-permanent cell-cycle

arrest (‘cell-cycle exit’), generally in the G1 or G0

phase, or slowing down of the cell cycle. In these situa-

tions, the negative CCRs often regulate cellular events

that promote cell differentiation while decelerating the

cell cycle, thereby coordinating cellular differentiation

with cell-cycle exit or cell-cycle lengthening (Fig. 3).

CDK inhibitors

There are two families of CKIs: the Kip/Cip family

CKIs inhibit multiple CDKs, whereas the INK family

CKIs primarily inhibit CDK4/6 (Fig. 1) [114]. In

mammals, there are three Kip/Cip family members -

p21Cip1, p27Kip1 and p57Kip2 - and four Ink4 family

members, p16INK4a, p15INK4b, p18INK4c and

p19INK4d. In contrast, far fewer CKIs exist in inver-

tebrates: one or two Kip/Cip family CKIs and no

Ink4 family CKIs.

In unicellular organisms, CKIs are essential for the

proper G1-to-S transition, preventing the premature

initiation of DNA replication [115,116]. In contrast, in

some metazoan cells, CKIs are dispensable for normal

kinetics of the cell cycle. Triple CKI KO MEFs, which

lack all of the Cip/Kip family CKIs, proliferate at a

rate comparable to that of wild-type cells [117].

p21Cip1 is only required for the induction of G1 arrest

in the presence of severe DNA damage [118,119].

Nonetheless, the functions of CKIs have been shown

to be crucial for proper cell proliferation control

in vivo. Both in vertebrates and invertebrates, mutants

lacking all the Cip/Kip CKIs are embryonic lethal,

exhibiting over-proliferation of various types of cells

Fig. 3. The roles of cell-cycle brakes in coupling the regulation of cell fate determination and cellular differentiation with cell-cycle arrest.

The CKIs seem to promote differentiation mainly by modulating gene expression through their interaction with several transcriptional

regulators, independently of their cell-cycle functions. The two ubiquitin ligase complexes, APC/C and SCF, modulate various signalling

pathways through inhibition or proteasomal degradation of specific targets. Thus, the cell-cycle brakes can impact on cellular differentiation.
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[116,119–122]. Although single p27Kip1 KO mice can

survive up to adulthood, the KO pups display exces-

sive cell proliferation and overgrowth of numerous tis-

sues [124–126]. Other CKIs, including INK4 family

proteins, also function in various adult tissues, restrict-

ing cell division rates and proliferative potential of tis-

sue stem cells, or maintaining the quiescent state of

terminally differentiated cells [127–133].
In addition to these cell-cycle-related phenotypes,

animals defective in CKI functions also exhibit a

wide range of tissue-specific developmental pheno-

types that are not easily attributable to the deregula-

tion of the cell cycle. For example, p57Kip2 KO

mouse embryos display differentiation defects in kid-

neys, chondrocytes, muscles and cleft palates

[134,135]. Subsequent analyses of these tissue-specific

phenotypes have revealed the critical roles of meta-

zoan CKIs in regulating differentiation in a broad

range of cell types [114]. It was shown that the Xeno-

pus laevis p27Kip1 orthologue Xic1 induces cell-cycle

exit in retinal and neural progenitors and it also pro-

motes their differentiation into M€uller glial fate and

early neuronal fate, respectively [136,137]. Detailed

dissection of the Xic1 functions resulted in the first

clear demonstration of the differentiation-promoting

activity of a Cip/Kip family CKI that is molecularly

separable from its CKI activity; a mutant human

p21Cip1 protein that was defective in CDK inhibition

was able to trigger progenitor differentiation, whereas

mutant forms of Xic1 that retained CKI activity were

not [136,137].

Mechanistically, a large part of cell-cycle-indepen-

dent functions of CKIs seem to be mediated by the

capacities of CKIs to interact physically with various

transcription regulators. It has been shown that,

through interaction with TFs, including E2F family

TFs, CKIs are recruited to specific gene promoter

regions and inhibit the transcriptional activities of the

TFs, or facilitate or impede interactions of the TFs

with coactivator/corepressor complexes [138–144]
(Fig. 3). In various progenitor cells, CKIs also bind

and upregulate lineage-specific bHLH TFs to promote

differentiation of these progenitors upon the differenti-

ation induction, while inducing cell-cycle arrest in

these cells. It was shown that, in the developing mouse

cerebral cortex, p27Kip1 promotes the differentiation

of neural progenitors by binding the neurogenic bHLH

TF Ngn2; the interaction stabilises Ngn2 and enhances

its transcriptional activity to induce the expression of

proneural genes [145]. During myogenesis, p57Kip2

interacts with the myogenic bHLH TF MyoD to

induce muscle-specific genes [146]. An analogous

bHLH TF-mediated mechanism is likely to underlie

the aforementioned differentiation-promoting function

of Xic1 [136,137].

