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Human adenoviruses (HAdVs) cause widespread acute and persistent infec-

tions. Infections are usually mild and controlled by humoral and cell-based

immunity. Reactivation of persistently infected immune cells can lead to a

life-threatening disease in immunocompromised individuals, especially children

and transplant recipients. To date, no effective therapy or vaccine against

HAdV disease is available to the public. HAdV-C2 and C5 are the best-stud-

ied of more than 100 HAdV types. They persist in infected cells and release

their progeny by host cell lysis to neighbouring cells and fluids, a process

facilitated by the adenovirus death protein (ADP). ADP consists of about

100 amino acids and harbours a single membrane-spanning domain. It under-

goes post-translational processing in endoplasmic reticulum and Golgi com-

partments, before localizing to the inner nuclear membrane. Here, we discuss

the current knowledge on how ADP induces membrane rupture. Membrane

rupture is essential for both progression of disease and efficacy of therapeutic

viruses in clinical applications, in particular oncolytic therapy.
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Human adenoviruses and their disease

Human adenoviruses (HAdVs) are widespread patho-

gens of the Adenoviridae family [1,2]. They comprise

more than 100 types in the genus Mastadenovirus [3–
5]. Their nonenveloped icosahedral capsid is about

90 nm in diameter and contains emanating trimeric

fibre proteins of variable length [6,7]. The capsid

encloses a tightly packaged 34 to about 37 kbp DNA

genome and viral proteins, the so-called core [8,9].

Based on hemagglutination assays, HAdVs were

grouped into seven species A to G [4]. The HAdV

types are heterogeneous regarding entry receptors, tis-

sue tropism and associated disease [2,10–13].

One-third of the known HAdV types is associated

with human disease [2]. While a subset of HAdV spe-

cies D (HAdV-D) and E predominantly cause kerato-

conjunctivitis [14], HAdV-A, B and C infections lead

to urinary, respiratory and gastrointestinal disease, the

latter also caused by HAdV-E and F [2,15]. Antibody

prevalence depends on the HAdV type and the geo-

graphic region, and can reach 95% [16–19]. Anti-

HAdV antibodies help to clear infection. In children

and immunocompromised patients, however, HAdV

infection can lead to disseminated and potentially

lethal disease [15]. Especially, transplant recipients and
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HIV-infected individuals are at risk to develop severe

HAdV infections [2,20], in part due to reactivation of

virus production in persistently infected lymphocytes

of mucosal tissue in the digestive tract [1,15,21].

Upon infection, HAdV reprograms the cell and pro-

duces viral progeny (Fig. 1). An indication of infection

are morphological changes, such as rounding and the

loss of cell adherence, so-called cytopathic effect

(CPE). CPE is in part based on the loss of cytoskeletal

integrity, owing to the viral cysteine protease L3/p23

and E4 proteins modulating tight junctions through

interactions with PDZ domain-containing host pro-

teins [22–26]. Virions assemble and mature in the

nucleus [27]. To complete a full productive viral repli-

cation cycle, the nuclear membrane and the plasma

membrane of the infected cell rupture, thereby releas-

ing infectious viral progeny into the extracellular

space. This lytic process gives rise to cell-free virions

[28–30]. In cell culture, where a monolayer of cells is

covered by aqueous medium, cell-free virions are

transported asymmetrically from the lysed cell, due to

convective liquid movement [30]. This gives rise to

comet-shaped infection foci. Viral transmission studies

in humans have been limited to end-point observations

from biopsies, or autopsy specimens in immunocom-

promised patients for example. Epithelial HAdV pro-

tein expression, gland epithelial necrosis and crypt

apoptosis in the gastrointestinal tract together with

virus shedding to the stool suggest that HAdV progeny

is disseminated from epithelial cells in vivo [1,21,31,32].

Depolarization of infected intestinal epithelial cells,

detachment and cell death have been observed akin to

phenotypes in cell culture [32]. The release of cell-free

progeny may enhance intra- and interhost pathogen

transmission [30,33].

Human adenoviruses transmission within organs is

still poorly understood, although adenoviral hepatitis

gives rise to patchy or extended infection foci, not

restricted by the liver lobule and thus likely indepen-

dent of cell-free virions transported in hepatic central

veins or portal triads [34]. Further analyses are

required to provide more mechanistic insight into the

transmission mode of HAdV in organs [34].

The currently best-established animal model for

HAdV is the immunosuppressed Syrian hamster, which

is well susceptible to HAdV-C and to some extent to

type B14 [35–37]. HAdV-C6 primarily targets the liver

when administered intravenously, but depending on the

route of administration, HAdV-C replicates in most

organs [38–40]. Beside the Syrian hamster model, pro-

ductive HAdV infection has been tested in pigs, rabbits

and rats, albeit found to be limited (reviewed in Wold

et al. [37]. For example, foci of infected cells were

found in liver sections of rats and the lungs of pigs

upon intravenous inoculation, suggesting some level of

productive HAdV replication [41,42]. Acute infections

are frequently accompanied by robust inflammatory

responses, as shown in the airways or the conjunctiva

of infected mice [43–46], reviewed in Ismail et al. [14].

