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The Michaelis–Menten equation is one of the most extensively used models in

biochemistry for studying enzyme kinetics. However, this model requires at

least a couple (e.g., eight or more) of measurements at different substrate

concentrations to determine kinetic parameters. Here, we report the discovery

of a novel tool for calculating kinetic constants in the Michaelis–Menten

equation from only a single enzymatic assay. As a consequence, our method

leads to reduced costs and time, primarily by lowering the amount of

enzymes, since their isolation, storage and usage can be challenging when

conducting research.

Keywords: Approximate Bayesian Computation; Bayesian statistics;

enzymology; likelihood-free; Michaelis–Menten kinetics

In biochemistry, the Michaelis–Menten model [1–3] is

one of the best-known and useful approaches to

enzyme kinetics [4–7]. It takes the form of an equa-

tion describing the rate of enzymatic reaction by relat-

ing a rate of formation of the product to a substrate

concentration. The system involves two reactions

where a substrate binds reversibly to the enzyme to

form an enzyme–substrate complex, which then reacts

irreversibly to generate a product and to regenerate

the original enzyme. In the beginning of the early

20th century, Victor Henri discovered that enzyme

reactions are initiated by a bond between the enzyme

and the substrate [8]. Later, his work was taken up

by Leonor Michaelis and Maud Menten [3], who

measured the initial velocity as a function of sucrose

concentration and derived an equation that approxi-

mates the modern version of the Michaelis–Menten

equation, which is widely used in enzyme–substrate
interaction study [9]. Moreover, this approach is

applied to other biochemical problems, including

antigen–antibody binding, protein–protein interaction

[2] as well as pharmacokinetics [10], and to areas out-

side biochemical interaction like clearance of blood

alcohol [11], alveolar clearance of dusts [12], and bac-

teriophage infection [13]. The model provides valu-

able knowledge for researchers in the form of kinetic

parameters that explain the properties of a particular

enzyme. The standard method for determining the

kinetic parameters involves running a series of

enzyme assays at multiple substrate concentrations,

and measuring the initial rate of the reaction [2]. By

plotting reaction rate against substrate concentration,

and applying a nonlinear regression to the Michaelis–
Menten equation, the kinetic parameters could be

obtained. Until recently, the graphical methods, such

as the one described by Lineweaver and Burk, which

utilized the double reciprocal plot, were used for this

purpose [2]. Nowadays, various software programs
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provide fast tools to obtain kinetic parameters

from nonlinear regression of the Michaelis–Menten

equation.

In order to minimize experimental work that

involves several enzymatic assays, we propose to use

the Approximate Bayesian Computation (ABC) tech-

niques [14–18] to determine kinetic constant in the

Michaelis–Menten model. Commonly, biochemical

systems could be described using differential equa-

tions or a set of nondifferentiable set of rules with

parameters having physical interpretation [6,19].

Then, for given initial conditions and specific values

of parameters it is possible to generate data, that is,

provide a solution of the set of differential equations.

However, an analytical form of the distribution of

solutions is highly complex and, thus, it is impossible

to formulate the likelihood function. ABC techniques

offer an almost automated solution in situations

where evaluation of the posterior is computationally

prohibitive, or whenever suitable likelihoods are not

available. The main idea behind ABC is to utilize a

mathematical model for a biochemical system and

apply an approximate inference (e.g., Monte Carlo

methods) to calculate the posterior over parameters.

A classical example of applying ABC is a model of

spreading tuberculosis [19] that contains a set of

probabilistic rules of events, such as, illness transmis-

sion, mutation, death, and recovery. The model is rel-

atively simple yet it is analytically intractable. Since

the probabilistic inference is infeasible due to lack of

an analytical form of the model, a rejection sampling

procedure with a prespecified acceptance threshold

was used to infer about parameters. Namely, values

of parameters are first sampled from a prior distribu-

tion and then data are generated by the model. If the

generated data are close to the real data in terms of

a chosen distance measure (i.e., the distance is smaller

than the threshold e), the parameters’ values are

accepted and further used to approximate the poste-

rior. Later, the ABC techniques were widely used in

other applications, such as, biology [20,21], evolution

and ecology [15,22], the evolution of genomes [23],

the dynamics of gene regulation [18], the demographic

spread of species [24–27], or mRNA self-regulation

[28]. It is worth mentioning that [28] used Parallel

Tempering and Metropolis–Hastings sampling tech-

niques to determine parameters of the Michaelis–
Menten model. However, they used a synthetic likeli-

hood function [29,30] assuming 1% Gaussian error

while our approach is likelihood-free.