CDK inhibitors also function as transcription

repressors to restrict the self-renewing capacities of

various stem cells or to promote their commitment to

a certain fate. In mammalian keratinocytes and

haematopoietic stem cells (HSCs), it was shown that

loss of p21Cip1 results in an increased stem cell popu-

lation [131,147]. In keratinocytes, p21Cip1 localises at

the Wnt4 gene promoter and represses Wnt4 transcrip-

tion, which promotes self-renewal of the stem cell pool

[144,148]. In addition, in mESCs and induced pluripo-

tent stem cells, upon the induction of differentiation

p27Kip1 is recruited to the enhancer sequence of the

pluripotency factor gene Sox2 and recruits a corepres-

sor complex to suppress Sox2 expression [143,149].

Importantly, the regulation of SOX2 transcription

may be one of the main functions of Cip/Kip family

CKIs in mice; major phenotypes in p27Kip1 KO

mouse embryos, such as body overgrowth, retinal

defects and pituitary hyperplasia, are rescued merely

by removing one copy of the SOX2 gene [149].

Furthermore, although it may seem counterintuitive,

CKIs can also inhibit cell differentiation. It was shown

that in subependymal neural stem cells (SNSCs) in the

adult mouse brain, depletion of p21Cip1 causes the

premature differentiation of SNSCs into astrocytes,

due to abnormal activation of TGF-b/BMP signalling

in SNSCs [150]. This TGF-b/BMP activation is caused

by the loss of the p21Cip1 function to repress the

expression of the TGF-b/BMP ligand Bmp2 in SNSCs

[150]. In addition, p21Cip1 also promotes the self-re-

newing capacity of SNSCs by repressing SOX2 expres-

sion through direct binding to a SOX2 enhancer

[127,151]. The p21Cip1 depletion causes premature

exhaustion of SNSCs due to excessive expression of

SOX2 [127,151]; SOX2 overexpression induces replica-

tive stress in SCSCs, although the underlying mecha-

nism is unclear [151]. Similarly, p21Cip1 depletion also

triggers a premature loss of a self-renewing capacity of

mouse HSCs after initial expansion of the HSC pool

[131]. Thus, in various adult stem cells, CKIs function

to prevent their premature differentiation and/or their

premature exhaustion, while maintaining their slow

proliferation rates.

Taken together, these studies indicate that CKIs

both positively and negatively regulate cell differentia-

tion by directly modulating the expression of various

genes. Through these transcriptional functions, CKIs

may spatiotemporally couple cell fate specification to

cell-cycle exit in progenitor cells or may link self-re-

newal to the extended cell cycle in adult stem cells

(Fig. 3). It is crucial to clarify how the transcriptional
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functions and the negative regulation of the cell cycle

by CKIs cooperate to ensure the balance between pro-

liferation and differentiation in these cell types. Some-

what surprisingly, there is no evidence for the

involvement of non-cell-cycle functions of invertebrate

CKIs in development. However, in both vertebrates

and invertebrates, CKIs regulate actin cytoskeleton

through the control of RhoGTPases [152]. In mice,

p21Kip1 was shown to regulate neural extension

through the regulation of RhoA activity [145]. Given

the critical role of cytoskeleton in a wide range of

developmental processes, including cell migration, cell

polarity and morphogenesis, the cytoskeletal function

of CKIs may also play a role in invertebrate develop-

ment.

APC/C and SCF ubiquitin ligases

Alongside phosphorylation, ubiquitination is the cen-

tral protein modification to cell-cycle control, mediat-

ing timely proteolysis through the ubiquitin-

proteasome pathway. The irreversible nature of prote-

olysis is key to the unidirectionality of the cell cycle,

ensuring the ‘only once per cell cycle’ occurrence of

the replication and segregation of the chromosomes.