This resembles infection phenotypes in immunocom-

promised patients, where HAdV infection foci are often

infiltrated by immune cells [32,34,47], and disseminated

disease causes morbidity [1,2].

E3 transcription unit

The proteins encoded in the early transcription unit E3

are dispensable for the replication of HAdV in cell cul-

ture but critically contribute to viral pathogenicity

[48,49]. The E3 proteins are multifunctional and help

the virus to evade host defence [50]. The transcription

unit E3 is composed of the E3a and E3b regions

defined post-transcriptionally by poly(A) site selection.

Both E3A and E3B pre-mRNAs are heavily spliced

[51–53] and yield five to nine proteins depending on

the viral species. HAdV-C2 produces seven E3 proteins

(Fig. 2A). The E3 transcription unit is the most diver-

gent coding region and exhibits the highest nucleotide

diversity among HAdVs [54–59]. The 50 end of E3

encodes a 12.5K protein of unknown function in all

Key facts and hypotheses about ADP

• The transport of ADP between endoplasmic

reticulum (ER) and Golgi apparatus is medi-

ated by COPI- and COPII-coated vesicles.

• ADP undergoes N-glycosylation and is O-glyco-

sylated at positions T2/ S4/ T5/ T9/ T10 by Gal-

NAc transferases T2 andT11, and proteolytically

processed in theTGN.

• The mature, cleaved ADP harbours a lysine-/

arginine-based nuclear localization sequence in

the cytosolic domain, and is translocated to

the inner nuclear membrane by importin a/b.
• The palmitoylation at C60C61 enhances lipid-

based sorting from ER/Golgi to the inner

nuclear membrane and favours lipid raft asso-

ciation.

• ADP harbours a quadruplicate leucine zipper

motif I71 to L99 in its cytosolic/nucleoplasmic

C-terminal domain, which supports oligomer-

ization. The preceding basic proline-rich region

enhances DNA binding, destabilizes the nuclear

envelope and promotes membrane rupture.
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species, apart from species F [56]. All E3 units have

three conserved coding regions near their 3’ end, recep-

tor internalization and degradation a (RID-a), RID-b
and 14.7K [56], the products of which are involved in

evasion of host cell death [50,60,61]. RID-a and RID-

b are transmembrane proteins, while 14.7K is cytoso-

lic. The central E3 proteins harbour conserved region

1 (CR1) domains and are termed CR1 proteins [62].

The letters a to d denote their position in the E3

region. The initial CR1 protein definition was later

adopted for similar proteins without a CR1 domain,

and additional CR1 proteins in the E3 region were

mapped accordingly [56]. For example, E3A-19K is a

CR1 protein, which lacks the CR1 domain but exhibits

sufficient similarity to the other CR1 proteins.

The E3a CR1-b region of HAdV-C2 encodes for a

11.6 kDa protein, which facilitates host CPEs and cell

lysis at the end of the viral replication cycle [29,63].

This was demonstrated by the formation of smaller

plaques formed by an E3a-11.6K-deleted HAdV-C5/

C2 (dl712) [29,64]. The deletion of other E3a or E3b

genes did not affect the plaque size in cell cultures

[64], with the exception of E1B-19K-deleted mutants,

which caused larger plaques [65,66]. Accordingly,

Fig. 1. Overview of the HAdV-C replication cycle. In a primary infection of epithelial cells, incoming virions bind to CAR receptors and, while

bound to CAR, move on the plasma membrane by retrograde actin flow [191–194]. Engagement of incoming virions with integrin receptors

confines virions to small areas of submicron size on the plasma membrane [136,195]. This triggers cell signalling [13], the shedding of the

fibre viral proteins and the exposure of limited amounts of the membrane lytic virion protein VI [196,197]. Protein VI leads to the formation

of small lesions in the plasma membrane, which triggers repair processes by lysosomal secretion [192,198,199]. This is rapidly followed by

virion endocytosis [200,201]. HAdV-C particles escape from an early endosome by a pH-independent process involving the membrane lytic

protein VI and ceramide lipids [198,202–204]. Cytosolic particles are transported bidirectionally on microtubules by kinesin and dynein

motors, detach from microtubules proximal to the nucleus and dock at the nuclear pore complex (NPC) [205,206]. NPC-docked virions

disassemble and release their DNA genome (vDNA) into the nucleus upon priming by the E3 ubiquitin ligase Mib1 and capsid disruption by

kinesin-1 [207,208]. Within the nucleus, the viral genome is transcribed by the cellular RNA polymerase 2, which gives rise to mRNAs and

eventually proteins, such as the immediate early E1A transactivator, which boosts all the subviral promoters, and drives the cell into the S-

phase where efficient viral DNA replication occurs [209]. The expression of the early E2, E3 and E4 transcription units mediates immune

escape [210–212]. The E3-19K protein initiates the unfolded protein response by selective activation of the IRE1 sensor in the ER and

enhances both lytic and persistent infection [84]. Viral replication compartments in the nucleus are formed several hours after the delivery of

viral DNA in the nucleus depending on the cell type, and cause severe morphological changes in the nucleus [213–216]. During late stages

of HAdV-C replication, predominantly transcription units L1-5 are expressed and give rise to structural proteins and progeny virions [217].