In this paper, we present a novel application of the

ABC computational tool for calculating kinetic con-

stants in the Michaelis–Menten equation using one

enzymatic assay at a single substrate concentration.

This extremely useful framework gives wider possibili-

ties in determination of kinetic parameters by immense

reduction of the cost, primarily by lowering the

amount of enzyme, substrate and other reagents as

well as time.

Materials and methods

Implementation

The proposed method was implemented in PYTHON using

the NumPy package (www.numpy.org). In all experiments,

we used our own implementation of the Runge-Kutta

(RK4) solver. The code is available at: https://github.com/

e-weglarz-tomczak/mmabc.

In the implementation of our method, we used two

heuristics to obtain samples from the posterior distribution

over parameters:

• For computational convenience, the sampling procedure

is run 100 times to sample 10 000 parameters.

• If the procedure is stopped before reaching 100 iterations

(runs), then we increase the threshold of the rejection

sampling e and repeat the procedure.

We noticed that such approach worked very well in

practice.

Parameter estimation from synthetic data

In order to verify the usefulness of the proposed approach,

we first evaluate our method on synthetic data. We

simulate 6000 different synthetic measurements using the

following setting:

• We sampled the initial concentration of the enzyme E0

uniformly from the set of the following values: {0.0005,

0.001, 0.005} [lM].
• The step-size h (a time between two consecutive measure-

ment points) is sampled uniformly from the following set:

{8, 10, 12}. The time step is expressed in seconds.

• The measurement duration is set to 15 min.

• The values of kcat (the catalytic rate constant) and KM

(the Michaelis constant) are sampled uniformly from [0.1,

100] and [1, 200] in the linear scale, respectively. Further,

the sampled values are used to generate synthetic mea-

surements by solving the Michaelis–Menten equation us-

ing the RK4 method.

• During the simulation, we use the following values of

the threshold: e 2 {0.0001, 0.0002, 0.0003, 0.0005,

0.0007, 0.001, 0.002, 0.003}. We start with the smallest

value of e and if at the end of the procedure < 5

samples are accepted, we increase e and repeat the

procedure.

2743FEBS Letters 593 (2019) 2742–2750 ª 2019 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

J. M. Tomczak and E. Wezglarz-Tomczak Estimating kinetic constants using ABC

http://www.numpy.org
https://github.com/e-weglarz-tomczak/mmabc
https://github.com/e-weglarz-tomczak/mmabc


•In the experiment, we run our procedure for different val-

ues of S0, namely, S0 2 {10, 50, 100, 200, 300, 400} [lM].
For a single value of S0 we generate 1000 simulations.

Parameter estimation from real data

The utility of the proposed method is further demon-

strated on kinetic parameters measurement data for three

real enzymes, namely human aminopeptidase (hAPN), Sus

scrofa APN (ssAPN), and human endoplasmic reticulum

aminopeptidase 2 (hERAP2) [31,32]. For each enzyme

eight measurements were collected at different levels of

substrate.

Concentration, S0 2 {3.125, 6.25, 12.5, 25, 50, 100, 200,

400} [lM]. In our experiments a single measurement for

S0 = 200 is taken, the following settings are used:

• hAPN: E0 = 0.0005 lM, h = 8 s, one measurement lasted

15 min;

• ssAPN: E0 = 0.0005 lM, h = 12 s, one measurement

lasted 15 min;

• hERAP2: E0 = 0.001 lM, h = 10 s, one measurement

lasted 15 min.

