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Mitochondria are the primary sites for ATP synthesis and free radical gener-

ation in organisms. Abnormal mitochondrial metabolism contributes to many

diseases, including obesity, diabetes and cancer. UCP2 is an ion/anion trans-

porter located in mitochondrial inner membrane, and has a crucial role in reg-

ulating oxidative stress, cellular metabolism, cell proliferation and cell death.

Polymorphisms of the UCP2 gene have been associated with diabetes and

obesity because UCP2 is involved in energy expenditure and insulin secretion.

Moreover, UCP2 gene expression is often amplified in cancers, and increased

UCP2 expression contributes to cancer growth, cancer metabolism, anti-

apoptosis and drug resistance. The present review summarizes the latest find-

ings of UCP2 with respect to obesity, diabetes and cancer.
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Uncoupling proteins (UCPs), located in the mitochon-

drial inner membrane, belong to the mitochondrial

transporter family SLC25 [1]. There are five members

in the UCP family: UCP1 was identified and discov-

ered in brown adipose tissue. UCP1 is a proton trans-

porter allowing mitochondrial membrane potential to

be transduced to heat [2]. UCP2, a homolog of UCP1,

was described in 1997 [3]. By contrast to UCP1, UCP2

is expressed in many organs and tissues in the body,

including the skin [4], brain[5], liver [6] and kidney [7].

UCP2 is also considered as an antioxidant because it

suppresses the generation of reactive oxygen species

(ROS) in mitochondria [8]. UCP3 is distributed in the

skeletal muscle and heart (slightly), participating in the

regulation of skeletal muscle respiration [9] and pH

flash frequency in skeletal muscle fibers [10]. UCP4

and UCP5 are mainly located in the brain [11,12] and

play important roles in energy homeostasis and neuro-

protection [13].

UCP1 exists in large amounts, comprising up to

10% of membrane proteins in brown adipose tissues,

whereas other UCPs are present in much smaller

amounts [14]. Similar to UCP1, other UCPs can also

catalyze net proton conductance when activated by

fatty acids [14]. Besides protons, UCP2 and UCP3 can

transport anions across the mitochondrial inner mem-

brane [15]. Mitochondria are the major source of

superoxide production as a result of the one-electron

reduction of oxygen. This reaction correlates with the

levels of mitochondrial membrane potential. Therefore,

the uncoupling effect caused by UCPs can lower mito-

chondrial superoxide production.

Abbreviations

mTOR, mechanistic target of rapamycin; PFKFB2, phosphofructokinase 2/fructose-2,6-bisphosphatase 2; PKC, protein kinase C; ROS, reac-

tive oxygen species; UCP, uncoupling protein.
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The UCP2 gene is located in chromosome 1 of rats,

chromosome 7 of mice and chromosome 11 of human

beings [16]. Genetic polymorphism of UCP2 has been

reported. Gene polymorphism, different from muta-

tion, is an inherited variation in DNA sequence among

populations, which may cause a change in the struc-

ture/function/activity of the gene product. UCP2 gene

polymorphisms may play a pathological role in human

diseases, such as cardiovascular disease [17], hyperten-

sion [18], diabetes [19,20], obesity [21] and cancer [22].

The gene expression of UCP2 is regulated by many

factors in vivo. UCP2 is responsive to unsaturated

fatty acids in food to regulate energy metabolism [23].

UCP2 can be regulated by miRNAs to influence tumor

metabolism and chemoresistance [24]. UCP2 is also

regulated by growth hormones [25]. In addition, the

activity of UCP2 can be regulated by several factors

including ROS, free fatty acids, purine nucleotides,

coenzyme Q, etc., as neatly summarized in a recent

review [26]. In brief, free fatty acids are required for

the activation of the anion carrier UCP2 [27]. It is

speculated that superoxide reacts with polyunsaturated

fatty acyl chains of membrane phospholipids, resulting

in the generation of 4-hydroxynonenal and other reac-

tive alkenals. These reactive alkenals activate the pro-

ton conductance activity of UCP2 [14]. Purine

(guanine) nucleotides directly bind to UCP2 and the

binding site faces the intermembrane space of mito-

chondria and UCP2 activity is inhibited [27]. It has

been suggested that coenzyme Q could affect UCP2

activity in two ways: (i) by cooperating with fatty acids

to mediate proton transfer in its oxidized form and (ii)

by generating ROS and 4-hydroxynonenal in its

reduced form [26]. Overall, UCP2 is responsive to and

subsequently regulates metabolic alterations in the

body, which makes it a potential target for metabolic

diseases, including obesity, diabetes and cancer.