Virion assembly gives rise to large clusters of particles. Capsomer assembly involves packaging of the viral genome and maturation of

precursor proteins by the HAdV protease [25,27]. Mature HAdV progeny is released upon cell lysis, where the nuclear envelope and the

plasma membrane rupture and give rise to secondary infections [81]. Much of the information listed here has been derived from virus

imaging. For additional details, the reader is referred to recent review articles [6,12,76,188,218].
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Fig. 2. The E3 transcription unit of HAdV-C and the processing of E3-11.6K/ADP. (A) The E3a transcription unit of HAdV-C2 (blue) encodes

for the 11.6K protein ADP from the coding region CR1-b. E3b ORFs are shown in green. At early infection stages, ADP is expressed at low

levels from the E3 promoter, represented as a grey arrow, located upstream of the E3 transcription unit. During late infection, ADP mRNA

is transcribed from the MLP (transcription initiation indicated by a grey arrow). Donor and acceptor sites for mRNA splicing are indicated as

grey empty and full triangles, respectively. Polyadenylation sites are represented by AAA symbols. (B) Comparison between the

hydrophobicity profiles of ADP proteins encoded by the five known HAdV-C members. Hydrophilic and hydrophobic residues are depicted in

blue and red, respectively. (C) ADP is post-translationally processed and harbours multiple confirmed and suspected domains. The N-

terminal domain (purple) is O- and N-glycosylated, as indicated by pink and red symbols, respectively. O-glycosylation* indicates that

modified residues have not been mapped individually. The area with the suspected cleavage sites C-terminal of the glycosylated domain is

shown in green. The transmembrane domain is shown in red, with two nearby palmitoyl groups at the terminal Cys (C) residues shown in

green. A basic proline-rich region is adjacent to the transmembrane domain, as indicated by yellow letters representing the corresponding

aa. The cytosolic domain further harbours hydrophobic aa (L and I) arranged in a leucine zipper-like pattern, indicated with orange triangles.

(D) ADP, which is membrane-associated, is translocated from the ER via the TGN to the nucleus. Zoomed in graphics indicates the

processing step occurring in the respective organelles. On the right side, schematics of differentially processed ADP with the corresponding

organellar location. The apparent molecular weight of each ADP variant is derived from analyses of cell lysates by SDS/PAGE. O-

glycosylation* indicates that modified residues have not been mapped individually.
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HAdV-C2 E3A-11.6K was named adenovirus death

protein (ADP) [29]. The corresponding 10.5K ADP of

HAdV-C5 is slightly smaller than the C2 protein [63].

The C2 and C5 ADP exhibit 81% sequence identity.

The functional significance of the difference is

unknown (for BLASTp analyses, see Table 1).

The CR1 domain shows strong similarity to the

RL11 domain, an N-terminal protein motif first

described in the human cytomegalovirus (CMV) multi-

gene family RL11 [67]. RL11 comprises 65–85 aa and

a central conserved CXX(NQEKTY)X4–6(YFLI)NX

(ST)XXXXGXY motif (alternative residues in paren-

theses), with nearby potential glycosylation sites.

Homologous repetitive RL11/CR1 coding regions have

been identified in chimpanzee CMV (CCMV) and

HAdV, presumably resulting from genetic duplica-

tions, insertions and deletions [56]. With a few excep-

tions, all CMV, CCMV and HAdV CR proteins

contain a transmembrane domain and undergo N-ter-

minal glycosylation. N- and O-glycosylation of CR1-c
(20.5K) in HAdV-B3 and B7, as well as an unusually

large HAdV-D19 CR1-b of 49 kDa have been

described [68,69]. Intriguingly, D19 CR1-b is prote-

olytically cleaved in the TGN, possibly by the same

protease as ADP.

Presumably, all HAdV RL11/CR1 coding regions

originate from a single ancestor and have evolved

diverging functions correlating with different tissue

tropisms of the corresponding viruses [2,56]. The CR1-

a and CR1-d of species HAdV-B, the CR1-a (6.7K) of

HAdV-C, the UL5 and UL8 of CCMV, and the CMV

UL5 and UL8 also contain a CR1 domain. The CR1-

b region of the species C ADP does not contain a

RL11/CR1 domain [56]. HAdV-C 6.7K and the UL8

proteins of CCMV and CMV lack a cleavable signal

peptide, akin to ADP. HAdV-C 6.7K and ADP are

type III N-glycosylated transmembrane proteins [50].