In order to obtain the values of the kinetic constants, the

standard method was used [2]. Further details how the

experiments were carried out are outlined in Refs [31,32].

Metrics

The following metrics are used to quantify the performance

of the presented approach:

• Deviation specifies how the mean estimated value, hest,
deviates from the real one, hreal:

Deviation ¼
1� hreal

hest
; hest [ hreal

1� hest
hreal

; otherwise

8>><
>>:

: ð1Þ

• Accuracy indicates how often the real value hreal is within

one standard deviation interval from the mean estimated

across all simulations.

Results and Discussion

The Michaelis–Menten model

The Michaelis–Menten model takes the form of an

equation describing the rate of enzymatic reactions, by

relating reaction rate to the concentration of a sub-

strate. The enzymatic reaction in this model involves

reversible reaction where an enzyme, E, binds to a

substrate, S, to form a complex, ES, and irreversible

releasing a product, P, and the free enzyme. This may

be represented schematically as follows:

Eþ S �
kf

kr
ES�! kcatEþ P ð2Þ

By applying the law of mass action, which states

that the rate of any chemical reaction is directly pro-

portional to the product of the masses/concentrations

of the reacting substances [33], system of four ordinary

differential equations that define the rate of change of

reactants over time are obtained, namely:

d½E�
dt

¼ �kf½E�½S� þ kr½ES� þ kcat½ES� ð3Þ

d½S�
dt

¼ �kf½E�½S� þ kr½ES� ð4Þ

d½ES�
dt

¼ �kf½E�½S� � kr½ES� � kcat½ES� ð5Þ

d½P�
dt

¼ kcat½ES� ð6Þ

In their original analysis, Michaelis and Menten

assumed that the substrate is in instantaneous chemical

equilibrium with the complex enzyme–substrate [3]. An

alternative analysis was proposed 10 years later by

Briggs and Haldane, known as quasi-steady-state of

the system, that assumed the concentration of the

intermediate complex is approximately steady during

progression of the reaction [34]. Both approximations

assume irreversible dissociation of ES complex to the

product and free enzyme that yields the following

equation of the velocity of the reaction:

v ¼ dP

dt
¼ VmaxS

KM þ S
¼ E0kcatS

KM þ S
; ð7Þ

where P is the concentration of the product, S denotes

the concentration of the substrate, Vmax is the maximal

velocity, E is the initial concentration of the enzyme,

kcat denotes the constant of the conversion to the pro-

duct (the catalytic rate constant), and KM is called the

Michaelis constant. Additionally, the initial value of

the substrate, S0 is known.

The model provides crucial information about the

nature of the enzyme in the form of the kinetic param-

eters. The Michaelis constant (KM) is the concentration

of substrate at which the reaction rate is half of the

maximum rate. This is an inverse measure of the sub-

strate’s affinity for the enzyme. The smaller the value
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of KM, the higher the affinity; hence, the rate will

approach maximal velocity with lower S than reactions

with a lower KM. The catalytic rate (kcat) shows how

fast reaction is. The kcat/KM constant provides the

knowledge how efficiently an enzyme converts a sub-

strate into a product. The curve describing the rela-

tionship between the velocity and the substrate

concentration in the Michaelis–Menten kinetics can be

formulated as a nonlinear regression model. The com-

monly used model is expressed using the exponential

function:

v ¼ Vmax 1� exp �bSð Þð Þ; ð8Þ
where b is a real-valued parameter, or by using a poly-

nomial of the k-th order:

v ¼ a1Sþ a2S
2 þ � � � þ akS

k þ a0; ð9Þ
where a0, a1, . . . , ak are constants.

The standard approach to Michaelis–Menten

kinetics

The typical method for determining the constants

involves performing a series of in vitro experiments

at varying substrate concentrations. Next, from

enzyme assays, the initial reaction rates are obtained.