The structurally related complexes APC/C and SCF

are the two major ubiquitin ligases involved in cell-cy-

cle control, and act as engines and brakes for cell-cycle

progression, depending on the cell-cycle stages and on

which substrate receptor subunit assembles into the

complexes (Fig. 1) [153].

APC/C

APC/C binds one of the two regulatory subunits,

CDH1 (also known as Fizzy-related or Fzr1) and

CDC20 (also known as Fizzy), which activate APC/C

in specific windows of the cell cycle and also confer

distinct substrate specificities [153]. The interphase-

specific subunit CDH1 binds APC/C from late mitosis

to the end of the G1 phase. Studies using cultured cells

and animal models suggest that APC/CCDH1 mainly

functions to prevent the G1-to-S transition and thus

acts as a critical determinant of the length of the G1

(and G0) phase (Fig. 1). In cycling human cells,

CDH1 depletion shortens the G1 phase by accelerating

S phase entry, which often causes DNA damage [154].

In many metazoan organisms, CDH1 is not expressed

during early embryonic stages when cells divide

rapidly; its expression levels gradually increase concur-

rently with the elongation of the G1 phase [155]. In

various progenitor cells, APC/CCDH1 is required for

the G1 phase lengthening upon the onset of

differentiation [156]. APC/CCDH1 is also suggested to

be involved in maintenance of G0 arrest in some ter-

minally differentiated cells [156,157].

APC/CCDH1 is one of the few CCRs that are

thought to be active during the G1/G0 phase. There-

fore, potential roles of APC/CCDH1 in terminal differ-

entiation and tissue-specific functions have been

intensively investigated in various postmitotic cells,

particularly in neurons [156,158,159]. In Drosophila

and C. elegans presynaptic neurons, APC/CCDH1 con-

trols the number of presynaptic boutons by regulating

the levels of liprin-a and the glutamate receptor

[160,161]. In mouse and rat neurons, APC/CCDH1

degrades the inhibitor of bHLH TFs, the Id2 protein,

to regulate the axonal morphology and neural activity

[162]. Importantly, in rat neurons, APC/CCDH1 activity

is also necessary to maintain the G0 phase arrest of

the neurons by keeping Cyclin B levels low [157].

Thus, APC/CCDH1 may couple terminal differentiation

and cell-type-specific functions to G0 arrest in various

terminally differentiated cells.

Besides these functions, recent reports have revealed

the roles of APC/CCDH1 in the cell fate decision pro-

cess in progenitor cells [156]. In the developing Droso-

phila eye, it was shown that APC/CCDH1 influences the

cell fate choice of retinal progenitors by modulating

the activity of a major extracellular signalling pathway,

the Wnt signalling pathway [163]. In the eye pri-

mordium (the eye imaginal disc), Wnt signalling pre-

vents undifferentiated progenitors from committing to

the retinal fate and instead promotes their commit-

ment to the head cuticle fate [164]. It was shown that

partial depletion of APC/C subunits in the progenitor

cells blocks their differentiation into photoreceptor

neurons by inducing ectopic activation of Wnt sig-

nalling [163]. It was previously shown that APC/

CCDH1 induces G1 arrest in the same progenitor popu-

lation prior to the initiation of differentiation [165].

Thus, APC/CCDH1 couples the suppression of Wnt sig-

nalling to G1 arrest during Drosophila retinal differen-

tiation.

Mounting evidence suggests that the regulation of

intra- and extracellular signalling pathways may be

one of the major mechanisms by which APC/CCDH1

influences cell fate determination and differentiation

(Fig. 3). In the above example, the regulation of Wnt

signalling is mediated by APC/CCDH1-dependent

degradation of the evolutionally conserved kinase

NimA-related kinase 2 (Nek2) [163,166], which phos-

phorylates the conserved Wnt pathway component

Dishevelled (Dsh) to stimulate Wnt signalling activity

[169]. It was shown that APC/CCDH1 also uses the

same Nek2-Dsh pathway and modulates the non-

2072 FEBS Letters 594 (2020) 2061–2083 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies

Metazoan CCRs couple cell cycle and differentiation Y. Kimata et al.



canonical Wnt pathway, the Wnt/planar cell polarity

(PCP) pathway, to influence epithelial cell polarity in

the late stage of Drosophila eye development and in

developing wing epithelia [168]. Importantly, the

human Nek2 homologue has also been shown to be

targeted by APC/C [169] and to phosphorylate human

Dsh protein in human cells [170]. It was previously

reported that in Xenopus embryos, morpholinos

against APC/C subunits cause phenotypes that are

reminiscent of those observed upon the deregulation of

the Wnt/PCP pathway [171]. Taken together, these

data strongly suggest that APC/CCDH1 also modulates

Wnt pathways in vertebrates. Moreover, it was shown

in human cells and Drosophila tissues that APC/CCDH1

regulates the transcriptional activity of the TGF-b sig-

nalling pathway through the degradation of the nega-

tive modulator SnoN [172–174]. APC/CCDH1 also

degrades LATS kinases (Warts in Drosophila) in a cell-

cycle-dependent manner and modulates the Hippo

pathway [175].

