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Abstract 
The present investigation has two main objectives; first is optimization of 

welding process parameters of submerged arc welding (SAW) using Taguchi 

philosophy and second is to improve the mechanical properties such as strength and 

microhardness of weld joint by alloying with varying amounts of molybdenum. For 

optimization of welding process, parameters Taguchi philosophy have been applied on a 

mild steel plate (AISI C- 1020) of 10 mm thickness with 60o groove angle with arc 

voltage and welding speed as variables and bead width as output variables. A 

mathematical relationship between bead width, arc voltage and welding speed has also 

been found using multiple regression analysis for the present base metal plate geometry. 

After optimizing welding parameters, molybdenum has been added individually to the 

welding area in varying percentages. The properties of alloyed and unalloyed weld 

metal bead are compared. The mechanical characterization of weld has been done in 

terms of microhardness, tensile strength, whereas microstructural characterization has 

been performed using optical microscopy, XRD and EDS. The presence of 

molybdenum resulted in bainite structure in weld bead having a refined grain structure, 

enhancement in tensile strength and microhardness. The XRD results showed the 

formation of molybdenum carbides justifying the increase in microhardness value. 

Keywords: Taguchi method, submerged arc welding (SAW), grain boundary ferrite 

(GBF), secondary phase {FS (A)}, acicular ferrite (AF), granular bainite (GB). 

Introduction 
These days’ steel is being widely used in almost everywhere including ship 

building, constructing buildings etc. The excessive use of steel is due to its excellent 

mechanical properties. Submerged arc welding (SAW) is done exclusively for thick 

plates (10mm≤ thickness). The submerged arc welding finds wide industrial application 

due to its easy applicability, high current density, excellent bead quality and ability to 
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deposit a large amount of weld metal using more than one wire at the same time. As 

submerged arc welding involves a number of process variables such as arc voltage, arc 

current, welding speed, electrode extension etc. each parameter has its own effect on 

weld bead quality. Thus, in order to obtain best weld bead quality, all the process 

variables need to be optimized. 

Various researchers have optimized process parameters using Taguchi 

optimization technique and also performed regression analysis using Minitab software 

[1-7]. Using ANOVA the relative importance of parameters on bead width has also been 

found. 

Plain carbon steel joint has some limitations like poor corrosion resistance, 

oxidation at elevated temperatures, incapability of deep hardenability of large structures 

having martensite structure throughout, decrement of strength beyond 700 MPa with 

loss of impact strength and ductility. Two approaches have been pursued to improve the 

toughness of weld metal. One is to use different type of fluxes and other of great interest 

is to alter weld metal composition either through use of new filler metals or by metal 

powder addition in weld metal [8]. Various researches [9-12] have been done involving 

alloying of plain carbon steel using elements like molybdenum, chromium, niobium, 

silicon, nickel etc. Among the alloying elements molybdenum affects properties of plain 

carbon steel significantly. Thuvander [13] showed that significant amounts of Mo 

offered excellent properties of weld metals in low alloyed steels. Also, the addition of 

Mo can greatly increase the mechanical properties of steel. The presence of Mo 

modifies the ferrite-carbide microstructure so that lamellar pearlite no longer forms, and 

is replaced by a divorced eutectoid structure, i.e. divorced pearlite, upper bainite and/or 

acicular ferrite with carbide. The addition of Mo gradually increases the overall 

mechanical properties of the steel. Mo increases the hardenability (depth upto which 

steel can be hardened upon quenching) of steel and also contributes in slowing down the 

critical quenching speed. Molybdenum increases tensile strength of steel and favors the 

formation of a fine grain structure. Molybdenum forms carbides readily and thus 

improves the cutting properties in high-speed steels increasing machinability [14-16]. 

Hence in present investigation Mo is selected as alloying element in steel welds. 

Further, attempt is made to study the effect of varying amount of Mo addition on steel 

weld plate of 150 mm (length) x 32 mm (width) x 10 mm (thickness) with 60o groove 

angle. Mechanical characterization is done in terms of microhardness and tensile 

strength, whereas for microstructural characterization optical microscopy, X-ray 

diffraction (XRD) analysis and scanning electron microscopy (SEM), energy 

dispersive X-ray spectroscopy (EDS) have been performed. 

Experimental 
The experiments were conducted at SVNIT Workshop with the following set-up. 