The 6.7K protein localizes primarily to the endoplas-

mic reticulum (ER) membrane and represses apoptosis

by interacting with RID-b [70]. 6.7K also blocks

intrinsic and extrinsic apoptosis and maintains Ca2+

homeostasis independent of other E3 proteins, and

thus opposes the function of ADP [71]. The CMV

UL8 is a highly glycosylated late Ig-like protein that

localizes to the cell surface [72]. It downmodulates the

inflammatory response to CMV infection, unlike ADP.

Its Ig-like structure exhibits similarity to HAdV-D19

CR1-b. The HAdV-B1 E3 CR1-d region shows expres-

sion kinetics and processing in ER/Golgi similar to

ADP, but does not localize to the nucleus [73]. The

deletion of its ortholog in HAdV-B3 did not affect

progeny release from epithelial cells [73]. The unique-

ness of the HAdV-C ADP protein is further supported

by BLASTp queries of the NCBI database showing no

similarities of the HAdV-C2 ADP domains M1-D39,

M40-C62 and L63-D101 to other proteins than the

HAdV-C CR1-b proteins, which are highly similar to

each other (Fig. 2B).

The cell lytic function of ADP

Adenovirus death protein is expressed from the E3

promoter at low levels early in infection [74], when

viral proteins affecting cell cycle regulation, inhibition

of apoptosis, immune evasion and viral DNA replica-

tion are expressed [75,76] (see also Fig. 2A). Later in

Table 1. CR1-b/ADP sequences in HAdV-C obtained from the NCBI protein database (ncbi.nlm.nih.gov/protein/).

HAdV

species

HAdV

type

NCBI

reference

sequence Name aa Sequence aa Length

Weight

(kDa)

C 1 AAQ10560.1 10.7 kDa

protein

MVDTVNSYNTATGLTSTQDMPQVSTFVNNWANLG

MWWFSIALMFVCLIIMWLSCCLKRKRARPPIY

KPIIVLNPNNDGIHRLDGLNTCSFSFAV

94 10.7

C 2 AAA92222.1 11.6 kD protein MTGSTIAPTTDYRNTTATGLTSALNLPQVHAFVND

WASLDMWWFSIALMFVCLIIMWLICCLKRRRARPPIY

RPIIVLNPHNEKIHRLDGLKPCSLLLQYD

101 11.7

C 5 AP_000221.2 10.5 kD protein MTNTTNAAAATGLTSTTNTPQVSAFVNNWDNLG

MWWFSIALMFVCLIIMWLICCLKRKRARP

PIYSPIIVLHPNNDGIHRLDGLKHMFFSLTV

93 10.5

C 6 ACN88121.1 ADP glycoprotein

CR1-beta0

MTGSTIAPTTDYRNTTATGLKSALNLPQVHAFVND

WASLGMWWFSIALMFVCLIIMWLICCLKRRRARPPIY

RPIIVLNPHNEKIHRLDGLKPCSLLLQYD

101 11.6

C 57 ADM46163.1 CR1 beta 11.6 kDa

protein

MTGSTIAPTTDYRNTTATGLKSALNLPQVHAFVND

WASLGMWWFSIALMFVCLIIMWLICCLKRRRARPPIYRP

IIVLNPHNEKIHRLDGLKPCSLLLQYD

101 11.6

1865FEBS Letters 594 (2020) 1861–1878 ª 2020 Federation of European Biochemical Societies

F. Georgi and U. F. Greber Adenovirus cell lysis

http://ncbi.nlm.nih.gov/protein/


the viral replication cycle, when progeny virions are

assembled, ADP is expressed at high levels from the

major late promoter (MLP) [74]. This switch to high

expression is facilitated by the L4-33K and L4-100K

proteins [77]. MLP-driven ADP expression was found

to be promoted by L4-22K [78], a protein involved in

late viral gene expression, viral DNA packaging and

progeny virion production [78]. L4-22K recruits the

packaging proteins IVa2 and L1-52/55K. While the

deletion of ADP from HAdV-C2/C5 has no effect on

viral replication, its overexpression results in acceler-

ated CPE, host cell lysis and plaque formation

[28,29,64,79]. Interestingly, early ADP mutants also

lacked other E3 genes, such as 12.5K (deleted in VRX-

007), 6.7K, 19K, 14.7K as well as RID-a and RID-b
deleted in VRX-006 and VRX-007 [28]. Alternatively,

modification of a splice acceptor site upstream of ADP

in HAdV-C5 expressing a mutator DNA polymerase

leads to increased ADP expression from the E3 tran-

scription unit [80]. Notably, ADP transcripts were gen-

erated at the expense of the upstream E3a genes

12.5K, 6.7K and 19K. The correlation between ADP

expression levels and cell killing was clearly shown in

epithelial A549 cells infected with wild-type, ADP-

deleted or overexpressing HAdV-C5 viruses [81]. These

findings illustrate the importance of ADP in controlled

induction of death of HAdV-C-infected host cells.