APC/CCDH1 may also regulate cell fate decisions of

neural progenitors through protein degradation in the

developing mouse cortex. It was shown that CDH1

promotes the differentiation of cortical neural progeni-

tors [176,177] and that APC/CCDH1 degrades a number

of proteins that are expressed specifically in the neural

progenitors [178–181]. However, in these progenitors,

CDH1 also controls the length of the G1 phase upon

the induction of differentiation [176,177]. It was shown

that lengthening the G1 phase by other means, for

example by inhibiting CDK4-Cyclin D, also induces

the differentiation of the neural progenitors [6]. There-

fore, it needs to be clarified whether APC/CCDH1 pro-

motes the differentiation of neural progenitors through

its cell-cycle and/or cell-cycle-independent functions.

The mitotic form of APC/C, APC/CCDC20, normally

acts as a positive regulator of the cell cycle. During

the cell cycle, CDC20 is normally expressed in G2 and

M phases and supports the activity of APC/C to direct

critical mitotic events, such as spindle formation, sister

chromatid separation and mitotic exit [182] (Fig. 1).

Although to a much lesser extent than APC/CCDH1,

APC/CCDC20 has also been implicated in cell differenti-

ation. It was shown that APC/CCDC20 regulates asym-

metric cell division of one-cell-stage C. elegans

embryos and Drosophila larval NBs: CDC20 is

required for the establishment of cell polarity in the

C. elegans embryo [183], and Drosophila larval NBs

carrying mutations in APC/C subunits fail to localise

cell fate determinants on the basal cortex during mito-

sis [184] (Fig. 2). Thus, similar to other mitotic regula-

tors, APC/CCDC20 may couple asymmetric division-

specific events to mitotic progression.

Although CDC20 is normally not transcribed during

the G1 or G0 phase, there are some exceptions where

CDC20 is expressed in postmitotic cells and regulates

cellular events specific to the cell types. It was shown

that in postnatal rodent neurons, CDC20 promotes

the formation and growth of dendrites through the

degradation of the Id1 protein [185]. CDC20 was also

found to be expressed in postmitotic ependymal cells

in the developing mouse brain and to regulate the for-

mation of multicilia during ependymal cell differentia-

tion [186]. Unique regulatory mechanisms specific to

these postmitotic cells appear to allow uncoupling of

these cell-type-specific functions of CDC20 from its

cell-cycle functions. In the rat granule neurons,

CDC20 was found to be enriched at centrosomes,

which is normally only observed during mitosis; this

centrosomal localisation is critical for the function of

APC/CCDC20 in regulating dendrite growth [185]. In

the multiciliating ependymal cells, CDC20B, a verte-

brate-specific CDC20 homologue that has no assigned

cell-cycle functions, is specifically expressed and coop-

erates with CDC20 in the multiciliation process [187].

SCF complexes

Compared with APC/C, SCF has a much larger num-

ber of regulatory subunits that possess distinct sub-

strate specificities (F-box proteins, 69 different F-box

genes present in the human genome) and is involved in

the regulation of a myriad of biological processes

[153]. Among the F-box proteins, b-TRCP1/2 (also

known as Fbxw1/11), Fbxw7 (or CDC4) and Skp2 (or

Fbxl1) are particularly important for cell-cycle control,

targeting degradation-critical CCRs, such as cyclin D/

E, Cip/Kip family CKIs, CDC25 and Emi1 (Fig. 1)

[153].