SURARC semiautomatic SAW equipment with a constant voltage, rectifier type power 

source with a 1200 A capacity was used to join two mild steel plates of size 150 mm 

(length) x 32 mm (width) x 10 mm (thickness). Copper coated electrodes AWS: 

SFA/A5.17 EL-8, 3.2 mm diameter of coil form and agglomerated flux OK Flux 10.71 

was used. A single V with 3.2 mm root-gap and 2 mm root-face has been selected to 

join plates in the flat position, keeping the electrode positive and perpendicular to the 

plate. Taguchi method has been applied using arc voltage & welding speed as factors 



Dwivedi et al. - Effect of Molybdenum Addition on Microstructure and Mechanical … 271 

 
with 2 levels for each factor to optimize weld bead width. The values of welding 

parameters along with their different levels are shown in Table 1. The optimized 

parameters are shown in Table 2. 

The welding arc voltage has direct influence on the shape on bead and external 

appearance of bead. The travel speed has pronounced effect on weld size and 

penetration for given combination of current and welding voltage [17]. 

The voltage principally determines the shape of the weld bead cross section and 

its external appearance. Increasing the welding voltage with constant current and 

welding speed produces flatter, wider, less penetrated weld beads and tends to reduce 

the porosity caused by rust or scale on steel [18]. 

Welding speed is the linear rate at which an arc is moved along the weld joint. 

With any combination of welding voltage and welding current, the effect of changing 

the welding speed confirms to a general pattern. If the welding speed is increased, 

power or heat input per unit length of weld is decreased and less filler metal is applied 

per unit length of the weld, resulting in less weld reinforcement. Thus, the weld bead 

becomes smaller [19]. Bead width almost linearly increases with arc voltage and current 

and decreases, with welding speed [20]. 

The quality loss function higher the better quality characteristic has been used 

and can be expressed as: 

MSD = 1/n    (1) 

Where:  are the observed data (or quality characteristics) at the  trial, and n 

is the number of trial. Here observed data are weld bead width. With two levels each of 

arc voltage and welding speed weld bead width is measured in four cases. Each case has 

been repeated only once, so n becomes 1 for each case. Using equation (1) value of 

MSD is calculated based on which S/N ratio is calculated for each case using equation 

(2):  

η= -10    (2) 

Table 1 Measured weld-bead width. 

Case 

no. 

No. of 

weld 

pass 

Voltage 

(V) 

Welding 

speed 

(mt/min) 

Bead 

width 

measured 

y’(mm) 

MSD, y’2
  

S/N 

(dB) 

1 2 30 0.25 16 256 24.08 

2 2 30 0.40 13 169 22.27 

3 2 32 0.25 19 400 25.57 

4 2 32 0.40 15 225 23.52 
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Table 2 Mean S/N ratio for weld bead width. 

 Level 1 Level 2 

Arc voltage 23.175 24.55 (Optimum) 

Welding speed 24.825 (Optimum) 22.895 
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Fig. 1 Graph between voltage, welding speed and mean of s/n ratio 

From Fig. 1 it can be observed that S/N ratio is related directly to arc voltage and 

inversely to welding speed. The optimized welding process parameters (arc voltage 

level 2 (32V) and welding speed level 1 (0.25 mt/min) were obtained using Taguchi 

method. The welding was done using optimized parameters. Further, depending on the 

quantity of the metal deposited under given experimental conditions per pass the 

weighed amount of powder (Mo) were inserted in the weld and then welding was done. 

For comparison of mechanical properties unalloyed weld was also prepared. 

Multiple regression analysis has been used to determine the relationship between 

the dependent variable bead width with the arc voltage and welding speed. The 

regression analysis has been performed by Minitab 17 software. The regression analysis 

of the input parameters is expressed in linear equation as follows: 

WELD BEAD WIDTH= -15.42 + 1.250 ARC VOLTAGE -23.33 WELDING SPEED 

A test sample, having same size and dimension as per earlier specification has 

been taken and performed welding at the optimum predicted process parameters at path, 

welding current, 480 A Arc voltage 32 V, welding speed 250mm/min and electrode 

stick out 25mm. Weld bead was measured and it was 16 mm. It is within 95% 

confidence level. 
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Using MINITAB 17.0 software ANOVA was also performed in order to obtain 

the relative influence of welding parameters on bead width and the results showed that 

welding speed affects bead width more than arc voltage. Welding speed contributes to 

66.62 % and arc voltage contributes 33.78 % to bead width.  