In addition, there are indications of tissue-specific

cell lysis triggered by ADP. While HAdV-C-infected

epithelial or fibroblast cell lines rapidly lyse, C2 and

C5 infections of certain lymphoid cell lines proceed

without cell killing and yield persisting infections

[82,83]. This phenotype resembles the HAdV-C infec-

tion of epithelial or fibroblast cells in the presence of

interferon, which suppresses the transcriptional activity

of the E1A promoter [84,85]. Persistence-prone lym-

phoid cell lines indeed express lower levels of E1A and

ADP [81], consistent with the notion that the E3 tran-

scription unit is under the control of E1A [86]. How-

ever, overexpression of ADP in these lymphoid cell

lines did not increase cell death, suggesting that addi-

tional factors are necessary to lyse these cells [81].

Nonlytic cell-to-cell transmission has been proposed

for HAdV-F41, which causes gastroenteritis [2]. This

was based on the observation that neutralizing anti-

bodies only partly reduced HAdV-F41 transmission in

cell cultures [87]. Remarkably, the genetic swap of

HAdV-C5 ADP to the F41 E3 region resulted in a 10-

to 50-fold increased release of cell-free HAdV-F41 pro-

geny and a switch from slow-growing, symmetrical

plaques to fast-growing comet-shaped plaques [88].

Symmetrical plaques are indicative of nonlytic cell-to-

cell transmission [33]. The data confirm the unique

lytic function of HAdV-C ADP and possibly accessory

factors, and suggest that additional transmission mech-

anisms exist in HAdV infection.

Maturation of ADP

Adenovirus death protein is a type III integral mem-

brane protein with a single transmembrane signal-an-

chor sequence (M41-L62) of 22 amino acids (aa) [89]. It

localizes to the endoplasmic reticulum (ER), Golgi and

inner nuclear membrane. With 101 aa, HAdV-C2

ADP is slightly longer than the 93 aa HAdV-C5 ADP

(Fig. 2C,D). The transmembrane domain is essential

for ADP function and cell lysis [90]. The N terminus

(M1-D40) of ADP is located in the lumen, and the C

terminus (K63-D101) protrudes to the cytosol [89]. In

the ER, ADP is N-glycosylated cotranslationally at

N14 [89], presumably by the oligosaccharyl transferase

[91]. The glycosylation at N14 supports ADP transport

to the trans-Golgi network (TGN) [89,90]. Transport

likely occurs via the coatomer protein complex type II

(COPII) machinery [92]. N-linked glycosylation gener-

ally supports protein folding and protects from protea-

somal degradation [93–95]. In the TGN, ADP is

variably O-glycosylated at positions T2/ S4/ T5/ T9/

T10, presumably by GalNAc transferases T2 and T11

[90]. The O-linked glycans are thought to protect ADP

from proteasomal degradation, as inferred from other

O-glycosylated proteins in mammalian cells [96]. They

are, however, only transiently associated with ADP

due to proteolytic processing of ADP in the TGN

between residues T10 and M41 [89]. Neither the exact

cleavage site nor the processing protease has been

identified, and the fate of the cleaved N-terminal tail is

unknown. Several proteases are suspected to be

involved, and others can be ruled out. For example, a

minimal furin protease recognition sequence (R-X-X-

R) is missing in the lumenal domain of ADP [97].

Potential processing sites, however, exist for site-1

protease (S1P) and site-2 protease (S2P). S1P localizes

to the ER and Golgi complex, and cleaves lumenal

proteins at small or hydrophobic aa preceded by R or

K at position �4 [98]. S2P cleavage typically follows

SP1 cleavage and occurs in the TGN near the trans-

membrane domain preceded by R at position �4. In

addition to R/K (�4), cleavage requires a proline resi-

due at position 11 [99,100]. It is possible that S1P and/

or S2P cleave ADP between T16-|-A17 as well as at the

interface between the N-terminal domain and the

transmembrane domain. The former cleavage is sup-

ported by the observation that the deletion of residues

D11-L26 (dl736.1) and T18-S22 (dl735), which removes

the cleavage site and/or the proline at position 27,
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renders ADP unstable [90]. A similar instability was

observed upon deletion of S4-D11 in the dl735 mutant.

However, this deletion also removes the O-glycosyla-

tion sites and thus may have other effects as well. The

observation that the deletion of H29-A45 (dl737) pre-

vents the proteolytic cleavage of ADP suggests that

the latter cleavage occurs N-terminal of the transmem-

brane domain, presumably by an unknown protease

[90]. The functions of the N-terminal proteolytic pro-

cessing remain unknown, although N-terminal process-

ing does not seem to affect cell lysis [90].