UCP2 and obesity

Obesity, comprising a chronic metabolic disorder

caused by the interactions among genetic factors, epi-

genetic factors, environmental factors and lifestyle [28],

is becoming a major health problem worldwide. As a

mitochondrial transporter regulating glucose/lipid

metabolism and energy homeostasis, UCP2 plays an

important role in the development and treatment of

obesity. UCP2 mRNA levels are often decreased in

white adipose tissue in obese individuals compared to

their lean controls [29]. Mechanisms of UCP2-medi-

ated regulation of obesity include but are not limited

to (i) UCP2 indirectly activating the melanocortin-4

receptor, therefore inhibiting food intake and

increasing energy expenditure [30] and (ii) UCP2 nega-

tively regulating glucose-dependent insulin secretion in

pancreatic b cells [31] and positively regulating gluca-

gon secretion from pancreatic a cells [32]. In terms of

weight loss, there is a positive correlation between

weight loss and UCP2 expression [33].

The gene polymorphism of UCP2 may serve as an

endogenous risk factor for obesity. Three polymor-

phisms in the UCP2 gene have been studied the most:

one is located in the promoter regions (rs659366,

�866G/A), one is a missense variant in exon 4

(rs660339, Ala55Val, C/T) and one is a 45-bp insertion

(I)/deletion (D) in exon 8.

Among various ethnicities, the UCP2 �866G/A poly-

morphism has been found to be associated with obesity

[34,35]. The GG genotype is associated with an

increased risk of obesity among Egyptians [36] and

white Europeans [37]. The haplotype containing the

�866G allele is associated with childhood obesity in the

UK [38]. By contrast, the A allele of �866G/A polymor-

phism has a protective effect on obesity and being over-

weight, especially in European populations [39,40]. The

possible responsible mechanism could be attributed to

the different expression levels of UCP2 mRNA between

the �866G allele and the A allele in obesity: the G allele

has lower UCP2 mRNA/protein expression levels com-

pared to the A allele, resulting in increased ROS genera-

tion, as well as decreased insulin secretion and energy

expenditure, and, consequently, an increased accumula-

tion of body fat in the G allele individuals [41].

The effects of the Ala55Val polymorphism on obesity

are influenced by ethnic and gender differences. Among

Italian and Swedish women, the Ala55Val polymor-

phism of UCP2 gene is not associated with the charac-

teristics of clinical, metabolic and anthropometric

obesity [42,43]. However, in the aboriginal populations

in Taiwan, the Val55 allele shows an increased risk of

obesity compared to the Ala55 allele [44]. Another study

from Taiwan reports that the Ala55Val polymorphism

is associated with morbid obesity and weight loss [45].

In addition, obese patients carrying the TT or CT geno-

type show greater weight loss compared to the CC geno-

types after the LAGB (laparoscopic adjustable gastric

banding) surgery [45].

In an Indonesian study, the Ala55Val polymorphism

shows a gender effect on the risk of obesity: the TT

and CT genotypes reduce the risk of obesity in the

male but not the female group [46].

A possible mechanism of Ala55Val polymorphism-

regulated obesity is that this single-nucleotide poly-

morphism is adjacent to the phosphorylation site of

protein kinase C (PKC), therefore interfering with the

phosphorylation of UCP2 by PKC and resulting in
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decreased UCP2 activity [46]. The ethnic/gender dis-

crepancy might occur because: (i) UCP2 regulated pro-

teins could be different; (ii) environmental factors vary

in different regions; and (ii) there are body fat differ-

ences between male and female.