Analysis of Variance 

Source DF  Adj SS      Adj MS     F-Value       P-Value 

Regression     2      18.5000      9.2500        37.00   0.115 

ARC 

VOLTAGE  

 1  6.2500   6.2500    25.00     0.126 

   

WELDING 

SPEED  

1   12.2500  12.2500  49.00   0.090 

           Error   1   0.2500   0.2500   

           Total        3    18.7500    

 
After processing all cases with two weld samples for each case, weld joints with 

(0.05, 0.1, 0.15 and 0.3 wt. % Mo) and without Mo were subjected to mechanical and 

microstructural characterization.  

For mechanical characterization samples were subjected to tensile testing & 

microhardness testing. Tensile tests were performed using universal testing machine 

(UTM) (Model No: 1/90-1263) at Met Heat Engineers, GIDC-Makapura, (Vadodara), in 

accordance with ASTM E8M while micro-indentation hardness test were performed as 

per ASTM E-384:2006 on SHIMADZU HMV 2 series at 9.8 N indent load. 

Microstructural observation and compositional analysis was carried out using 

scanning electron microscopy (Model No.-Hitachi S3400N) along with EDS 

facility.XRD was performed in order to determine the main phases in welded steel by 

using CuKα radiation. Equipment used for XRD is MINIFLEX. 

Results and discussion 

Microstructural results 

All samples prepared for microstructure study were examined under METZER 

vision plus-5000 optical microscope at 400X with image analyzer SFW scientific. The 

samples were cleaned, ground, polished and etched with 10% Nital solution for 

microstructure study. 
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(a)  Base metal                           (b) Unalloyed interzone 

 

 (c) Unalloyed weldzone 

Case 2:  0.05%  molybdenum 

   

(d) Interzone                                                (e) Weldzone 
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Case 3:  0.10 % molybdenum 

  

 (f) Interzone                                                  (g) Weldzone 

Case 4:  0.15 % molybdenum 

  

 (h) Interzone                                              (i) Weldzone 

Case 5: 0.20 % molybdenum 

  

 (j) Interzone                                               (k) Weldzone 

Fig. 2. (a)- (k) Microstructure of base metal, interzone and weldzone in different cases 

BS-bainitic shelves, PF- polygonal ferrite, AF- acicular ferrite) 

As shown in the microstructures of weld zone, the addition of molybdenum 

results in the refinement of grain structure as compared to unalloyed weld metal. As the 

amount of molybdenum increases grain refinement in weld bead first decreases with 

molybdenum addition, i.e. 0.05 %, 0.10 %, 0.15 % and then increases with 0.20 % Mo. 
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The microstructure of the base steel consists of pearlite and ferrite grains. The 

microstructure of the Mo steel is characterized as bainitic sheaves and some acicular 

ferrite and the absence of primary grain boundary ferrite. The process of nucleation on 

inclusions, together with the autocatalytic nucleation, leads to a chaotic arrangement of 

plates and fine-grained interlocking microstructure characteristic of acicular ferrite. The 

addition of Cr, Mo and Mn in quenched and tempered steels suppresses the formation of 

allotriomorphic ferrites and pearlite, enhancing the formation of martensite and/or 

bainite. In the present steels, Mo effectively suppresses the formation of grain boundary 

allotromorphic ferrite and promote the formation of bainite [21]. 

The feathery structure in microstructure indicates that bainite has been formed 

(Fig 1-e). The presence of molybdenum shifts the bainite bay to the right which 

facilitates formation of bainite. Similar results were indicated by [22]. Bhole [8] alloyed 

weld metal with 0.75 and   0.90 wt % Mo and found that Mo addition results in the 

formation of predominant acicular ferrite (AF) and granular bainite (GB), at the expense 

of ferrite with secondary phase FS(A) and grain boundary ferrite (GBF) in weld metal. 

However, Yoshino [23] investigated that Mo increases hardenability by suppressing the 

volume of proeutectoid ferrite and replacing it with acicular ferrite. However, in the 

present investigation we observed that microstructures contain bainite structures. 

As per reference [24] Mo efficiently retards the formation of polygonal ferrite 

formation and lowers the bainite transformation temperature [21]. 

Microhardness results 

Table 3 Microhardness results. 