Furthermore, ADP undergoes cytosolic palmitoyla-

tion at C60 and C61 proximal to the transmembrane

domain [101]. The processed palmitoylated ADP is

transported back to the inner membrane of the

nuclear envelope, likely via coat protein complex type

I (COPI) vesicles [89]. This presents the C terminus

comprising K62-D101 to the perinuclear space. The C

terminus harbours a proline-rich region with inter-

spersed K/R residues at R64-P74 and has high similar-

ity to nuclear localization sequences (NLSs) [90]. In

support of this notion, ADP deleted in K63-C94 failed

to be transported to the nuclear membrane, and dele-

tion of H81-L88 leads to the formation of TGN-like

vesicles containing ADP [90]. These data support the

notion that ADP uses a dedicated import pathway

possibly requiring importin a/b binding to a cytosolic

NLS, akin to other inner nuclear membrane proteins

[102,103].

MAD2B – the only known ADP
interaction partner

So far, only a single ADP-binding protein has been

identified, the mitotic arrest deficient 2-like protein 2

(MAD2B), a homodimer of 211 aa each [104]. Human

MAD2B has 53% similarity with human MAD2,

which is part of the mitotic spindle assembly check-

point at kinetochores inhibiting the kinase CDC20,

and thereby cell cycle progression [105]. MAD2B is a

TCF4-binding protein [106]. It localizes to the nucleus

and modulates epithelial–mesenchymal transition [106].

MAD2B interacts with the DNA repair protein REV1

and the DNA polymerase f [107–111]. Yeast two-hy-

brid, GST pull-down and co-immunoprecipitation

experiments showed that MAD2B interacts with

HAdV-C2 ADP [104]. MAD2B binds to the cytosolic/

nuclear C terminus via P69P70 in the basic proline-rich

region of ADP. Overexpression of MAD2B reduced

HAdV-C2-induced lysis, suggesting that it neutralizes

the lytic activity of ADP [104]. It has not been estab-

lished, however, how the interaction of MAD2B with

ADP regulates lytic virus egress.

Many ways for cells to die

Advanced molecular tools yield an increasingly refined

molecular classification of the cell death pathways,

beyond morphological descriptions. The Nomenclature

Committee on Cell Death 2018 acknowledges 12 distinct

cell death pathways [112]. One of them is classical apop-

tosis triggered by intrinsic or extrinsic signals. It

depends on caspases and leads to the formation of

apoptotic blebbing followed by cell shrinkage. This is

distinct from necrosis, which occurs upon external stim-

uli, and induces membrane permeability as detected, for

example by propidium iodide (PI) staining of the

nucleus [113]. Necroptosis is a form of programmed

necrosis, for example triggered by the activation of Toll-

like receptors or virus infections [114,115].

HAdV-C5 infection induces cell death, which involves

membrane permeabilization indicated by PI-positive

nuclei [116]. This coincides with the release of progeny

virions into the environment [28,30]. The inhibition of

apoptosis by chemical inhibitors or overexpression of

anti-apoptotic proteins did not reduce death of the

infected cells [116,117]. These findings argue for the

induction of cell death processes other than apoptosis in

HAdV infection. This would be akin to picornaviruses,

where the viral protease 3C blocks apoptosis by cleaving

the death domain of the host receptor-interacting pro-

tein kinase 1 and thereby enables virus-controlled death

[114]. In line with virus-controlled cell death, the mature

ADP (M41-D101) has no similarity to other proteins in

BLASTp searches of data banks, although it resembles

the transmembrane domain of CR1-b in other species C

HAdV and the lifeguard 1 protein in Halyomor-

pha halys [NCBI #XP_014271228.1].

Adenovirus-induced cell death

Regulation of cell death is an essential aspect of the

replication cycle of many viruses, and its suppression

supports oncogenic transformation. The release of cell-

free progeny by lysis of host cells allows for long-range

transmission of HAdV [30]. Yet, the virus evades

innate immune responses and thereby maximizes the

viral replication and progeny formation.

Human adenoviruses have provided early insights

into this double-edged process of death pathway regu-

lation. HAdV-induced cell death exhibits features of

apoptosis including cell shrinkage, membrane bleb-

bing, activation of caspases 3 and 9, cleavage of poly

(ADP-ribose) polymerase and DNA degradation [116–
125]. An early activator of apoptosis is the immediate

early viral transactivator protein E1A, reviewed in

White [126]. The pro-apoptotic activity of E1A maps
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to both retinoblastoma protein (Rb) and p300 binding

sites of E1A and is completely independent of p53,

which is in turn inactivated early in infection by the

viral E1B-55K-E4orf6 complex. The pro-apoptotic sig-

nal triggered by E1A involves inappropriate cell cycle

progression, which includes the sequestration of Rb

from E2F, and E2F-mediated S-phase induction. Sub-

sequent interaction of Bax and Bak triggers the release

of cytochrome C from mitochondria and the activation

of caspases 3 and 9. An additional viral feedback loop

was identified using HAdV-C mutants lacking the viral

E1B-19K, which is functionally related to Bcl-2,

reviewed in Cuconati & White [127]. Bcl-2 family pro-

teins suppress mitochondrial permeability, and E1B-

19K blocks E1A-mediated apoptosis by binding to

Bak, which prevents the Bak-Bax oligomerization and

cytochrome C release.