The initial reaction rate is taken to mean because

the equilibrium or quasi-steady-state approximation

remains valid. By plotting reaction rate against con-

centration of the substrate, and using a nonlinear

regression of the Michaelis–Menten equation, the

kinetic parameters can be calculated. Nowadays,

available software programs for enzyme kinetics cal-

culations allow to fit the exponential Eqn (8) and/or

the polynomial (9) to measured values. Before com-

putational era, graphical methods involving lineariza-

tion of the equation were used to perform nonlinear

regression, such as, the Eadie–Hofstee diagram,

Hanes–Woolf plot, and Lineweaver–Burk plot as

most commonly used [2].

The standard approach for finding kcat and KM

assumes the following three steps [2]:

• Calculate the initial rate of the reaction measured at

varying substrate concentration from the linear por-

tion of the reaction progress curve (product vs. time)

(see step 1 in Figure 1).

• Fit the Eqn (8) or the polynomial (9) to the plotted

reaction rate against concentration of the substrate

(see step 2 in Figure 1).

• Calculate the kinetic parameters KM and kcat from

the fitted curve (see step 3 in Figure 1).

The procedure is straightforward and rather accu-

rate [2]; however, it is prone to noise in measurements

and requires multiple (e.g., eight or more) measure-

ments at different substrate concentration level in

order to properly fit the curve and, eventually, deter-

mine the kinetic constants. Since carrying out several

enzymatic assays is a time-consuming process, the

whole procedure becomes rather slow. Additionally,

performing all experiments requires substantial amount

of enzyme that is typically costly and time-demanding

to obtain. As a result, costs and time needed to deter-

mine the kinetic constants are usually high and

become a considerable bottleneck in the whole

research process.

ABC approach to the Michaelis–Menten kinetics

One of the main inference frameworks is the Bayesian

approach where the prior knowledge about parame-

ters, h, is further updated by observations v (the poste-

rior) [35]. According to Bayes’ rule the posterior

distribution over the model parameters, p(h|v) is pro-

portional to the product of the likelihood function of

the observed data, p(v|h), and the prior distribution

over the parameters, p(h), namely:

p hjvð Þ / p vjhð Þp hð Þ: ð10Þ
Typically, the likelihood function and the prior are

chosen from a known family of distributions. How-

ever, in many cases, the form of the distribution p(v|h)
remains unknown, but we can sample from it (i.e.,

generate new data). In the ABC literature, such model

is called a simulator [15].

In the considered case, we treat the Michaelis–Men-

ten model in (7) as the simulator of enzyme kinetics

with parameters h = {kcat, KM}. For given values of

the kinetic parameters kcat and KM sampled from some

assumed prior (e.g., the uniform prior), the ODE can

be solved using a numerical ODE solver (e.g., RK4

solver). As a result, simulated data vsim can be further

compared with the real measurements vreal. If a dis-

tance (e.g., the Euclidean distance, jj � jj22) between the

simulated data and the real observations is smaller

than a prespecified threshold e (e.g., e = 0.001), then

we can keep the values of parameters. Otherwise, we

disregard them. Eventually, we could use all the

accepted parameters to estimate the posterior distribu-

tion. This procedure is called the ABC rejection algo-

rithm [21].

Since the initial conditions are known (E0 and S0),

we could easily run the simulator multiple times in

order to estimate the posterior distribution over the
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kinetic constants. Moreover, the measurement could

be noisy and we can still estimate the parameters by

enlarging the threshold e. Therefore, we propose to

utilize the ABC rejection method to determine the

kinetic constants of the Michaelis–Menten model. For

given e, E0 and S0, the procedure is the following (Fig-

ure 2):

• Sample h = {kcat, KM} from the prior p(h) being the

uniform distribution over a prespecified closed region

(e.g., kcat 2 [0, 100] and KM 2 [0, 200]).

• Simulate data vsim using the Michaelis–Menten

model and sampled parameters h in Step 1 by run-

ning the RK4 solver.

• For all simulated data in Step 2, if jjvreal � vsimjj22\e,
then accept h that was used to simulate vsim.

• Approximate the posterior distribution over the

kinetic constants using all accepted hs.