The association between the 45-bp insertion (I)/dele-

tion (D) polymorphism and obesity is found mainly

among Asians and the results demonstrate regional

and gender differences. The D/D genotype is the most

widely distributed in eastern Saudi Arabia and is asso-

ciated with severe obesity [21]. Among Indonesians,

the D/I genotype and the I allele reduce the risk of

obesity in the female group, whereas the I/I genotype

and I allele are risk factors for obesity in the male

group [46]. In a Malaysian study, the I allele is a risk

factor for obesity among Malaysian women [47]. In

Iranian [48] and Turkish [49] studies, the I/I genotype

and I allele also demonstrate a higher risk for obesity

compared to the D/D genotype.

The location of this polymorphism in the 30-UTR in

exon 8 is assumed to be involved in regulating mRNA

transcription or its stability. It is speculated that this

polymorphism leads to decreased UCP2 protein levels

and lower energy expenditure [37].

In summary, although controversy exists, higher

UCP2 expression levels could enhance energy expendi-

ture, therefore reducing the risk of obesity. The associ-

ation between the UCP2 gene polymorphisms and

obesity depends on how the polymorphisms affect

UCP2 expression/activity levels; however, other fac-

tors, such as ethnicity, gender and environment, also

play an influential role. Future studies could aim to

investigate: (i) whether UCP2 conveys other transport

activity in addition to functioning as an ion/anion

transporter; (ii) whether there any effector protein

binding to UCP2 and mediating its action; and (iii)

where UCP2 stands in the broader consideration of

mitochondria-to-nucleus signaling regulating obesity?

UCP2 and diabetes

Diabetes mellitus is a group of metabolic diseases

characterized by hyperglycemia, which is related to

genetic inheritance and environmental factors. Dia-

betes is divided into type 1 diabetes and type 2 dia-

betes. As a result of to its regulatory role in ATP

synthesis, glycolysis, and oxidative stress, it is not sur-

prising that UCP2 plays an important role in the

development of diabetes.

Pancreatic b-cells rely heavily on ATP for insulin

secretion; therefore, it is often found that there is a

negative relationship between UCP2 and glucose-stim-

ulated insulin secretion [50]. This suppression of

insulin secretion by upregulated UCP2 increases the

risk of type 2 diabetes in humans [51].

Similar to obesity, the �866G/A in the promoter

region, Ala55Val in exon 4 and the 45-bp insertion(I)/

deletion(D) in exon 8 are mostly studied for the rela-

tionship between UCP2 polymorphisms and diabetes.

The results demonstrate that individuals with the

AA genotype and A allele of the �866G/A polymor-

phism have an increased risk for diabetes in Austrian

[52], Italian [53], American [54] and Indian [55] popu-

lations. The A allele of �866G/A is associated with

higher promoter activity of UCP2 in b-cells [51,52],

which leads to higher UCP2 expression, lower ATP

production, decreased insulin secretion and increased

plasma glucose levels.

For the Ala55Val polymorphism, the Val/Val (VV)

genotype is a risk factor for diabetes compared to the

Ala/Ala (AA) genotype among Chinese [56] and Ameri-

can [57] populations. The VV genotype shows increased

insulin resistance in those individuals with impaired glu-

cose homeostasis. The VV genotype has a lower degree

of uncoupling, more efficient energy utilization, more

production of ROS and more b-cell damage, and lower

fat oxidation compared to the AA genotype [58,59].

There are fewer reports on the 30-UTR 45-bp I/D

polymorphism in diabetes. The I allele and DI geno-

type are more common in diabetic retinopathy among

the Chinese population [19,20]. The II and DI geno-

types are associated with a higher risk of proliferative

diabetic retinopathy and the DI genotype is associated

with a higher risk of non-proliferative diabetic

retinopathy [19,20]. In an Iranian study, the 45-bp I/D

polymorphism of the UCP2 gene is shown to be asso-

ciated with the metabolic syndrome, which is being

recognized as a risk factor for insulin resistance [48].