The involvement of the SCF complexes in cellular

processes besides cell-cycle regulation has been widely

acknowledged [188]. In particular, SCF plays key roles

in the regulation of major developmental signalling

pathways. SCFb-TRCP has been shown to be a critical

regulator of signal transduction of two conserved sig-

nalling pathways, Wnt and Hedgehog (Hh). In the

absence of Wnt ligands, SCFb-TRCP ubiquitinates phos-

phorylated b-catenin to induce its degradation and

turns off downstream signal transduction of the

canonical Wnt signalling pathway [189,190]. Similarly,

SCFb-TRCP also shuts off Hh signalling by targeting

the essential pathway component Ci (Gli in mammals):

in the absence of Hh ligands, SCFb-TRCP ubiquitinates

Ci to trigger its proteolytic cleavage, and the resultant

truncated form acts as a transcriptional repressor that

inhibits the expression of target genes [189,191,192].
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SCFb-TRCP is also involved in the activation of NF-jB
signalling by targeting the NF-jB inhibitor, IjB, for

degradation [192]. Another form of SCF, SCFFbxw7,

also modulates the activities of major signalling path-

ways: SCFFbxw7 destabilises Notch and c-Jun proteins,

components of Notch and JNK signal transduction

cascades, respectively [194–197]. In addition to sig-

nalling components, the SCF complexes also target

various tissue-specific TFs, including SNAIL and

DMRT1 [198–200].
Through these regulatory activities, SCFb-TRCP,

SCFFbxw7 and SCFSkp2 engage in various developmen-

tal processes alongside cell-cycle regulation (Fig. 3).

Drosophila mutations in slimb (Drosophila b-TRCP

orthologue) disrupt development due to ectopic activa-

tion of Hh and Wnt signalling [189]. Mice lacking one

of the two b-TRCP paralogues, b-TRCP2, die during

early embryogenesis, and conditional KO of both the

b-TRCP paralogues severely disrupts testicular devel-

opment, which is partially rescued by co-depletion of

the Snail1 TF [199]. Fbxw7 KO mice exhibit defects in

the development of the brain, yolk sac and heart

chamber, which are attributable to the deregulation of

Notch and/or c-Jun pathways [196,201].

However, although the SCF complexes control both

cell cycle and cell differentiation, unlike other CCRs,

they may contribute little to the proliferation-differen-

tiation coordination in normal conditions. This is

because the rate-limiting step in substrate ubiquitina-

tion by SCF complexes is generally not the activation

of the complexes but rather post-translational modifi-

cations (e.g. phosphorylation, glycosylation) of sub-

strates, which allow recognition of these substrates by

F-box proteins and are regulated by other factors

[153]. Therefore, cell-cycle and non-cell-cycle functions

of the SCF complexes are mostly temporally uncou-

pled. Nevertheless, it should be noted that misregula-

tions of the SCF complexes, by mutation,

overexpression or other means, can simultaneously

affect cell-cycle events and differentiation processes

that they regulate. A number of F-box proteins includ-

ing b-TRCP, Fbxw7 and Skp2 have been identified as

oncogenes or tumour suppressors in various types of

human cancer [202,203]. Cell-cycle and non-cell-cycle

functions of the SCF complexes may collaborate in tis-

sue-specific tumorigenic and carcinogenic mechanisms.

Discussion and concluding remarks

Precise coordination between cell proliferation and cel-

lular differentiation is of paramount importance for

the development of multicellular organisms. However,

the mechanisms behind this coordination remain

largely elusive. In the classical view, it is believed that

cell proliferation and cellular differentiation are inde-

pendently regulated by distinct sets of molecules and

that the coordination between the two processes is

achieved by transcriptional regulations of CCR and

differentiation factor genes by common upstream

developmental signalling or TFs. However, this classi-

cal model falls short in explaining numerous in vivo

observations where cell proliferation and differentia-

tion appear to be spatiotemporally tightly coupled and

often interdependent. As discussed above, it has

become evident that various CCRs, the central players

in the control of cell proliferation in all eukaryotic

cells, possess additional capacities to affect the specifi-

cation or differentiation of specific cell populations or

to directly regulate the activities of TFs and signalling

pathway components. By combining these non-canoni-

cal functions with the conserved cell-cycle functions,

CCRs spatiotemporally couple cell fate determination

and differentiation processes to cell-cycle progression

in various types of cells, thereby coordinating cell pro-

liferation and differentiation in metazoan organisms

(Figs 2 and 3).

It has been hypothesised that the length of a certain

cell-cycle phase (particularly, G1 phase) may influence

the choice of cell fate in various stem cells and progen-

itors [6,7]. This hypothesis predicts that elongation of

a cell-cycle phase may provide sufficient time for cell-

type-specific TFs to bind and act on the chromatin.