Case 
Mo 

(wt.%) 

Load 

applied 

Weld 

bead 

Heat -

affected 

Zone 

Base metal 

1 Unalloyed 1000 g 
187 

(HV-1) 

171 

(HV-1) 

209 

(HV-1) 

2 0.05%  Mo 1000  g 
199 

(HV-1) 

158 

(HV-1) 

209 

(HV-1) 

3 0.10%  Mo 1000  g 
234 

(HV-1) 

183 

(HV-1) 

209 

(HV-1) 

4 0.15%  Mo 1000  g 
250 

(HV-1) 

171 

(HV-1) 

209 

(HV-1) 

5 0.20%  Mo 1000  g 
262 

(HV-1) 

183 

(HV-1) 

209 

(HV-1) 
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The Mo addition to the weld metal results in a continuous increase in 

microhardness of the weld bead. This is due to the fact that molybdenum is a strong 

carbide-forming element, resulting in precipitation of carbides which acts as secondary 

strengthener phase in the microstructure. The results obtained are in quite agreement 

with Chen [25] who investigated the effect of molybdenum addition on high 

performance bridge steel using continuous cooling and   found that Vickers hardness 

increases with the increase of molybdenum content due to transformation strengthening 

and higher dislocation strengthening. As the percentage of Mo increases a preferred 

segregation of carbides is observed mostly at grain boundaries (will be discussed in 

EDS results), which results in continuous increase in microhardness value. 

The minimum hardness of the heat affected zone (HAZ) (represents those regions 

in the close proximity of the weld, where the heat input during welding changes the 

microstructure without melting the steel) can be related to grain growth in the HAZ 

which can be explained with the help of thermal cycles. The closer to the fusion 

boundary, the higher the peak temperature becomes and the longer the material stays at 

high temperatures [24]. Since the grain growth increases with increasing annealing 

temperature and time, the grain size in the HAZ increases as the fusion boundary is 

approached. Moreover, the minimum hardness is more likely due to the spheroidisation 

of cementite platelets in the pearlite colonies [26].    

 

Fig. 3. X-axis:Variation of Vickers’s hardness number with wt % of Mo. Y-axis: Vickers 

Hardness Number (VPN) 
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Tensile test results 

Table 4 Tensile test results. 

Mo 

(wt.%) 

Dimensions of  

specimen  

L x B x H 

(mm) 

Cross-

section 

area 

(  

Ultimate 

load(N) 

Tensile 

strength 

(MPa) 

Failure 

location 

Nature 

of 

failure 

 

Unalloyed 
 

282  x 20.90 x 8.95 

 

 

187.06 

 

94000 

 

502.4 

 

Weld 

 

Ductile 

 

0.05 % Mo 

 

282  x 20.90  x 8.50 

 

177.65 

 

99500 

 

560.0 

 

HAZ 

 

Ductile 

 

0.10 % Mo 
 

282  x  20.90 x 8.96 

 

 

187.26 

 

99000 

 

528.6 

 

HAZ 

 

Ductile 

 

0.15% Mo 
 

282  x  20.80 x 8.77 

 

 

182.42 

 

92500 

 

507.1 

 

HAZ 

 

Ductile 

 

0.20%  Mo 
 

282  x 20.00 x 8.66 

 

 

173.20 

 

91000 

 

525.4 

 

HAZ 

 

Ductile 

 
By adding Mo fracture occurs in HAZ indicating the weld zone has higher 

strength then HAZ. The reason behind all fractures occurring in HAZ is hydrogen 

cracking. Hydrogen cracking occurs when hydrogen (from moisture in flux), high 

tensile residual stress & a crack susceptible microstructure coexists. As the 

microstructure obtained in above cases shows the presence of coarse grain structure in 

HAZ, this coarse structure raises residual stresses which make HAZ more susceptible to 

hydrogen cracking [19]. 

HAZ toughness is related to HAZ microstructure and this is a function of steel 

chemical composition and weld thermal cycle. In particular, it is known that low HAZ 

toughness is associated with coarse grained microstructures which consist of 

Widmanstätten side plates or upper bainite. In these microstructures, the Widmanstätten 

or bainitic ferrite grains are separated by low angle boundaries and thus the 'effective' 

grain size, or the cleavage fracture facet size, is that of the bainite or side plate colony. 