The exact mechanism of how the 45-bp I/D poly-

morphism affects diabetes is unclear. It has been sug-

gested that this 30-UTR variant might be involved in

mRNA processing or in transcript stability [48].

In summary, the impact of UCP2 deregulation on

diabetes is likely the net result of two apparently

opposite effects: decreasing UCP2 activity increases

ATP production and insulin secretion, whereas

decreased UCP2 activity can also increase ROS gener-

ation leading to the damage in insulin-secreting b-cells.
Future directions may include an investigation of (i)

the precise mechanism for UCP2 with respect to regu-

lating insulin secretion; (ii) the role of UCP2 deregula-

tion in insulin-resistant diabetes; and (iii) the other

signaling molecules that UCP2 may regulate during

the pathogenesis of diabetes.

A schematic diagram regarding the role of UCP2 in

diabetes is shown in Fig. 1.
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UCP2 and cancer

Cancer is the second leading cause of death in the USA.

Approximately 1.6 million new cases occur with

600 000 deaths each year [60]. Metabolic alterations are

one of the hallmarks of cancer. As early as 100 years

ago, Otto Warburg observed that, even in oxygen-rich

conditions, cancer cells would give priority to glycolysis

and contain far more energy than surrounding tissues

[61]. Furthermore, cancer cells can also obtain energy

from more sources than normal cells.

As a result of its regulatory role in ATP synthesis and

cellular metabolism, UCP2 plays an important role in

cancer metabolism. UCP2 amplification has been

detected in a number of human cancers, including leuke-

mia, skin cancer, pancreatic cancer, non-small cell lung

cancer, colon cancer and hepatocarcinoma [62–64]. The

UCP2 gene polymorphism is also found to be associated

with cancer prognosis. The �866G/A polymorphism is

associated with the outcomes of colorectal cancer after

surgery: the GG genotype has the highest survival rate,

whereas the AA genotype is the most detrimental [65]. As

discussed above, the G allele has lower UCP2 mRNA

expression levels compared to the A allele, resulting in

lower UCP2 protein levels [41], which further suggests

that UCP2 may promote cancer growth and survival.

UCP2 in cancer cell behavior and signaling

pathways

To test whether UCP2 promotes skin carcinogenesis,

our group has performed a chemically induced multi-

stage skin carcinogenesis study using UCP2 homozy-

gous knockout and wild-type mice [66]. The results

demonstrate that UCP2 deficiency suppresses the for-

mation of both benign and malignant skin tumors, as

well as the increases in cutaneous inflammation. How-

ever, UCP2 deficiency does not enhance chemical car-

cinogen-induced apoptosis.

In other studies, targeting UCP2 has been shown

to induce apoptosis of tumor cells. For example,

oroxylin A induces mitochondrial permeability transi-

tion pore in colon cancer cells through the inhibition

of UCP2 in a dose-dependent manner, resulting in

increased levels of ROS and apoptosis [67]. Colon

cancer cells are found to be more sensitive to orox-

ylin A treatment after UCP2 knockdown using small

interfering RNAs.

The promotion of cell proliferation is considered as

an important mechanism with respect to UCP2 con-

tributing to tumorigenesis. In our study of skin car-

cinogenesis, UCP2 deficiency clearly suppresses skin

cell proliferation as indicated by mitotic cell counts

and Ki-67 staining [66]. In hepatocellular carcinoma,

cell proliferation is inhibited when UCP2 is downregu-

lated by miR-214 [68].

The tumor-promoting effects of UCP2 can also be

attributed to the alterations in glycolysis and signaling

pathways. Glycolysis is often boosted in tumor cells. A

recent study demonstrated how UCP2 participates in

shifting oxidative phosphorylation to glycolysis in pan-

creas cancer cells [69]. The expression levels of the glu-

cose transporter GLUT1 and pyruvate kinase isoform

M2 mRNA are increased after UCP2 stimulation.