Human adenoviruses-induced cell death also exhibits

autophagic features [120,122,128–131]. Autophagic

processes are induced by binding of E1B-19K to

Beclin-1, also referred to as ATG6, one of the central

regulators of autophagy [130,132]. However, it remains

controversial if autophagy is a cell death pathway or

rather establishes cellular homeostasis. In the context

of infection, autophagy could represent a cellular

defence mechanism. Another HAdV protein, E4orf4,

was also demonstrated to induce host cell death,

reviewed in [118,133], and insights into the molecular

mechanism were reported [134]. Ectopically expressed

E4orf4 causes nuclear blebbing and rupture by binding

to the polarity protein Par3 at the nuclear envelope.

The E4orf4 motif necessary for Par3 binding is con-

served across different HAdV species, and may be

involved in pan-adenoviral transmission.

HAdV-C infection further leads to a progressive loss

of cell adhesion [135]. This likely occurs through binding

of the virion structural protein penton base to integrins

and the detachment of the anchored cells from the extra-

cellular matrix [136]. In fact, viral capsomer proteins,

including penton base and fibre, are released from the

infected cell by a nonclassical pathway prior to lysis

[137,138]. In addition, HAdV alone or immune-com-

plexed particles trigger pyroptosis of myeloid and

epithelial cells, which involves inflammasome-dependent

cytokine secretion and the activation of inflammatory

caspases. This antiviral response can lead to inflamma-

tory tissue damage, and is exacerbated by caspase-medi-

ated cleavage of pore-forming gasdermins [139].

ADP-mediated cell death

Ever since ADP was discovered [63], the mechanisms

by which it promotes HAdV egress and cell death have

been debated. An early hypothesis has been that ADP

initiates membrane permeabilization. Indeed, ADP has

similarity to viroporins, hydrophobic oligomerizing

membrane pore-forming proteins [101,140,141]. We

hypothesize the presence of a quadruplicate leucine zip-

per motif I71 to L99 in the cytosolic/nucleoplasmic

ADP C-terminal domain, which is indicated by orange

triangles in Fig. 2C. In this region, L, M, V and I are

interspersed with 6–7 aa, typical of a quadruplicate leu-

cine zipper motif [142,143]. Leucine zippers are known

to induce dimerization or oligomerization of proteins

[143]. Moreover, the proposed domain of ADP is pre-

ceded by basic amino acids, which may aid DNA bind-

ing [143]. Such ADP-DNA binding might potentially

facilitate chromatin sequestration from HAdV replica-

tion centres and lead to nuclear destabilization.

Nuclear envelope destabilization by ADP is worth

considering as a mechanism for rupturing the nuclear

envelope and releasing progeny virus particles from the

nucleoplasm to the cytosol and eventually from the

infected cell [29,144]. We speculate that ADP enhances

nuclear envelope instability and potentiates biophysical

cues from HAdV replication and progeny assembly in

the nucleus, including nuclear expansion by an increase

in physical pressure [145]. It is conceivable that the

palmitoylation at C60C61 enhances lipid-based sorting

of the cleaved form of ADP to the inner nuclear mem-

brane [89,90,101,146]. This would be in line with the

notion that the transmembrane domain of ADP is

shorter than the average length of mammalian mem-

brane-spanning domains, and appears to be well

adapted to the cholesterol-low membranes of the ER

and the nuclear envelope [147,148]. Interestingly, ADP

may counteract the apoptosis-suppressing function of

E1B-19K [101] and thereby give rise to larger sized pla-

ques and increased antitumour efficacy, as has been

observed in E1B-19K-deleted HAdV [65,66,149]. Nota-

bly, E1B-19K is acylated (palmitoylated and myristoy-

lated) and localizes to the ER and the nuclear envelope

[150,151]. The localization of E1B-19K and ADP in

the nuclear membrane supports the notion that the

plaque size defect of dl327 (lacking ADP and other E3

coding regions) can be compensated by mutations in

E1B-19K and E1B-55K [152,153]. Whether ADP syn-

ergizes with E1B-19K in inhibiting Bak/Bax remains to

be investigated. Likewise, it is unknown whether ADP

potentiates the pro-apoptotic effects of other early

viral genes, such as E4orf4 [133,154–159].

ADP in cancer therapy

The selective removal of cancer tissues and their

metastases is the ultimate goal of cancer therapy.