However, empirical evidence for this model has not

been provided. It is worth pointing out that most of

the original studies used overexpression or depletion of

certain CCRs to induce the change of the kinetics of

the cell cycle (for example, Lange et al. [80]). Thus, it

is possible that non-canonical functions of these

CCRs, instead of the cell-cycle change, may account

for the observed effect on cell fate specification. It was

recently shown that, in mice and human pancreas

development models, forced elongation of the G1

phase by CDK2 inhibition induces differentiation in

endocrine progenitor cells [44]. However, in the same

progenitor population it was also shown that CDK2

phosphorylates the proendocrine Ngn3 to induce its

degradation, thereby inhibiting the differentiation of

endocrine progenitors [43,44]. It is crucial to determine

whether the cell-cycle change per se impacts the differ-

entiation of the progenitors/stem cells, or whether tem-

poral coupling of the G1-to-S transition to the

regulation of pro-differentiation factors by the intracel-

lular coordination function of CCRs may be critical in

these cells.

There are many unanswered questions concerning

the non-canonical functions of CCRs. First, compared
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with their highly conserved functions of cell-cycle reg-

ulation, the differentiation functions of metazoan

CCRs appear highly diverse; how are the activities of

CCRs regulated in vivo to enable these cell-type-speci-

fic functions? One mechanism appears to be the regu-

lation of their substrates or binding partners: proteins

that CCRs act on are expressed only in specific cell

populations. Alternatively, CCRs may target proteins

whose functions are context-dependent, for example, a

component of an extracellular signalling pathway.

Another mechanism may be cell-type-specific regula-

tions of CCRs: CCRs are recruited to specific subcel-

lular compartments, operate independently of their

regular binding partner(s) or are regulated by activa-

tors or inhibitors that are expressed exclusively in

specific cell types. In the last case, non-canonical func-

tions of CCRs can be totally uncoupled from their

cell-cycle functions. Cell-type-specific regulatory mech-

anisms of CCRs are an important subject of future

study.

Another question is how CCRs have gained diver-

gent functions during evolution. There are potential

advantages in having the additional capacities of

CCRs to regulate cellular differentiation for metazoan

organisms. For example, the capacity of CCRs directly

to regulate differentiation factors enables the regula-

tion of the function of these factors within a single cell

cycle, providing high temporal resolution to cell speci-

fication and/or differentiation processes. In addition,

combined with the regulation of CCRs by develop-

mental pathways, the regulation of differentiation by

CCRs may allow formation of feedback mechanisms

between CCRs and developmental pathways. Such

feedback mechanisms may contribute to long-term

maintenance of the self-renewal capacity of stem cells

and cellular quiescence of terminally differentiated

cells, as well as to tumour suppression, by creating the

bi-stable states of the undifferentiated mitotic state

and the differentiated postmitotic state. Considering

these potential advantages, the majority of non-cell-cy-

cle functions of CCRs are likely to be evolutionally

conserved. Various non-cell-cycle functions have been

characterised only in invertebrate CCRs and it is

important to examine the presence of analogous func-

tions in their vertebrate homologues.

Non-canonical functions of CCRs also hold impor-

tant clinical implications. Abnormal cell-cycle regula-

tion is a hallmark of cancer. Mutations or

overexpression of CCRs may promote cancer develop-

ment not only through cell-cycle deregulations but also

through the cell-type-specific functions, which may

explain enrichment of certain mutations/amplifications

of CCR genes in specific cancer types. On the other

hand, it is possible to use the non-canonical functions

of CCRs in our favour. For example, it was recently

shown that the high efficacy of CDK4/6 inhibitors

against breast cancer is mediated by non-cell-cycle

functions of CDK4/6 to promote anti-tumour immu-

nity [204]. Thus, better understanding of in vivo func-

tions of CCRs may also be critical to gain insight into

tissue-specific carcinogenic mechanisms as well as to

find a new therapeutic avenue against cancer.

The biggest challenge in investigating the functions

of CCRs in vivo is their essential roles in cell viability.

However, the recent advances in genome editing,

in vitro tissue culture, advanced imaging methods and

single-cell analysis techniques enable more detailed,

time- and space-resolved examination of CCR func-

tions than ever. We therefore optimistically envisage

rapid progress in our understanding of the in vivo

function of CCRs in the coming years.
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