When UCP2 is inhibited, the components of mito-

chondrial oxygen consumption, such as complex I,

complex IV and complex V, are downregulated. More-

over, cancer cells with higher UCP2 expression are

UCP2 gene mRNA

UCP2

Insulin Secretion

Diabetes

Diabetic 
Retinopathy

UCP2 Polymorphism

ROS Fig. 1. UCP2 and its polymorphism in

diabetes mellitus and diabetic

complications. The UCP2 gene

polymorphism could be associated with

diabetes, which may be a result of the

effect of UCP2 on pancreatic b-cell

function, fasting insulin, insulin sensitivity

and insulin secretion indices in the body.
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more sensitive to 2-deoxy-D-glucose, a widely used

inhibitor of glycolysis [69].

Our group has studied the mechanism of how UCP2

regulates glycolysis during cell transformation [70,71].

In phorbol ester-treated UCP2 overexpressing skin epi-

dermal cells, glycolysis is enhanced, at least partially,

through the activation of phosphofructokinase 2/fruc-

tose-2,6-bisphosphatase 2 (PFKFB2), which is medi-

ated by activated Akt. When PFKFB2 is inhibited,

cellular metabolism is switched from glycolysis to

mitochondrial respiration.

Using the same model, our group has also found

that upregulated UCP2 enhances the signaling of

PLCc-1 [70,71]. In UCP2 overexpressing cells, the

levels of superoxide are decreased, whereas that of

hydrogen peroxide is increased, concomitantly with

increased expression and activity levels of manganese

superoxide dismutase. These changes cause increased

lipid peroxidation and PLCc-1 activation.

However, there are controversial results regarding

the role of UCP2 in cancer. When UCP2 is overex-

pressing in a murine melanoma, a human pancreatic

and glioblastoma cell line, tumor cell proliferation is

inhibited as a result of the redirected cancer metabo-

lism from glycolysis to oxidative phosphorylation [72].

Different results may occur as a result of different

endogenous levels of UCP2 in human cancers.

The role of UCP2 in regulating cellular behaviors

has been summarized in Fig. 2.

UCP2 and drug resistance

Chemotherapy resistance is one of the major reasons

for the failure of cancer treatment. Recent studies have

found that UCP2 may regulate cancer cell sensitivity

to anti-tumor agents.

Gemcitabine is a traditional chemotherapeutic agent

to treat pancreatic cancer, non-small cell lung cancer,

ovarian cancer and breast cancer [73]. Gemcitabine

chemoresistance has been linked to UCP2 in several

cancer types. In hepatocellular tumors, inhibition of

UCP2 increases the sensitivity of cancer cells to gemc-

itabine, which is accompanied by increases in mito-

chondrial superoxide levels [74].

In breast cancer cells, downregulation of UCP2

increases the sensitivity of cells to cisplatin and

tamoxifen treatment [75]. In UCP2 knockdown cells,

cell viability and clonal formation are decreased in

conjunction with increases in mitochondrial mem-

brane potential, ROS production and apoptotic cell

death. UCP2 knockdown plus tamoxifen treatment

increases autophagic cell death in these cancer

cells [75].

Also in breast cancer cells, downregulation of UCP2

via MiR-133a increases the sensitivity of cells to dox-

orubicin treatment [24]. MiR-133a suppresses UCP2

with respect to both mRNA and protein levels, leading

to inhibiting tumor proliferation in vitro and in vivo.

It has been reported that the expression levels of

UCP2 are associated with cisplatin sensitivity in ovar-

ian serous carcinoma [76]. Patients with relatively low

UCP2 expression are more sensitive to cisplatin treat-

ment and have a better survival rate. A potential

mechanism of UCP2-caused chemoresistance is a

reduction in the generation of ROS. UCP2 expression

levels may be used as an effective index for predicting

the efficacy of chemotherapy when treating ovarian

serous carcinoma [76].

UCP2 gene mRNA

UCP2

Mitochondrial Respiration Drug  Sensitivity

Tumor Control

Autophagy Apoptosis

Knockdown
siRNA

miRNA 214
miRNA 133a

Fig. 2. Changes in tumor cell behaviors

after UCP2 inhibition: cells shift from

glycolysis to mitochondrial respiration; cell

death is enhanced; tumor cells become

sensitive to anti-cancer agents.
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Neoadjuvant chemotherapy is an effective approach

to treat local tumors. The expression levels of UCP2

provide guidance for the use of neoadjuvant

chemotherapy in locally advanced uterine cervical can-

cer [77]. Patients with higher UCP2 expression levels

are relatively resistant to neoadjuvant chemotherapy

which can be reversed using a UCP2 inhibitor [77].