The benefit of the proposed approach is apparent

for two practical reasons. First, instead of collecting

multiple measurements, only one enzymatic assay is

sufficient. As a result, the whole process can be sped

up a couple of times. Second, there is a significant sav-

ing of used enzyme and substrate for determining the

kinetic constants. This results in lower costs and

shorter time spent on performing experiments. Fur-

ther, our approach is based on a probabilistic method;

therefore, we are able to provide the mean value with

an uncertainty estimate, for example, by using the

standard deviation.

Discussion

In our first experiment, we aimed at verifying whether

it is possible to correctly determine the kinetic con-

stants using a single observation. For this purpose, we

generated synthetic data as described in Materials and

methods. In order to quantify the performance of our

approach, we used the deviation and accuracy. We

expressed both metrics as a percentage. Ideally, the

deviation should be equal 0% while the accuracy

should be equal 100%.

The results of simulations (1000 simulations per sin-

gle value of S0) are presented in Figure 3 and

Table A1 (see Appendix 1). First we noticed that the

average deviation for kcat is low (~ 1–2%).Similarly,

for KM, the deviation is also low (~ 5–6%). These

results indicate that the proposed probabilistic

approach allows to obtain good estimates of the real

parameters. Moreover, in more than 90% of cases, the

Measurements at different 
substrate concentrations

Michaelis–Menten plot

Substrate

v 
= 

dP
ro

du
ct

/d
t

Michaelis–Menten plot

Substrate

v 
= 

dP
ro

du
ct

/d
t

Michaelis–Menten plot

Substrate

v 
= 

dP
ro

du
ct

/d
t

Vmax= kcat E0

Vmax /2

KM

Values of:
● KM

● kcat

1 2

3

re
la

tiv
e 

flu
or

es
ce

nc
e 

un
its

time [s]

Fig. 1. The three steps of the standard approach: (1) Calculate reaction rates at different substrate concentrations. (2) Fit a curve (e.g., a

polynomial) to the calculated reaction rates. (3) Calculate kcat as the maximum rate divided by the initial concentration of the enzyme, and

KM as the substrate concentration at which the curve attains half of the maximum rate.
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real value is within one standard deviation from the

estimated mean value. The remaining cases might be

concerning; however, the deviation metric indicates

that the uncertainty interval was simply very narrow

and this could be alleviated by taking slightly larger e.
We also experimented with taking three standard devi-

ations and then the accuracy was 100%. The obtained

results confirm that it is indeed possible to find very

accurate estimate of the kinetic constants using a sin-

gle enzymatic assay. Our second observation from this

experiment is that there are preferred values of S0

between and where our method attains the best scores

of both metrics for kcat and KM. We believe that this

effect could be explained as follows. If we look at the

Michaelis–Menten plot (Figure 1), taking too large

value of S would result in a value of the rate close to

the maximal rate Vmax. In such case we can easily

determine kcat, but we have less information about

KM. On the other hand, taking too small value of S0

would be not sufficiently informative in respect to kcat
that is determined by the Vmax/2. The ideal value

would be around the substrate concentration for

which the rate is close to Vmax. This tells us most

about KM and kcat. Obviously, finding such value of S

might be challenging; however, the values around

100–200 seem to be sufficient in most cases. We will

take advantage of this fact in the experiment on real

enzymes.

Simulate data using 
the Michaelis-Menten 
model. 
If 
then accept the 
parameters.

Measurements at one
substrate concentration

1 2

3 Values of:
● KM
● kcat

Sample from the prior

Approximate posterior

re
la

tiv
e 

flu
or

es
ce

nc
e 

un
its

time [s]
re

la
tiv

e 
flu

or
es

ce
nc

e 
un

its

time [s]

Fig. 2. The three steps of the proposed approach: (1) Sample parameters (kcat and KM) from the uniform prior. (2) Simulate data using the

Michaelis–Menten model and sampled parameters. If the distance from the simulated data, vsim, to the real data, vreal, is smaller than a

prespecified threshold, e, accept the parameters. (3) Calculate the approximate posterior using the accepted samples of the parameters.