1868 FEBS Letters 594 (2020) 1861–1878 ª 2020 Federation of European Biochemical Societies

Adenovirus cell lysis F. Georgi and U. F. Greber



Oncolytic viruses selectively replicate in neoplastic tis-

sues and hold significant promise for the treatment of

cancer [160,161]. One of the first reported cases of can-

cer remission by a virus was from a woman receiving a

live-attenuated rabies vaccine [162]. Subsequent clinical

observations showed that sometimes virus infections

correlated with cancer regression [163–165]. Clinical

trials with a range of human and animal viruses then

showed that most viruses were ineffective against the

cancer and were eliminated by the immune system of

the host [166,167]. This indicated that cytotoxic vectors

are required to effectively cancer in immunocompetent

patients. Coincidentially, the lytic nature of HAdV

infection was discovered in 1953 [168,169] and this

spurred intense interest to develop oncolytic therapy

based on a variety of HAdV types [161,166].

Oncolytic HAdV-based vectors were used to investi-

gate the role of HAdV proteins in tumour cell killing,

reviewed in [170–173]. Regarding ADP [29], ADP-

overexpressing HAdV mutants were designed for onco-

lytic therapy. HAdV-C5 mutants KD1 and KD3

lacked all E3 genes apart from 12.5K and ADP [79].

To enhance tumour cell selectivity, they were equipped

with two E1A mutations impairing E1A binding to Rb

and p300 [174]. Tumour cell killing specificity was

improved by replacing the E4 promoter by the pro-

moter for surfactant protein B [175]. Both oncolytic

viruses showed increased efficacy in xenograft models

compared to wild-type HAdV-C5 [175]. Meanwhile,

another ADP-overexpressing HAdV-C5-based oncoly-

tic virus was generated in a comparable approach

[176]. The E3 region with the exception of 12.5K of

01/PEME was replaced by a MLP-ADP overexpres-

sion cassette. 01/PEME was further mutated in the

same N-terminal E1A region as KD1 and KD3.

Accordingly, also this ADP-overexpressing oncolytic

virus demonstrated increased selectivity and potency in

tumour cell killing in vitro and in vivo [176]. Intrigu-

ingly, the re-introduction of an ADP CMV overexpres-

sion cassette into E1B-55K/E3-deleted HAdV-C5 vector

YKL-1 led to enhanced tumour cell killing in vitro and

in vivo, and increased the size of viral plaques, yet

apparently had no effects on normal skin fibroblasts

[125,177,178]. Also, the ADP-overexpressing Ad5-yCD/

mutTKSR39rep-ADP outperformed its parental E1B-

55K- and ADP-deleted virus regarding antitumour

effects and specificity in vitro and in xenograft models

[179,180]. Taken together, ADP overexpression can

potentiate the efficacy of oncolytic viruses.

However, severe host immune responses and limited

tumour access are unresolved issues with oncolytic

AdV in therapy [181,182]. It is clear that safety issues

and enhanced tumour killing by AdV vectors will have

to implement at least three strategies – arming, target-

ing and shielding. This will involve better control of

local inflammation and targeted cell killing, perhaps

by employing ADP [12,171,183–186].

Future questions in ADP research

Pathogen-associated molecular patterns of viruses trig-

ger the onset of cell death processes. This is detrimental

to the dissemination of the virus. Viruses have evolved

a range of countermeasures, including the abrogation

of cell-controlled death processes and the execution of

virus-controlled death processes. This allows viruses to

take control of the timing and the molecular pathway

of cell death. Viruses thereby control how they dissemi-

nate in an infected organism and between organisms.

Given the considerable cell-to-cell variability in HAdV

infection phenotypes [187], the next frontier is to anal-

yse the viral mechanisms of cell killing at the single-cell

level. This will involve improved image-based

approaches [76,188]. Remarkably, microscopic fluores-

cence-based methods revealed that only a minority of

HAdV-C2-infected cells lyse and give rise to a produc-

tive infection, a plaque [30]. Deep learning-enhanced

image analyses allows predictions of infection outcome,

for example lytic/nonlytic, and thereby reveals features

of lytic or lysogenic cells [145]. Additionally, genetic

manipulations have been significantly eased by the

implementation of the CRISPR/Cas system [189]. In

combination with high-throughput, genome-wide

screening platforms [190], genotype–phenotype rela-

tions can today be addressed in an unbiased manner.

In conclusion, the ADP case can be re-opened and

the role of ADP in host cell lysis addressed using

state-of-the-art techniques. ADP can be studied both

in the context of infection, upon expression of recom-

binant protein alone, and in combination with viral

proteins, such as E1B-19K. Promising future

approaches include the generation of imaging-compati-

ble tagged ADP mutants, as well as studies in artificial

lipid bilayers. Gaining a deeper understanding of how

the different HAdV species induce cell death and how

this affects virus transmission between cells will likely

reveal new therapeutic targets for the treatment of

HAdV infection.
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