The role of UCP2 in tumor progression and drug

resistance is summarized in Fig. 3.

The UCP2 inhibitor genipin as an anti-cancer

drug candidate

Genipin, found in Gardenis fruits, is the product of

geniposide after hydrolysis by b-glucosidase. Genipin

was identified as an inhibitor of UCP2 uncoupling

activity in 2006 [78] and its potential anti-tumor activi-

ties have been studied subsequently.

In glioblastoma cells, genipin treatment activates the

intrinsic apoptotic pathway in a dose-dependent and

time-dependent manner via UCP2-regulated mitochon-

drial ROS production [79].

Genipin has the ability to alter glucose metabolism

and achieve anti-tumor effects. In breast cancer cells,
18F-FDG uptake is reduced both dose- and time-de-

pendently by genipin via a decrease in glycolytic flux

and mitochondrial oxidative respiration and an

increase in ROS generation [80].

Because genipin is a natural cross-linker, derivatives

(in which the hydroxyl at position C10 or C1 is substi-

tuted) with reduced cross-linking activity have also

been developed. In pancreatic carcinoma cells, deriva-

tives with a replacement of C1 (1-OH) do not induce

apoptosis in cancer cells, whereas derivatives with a

replacement of C10 (10-OH) induce ROS generation

and apoptosis in cancer cells. These results indicate

that 1-OH is critical for ensuring the anti-tumor activ-

ity of genipin [81].

Genipin can also increase the sensitivity of cancer

cells to other treatments. In pancreatic cancer cells,

genipin synergizes the mechanistic target of rapamycin

(mTOR) inhibitor everolimus with respect to inducing

apoptosis by enhancing nuclear translocation of the

cytosolic glycolytic enzyme glyceraldehyde 3-phosphate

dehydrogenase [82]. mTOR, a serine/threonine protein

kinase, plays a central role in the regulation of funda-

mental cellular processes including protein synthesis/

turnover, cellular metabolism, etc. [83]. Dysregulated

mTOR signaling is implicated in the etiology of

human diseases such as diabetes and cancer. In many

cancers, mTOR becomes hyperactive and a class of

mTOR inhibitors (rapalogs) have been approved for

treating advanced kidney cancers [83]. In ovarian ser-

ous carcinoma cells, sensitivity to carboplatin treat-

ment is increased when these cells are treated with

genipin [76].

Concluding remarks

In this review, we have summarized recent findings

regarding the role of UCP2 in obesity, diabetes and

cancer. The polymorphisms of UCP2 play important

roles in obesity and diabetes, which may serve as a

biomarker for these two diseases. Amplification of

UCP2 is often observed in cancers. UCP2 influences

cell proliferation, apoptosis, autophagy and drug

UCP2 gene mRNA

UCP2

Glycolysis 
(PKM2, PFKFB2)

Drug 
Resistance

Gemicitabine

Gene Polymorphism
(-866G/A) 

Cell  Proliferation Tumor Invasion

Tumor Metastasis
Poor Prognosis

Cisplatin

Doxorubicin

Tamoxifen

ROS
(O2·-, H2O2)

Fig. 3. The effect of UCP2 on

tumorigenesis is manifested in many

aspects. The UCP2 gene polymorphism

may be associated with tumorigenesis.

UCP2 can accelerate the proliferation and

invasion of cancer cells via enhanced

glycolysis. UCP2 also reduces the

sensitivity of cancer cells to drugs,

ultimately leading to chemotherapy

resistance.
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sensitivity by regulating ROS generation and cellular

metabolism. These new studies further help us to

understand how UCP2 contributes to disease progres-

sion, as well as how to target UCP2 when treating

these diseases.
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