Fig. 3. The results (as a percentage) of the accuracy and deviation metrics on the synthetic data. The solid and dashed lines denote mean

values and the shaded area corresponds to the standard error. (left) The accuracy metric for kcat and varying S0. (middle) The accuracy

metric for KM and varying S0. (right) The deviation metric for kcat and KM, and varying S0.
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We also inspected whether there is a dependency

between a range of values of kcat and KM and the consid-

ered metric. We divided values of both parameters into

four bins each and checked whether obtained values of

metrics depend on the values of the parameters. Our con-

clusion is that there is no evident dependency between

the values of parameters and the values of the metrics.

In the second experiment, we used data containing

the progression of reaction catalyzed by enzyme from

our previous study [31,32]. We considered a single sub-

strate concentration assay for the ABC. The data

involved experiments on isolated proteolytic enzymes

for which the assumption of irreversibility of released

product is fulfilled. We evaluated our approach on

data from three real enzymes: hAPN, ssAPN, and

hERAP2 [31,32].

The results for our method and the standard approach

are presented in Figure 4 and Table A2 (see Appendix 1).

In our method, we utilized a single enzymatic assay for

S0 = 200 since for this value we got the best results in the

previous experiment. Interestingly, the results obtained

using the standard approach and our approach do not

differ too much. However, it is a known fact that the

standard approach tends to under- or overestimate the

true value [2] and, thus, it should be treated as a reference

point rather than a real value. Nevertheless, the differ-

ences between both methods are rather small that allows

us to conclude that our approach provides good esti-

mates. Importantly, our method needs only one enzy-

matic assay while the standard procedure requires at

least couple (e.g., eight) of them.

Conclusions

Application of statistical computational methods to

biochemistry, biology, and chemistry allows to under-

stand the underlying phenomena but they could also

assist researchers in their daily routine. In this paper,

we proposed a probabilistic method for determining

the kinetic constants in the Michaelis–Menten model.

The advantage of applying the ABC rejection algo-

rithm to this biochemistry relevant model is the possi-

bility of using only one enzymatic assay. The single

enzymatic assay provides information about progres-

sion of the reaction catalyzed by enzyme at one initial

substrate concentration and we claim that it is suffi-

cient to properly estimate the kinetic parameters. In

comparison to the standard procedure that requires at

least several measurements, our method notably

reduces the whole research process. The obtained

results on both synthetic and real data provide empiri-

cal evidence in favor of our claims. In our future

works, we aim at focusing on more sophisticated ABC

procedures [16,17,36] that could improve uncertainty

estimation and sampling efficiency. Another interesting

topic for future research is to develop new quality

measures of the ABC methods. Finally, encouraged

by the obtained results, we find investigating other

kinetics models as a challenging future research direc-

tion.
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Appendix 1

Table A1. Detailed results of Deviation (↓) and Accuracy (↑) for the synthetic data. An average and a standard error are provided for

different values of the initial substrate concentration.

S0

Deviation Accuracy

kcat KM kcat KM

5 5.98 � 0.30 6.39 � 0.31 85.20 � 1.12 85.40 � 1.12

10 5.20 � 0.31 5.80 � 0.35 85.10 � 1.13 85.70 � 1.11

50 2.64 � 0.21 4.61 � 0.37 90.40 � 0.93 90.60 � 0.92

100 1.99 � 0.16 5.26 � 0.41 90.10 � 0.94 90.50 � 0.93

200 1.42 � 0.11 5.68 � 0.43 90.90 � 0.91 92.10 � 0.85

300 1.24 � 0.10 6.44 � 0.47 89.60 � 0.97 90.30 � 0.94

400 1.38 � 0.09 8.94 � 0.56 87.20 � 1.06 88.50 � 1.01

Table A2. Detailed results of estimated kcat and KM for the real data. An average and one standard deviation are provided for the standard

method and our approach.

kcat KM

Standard Ours Standard Ours

hERAP2 0.388 0.426 � 0.078 91 110.796 � 56.927

hAPN 5.5 6.353 � 1.165 88 111.137 � 56.692

ssAPN 34 41.118 � 7.863 120 102.252 � 56.918
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