Weld metal and HAZ studies have suggested that grain boundary nucleated ferrite has a 

detrimental effect on toughness. It has been postulated that grain boundary ferrite grains 

offer a preferred site for initiation and propagation of cleavage and that toughness is 

lowered with increasing grain boundary ferrite width and increase grain boundary ferrite 

volume fraction. This behavior may be related to strain concentration effects in the 

softer pro-eutectoid ferrite phase and the tendency for grain boundary ferrite to exist in 

continuous bands along the prior austenite grain structure [27]. In present investigation 

Steel alloyed with Mo consist of bainitic sheaves and some acicular ferrite. 
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Similar results were obtained by Bhole [8] in which weld metal was alloyed with 

0.75 and 0.90 wt % molybdenum and it resulted in improvement in tensile strength as 

compared to unalloyed weld zone. Moreover, the strength of HAZ in all cases is even 

higher than the strength of weld zone in unalloyed case, which means that molybdenum 

addition enhances the tensile strength. The reason behind this increase in strength is 

solid solution strengthening which occurs due to molybdenum addition. From the 

tensile test results we can observe that tensile strength first decreases and then increase, 

this is due to the reason that as the percentage of molybdenum increases grain 

refinement first decreases and then increases as is evident from microstructure.  

 

Fig. 4. Variation of tensile strength(Y- axis) with wt.% of molybdenum(X axis) 

EDS Analysis 
Scanning electron microscopy (SEM) associated with EDS was performed in 

order to investigate the dilution occurred in different zones during welding. 

Observations were realized with a 15 kV field effect on two samples of molybdenum. 

The two cases of molybdenum are those showing maximum or minimum 

microhardness. EDS has been done in order to provide the justification for sudden 

change in mechanical properties in weld zone and HAZ in terms of dilution. EDS has 

been performed in terms of spectrum, point analysis. In point analysis 5 points were 

taken ranging from weld zone to HAZ, then chemical composition was found at those 5 

points which gives us the amount of dilution.  

Case 2: 0.05% molybdenum addition (minimum microhardness) 
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(a)                                                                   (b) 

Fig. 5. a) SEM Points taken from weld zone(WZ) to HAZ on sample. b) EDS 

Molybdenum distribution in the matrix with 0.05 % Mo. 

Table 5. EDS results with 0.05% molybdenum. 

Elements Point 1 Point 2 Point 3 Point 4 Point 5 

Fe 93.6 95.52 96.89 94.69 96.12 

Mn 0.6 4.48 1.07 0 1.24 

Mo 1.72 0 2.25 0.39 1.03 

P 0.66 0 0.24 0 0 

Co 3.42 - 0 4.92 1.61 

 

Case 5: 0.20 % molybdenum addition (maximum microhardness) 

 

  

(a)    (b) 

Fig. 6. a) SEM Points taken from weld zone (WZ) to HAZ on sample, b) EDS 

Molybdenum distribution in the matrix with 0.20 % Mo. 
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Table 6. EDS results with 0.20 % molybdenum. 

Elements Point 1 Point 2 Point 3 Point 4 Point 5 

Fe 94.81 93.81 91.94 94.69 92.43 

Mn 0 1.28 0.87 0.3 2.07 

Mo 2.91 2.21 4.46 2.62 3.83 

Co 2.28 2.7 2.73 2.39 1.67 

 
From the EDS results it can be observed that the amount of dilution of 

molybdenum decreases from weld zone to HAZ in both cases, which results in the 

decrease in microhardness from weld zone to HAZ.  

The amount of dilution at 5 points taken is less at each point in 0.05 % 

molybdenum as compared to 0.20 % molybdenum, which justifies the decrease in 

microhardness from 0.05% to 0.20% molybdenum. From Figure 5(b) and 6(b) it can be 

observed that amount of molybdenum in the matrix is evenly distributed which results 

in better mechanical properties of weld bead. The amount of molybdenum distributed is 

more case of 0.20 % molybdenum as compared to 0.05 % Mo which justifies our 

experimental procedure. Moreover, in Figure 6b) as molybdenum is segregated as 

carbides in certain regions which are nothing but grain boundaries resulting in higher 

microhardness with 0.20 % molybdenum addition. 

XRD results 
XRD was performed in all five cases in order to justify mechanical 

characterization with microstructural characterization. 

The flux used for welding plain carbon steel with SAW had composition of 

Al2O3, SiO, Fe2O3, K2O,Na2CO3, CaCO3, MnO, MgO and  TiO2. XRD analysis indicates 

that   in unalloyed weld metal α-ferrite, cementite, CaFe2O4 and Fe2O3 are the major 

phases. On alloying with molybdenum amount of CaFe2O4 & Fe2O3 phases in the matrix 

become less as the intensities of their peaks are very low, but α-ferrite and cementite 

remain dominant phases with 0.05 % molybdenum addition. The CaFe2O4 

phase/inclusion has formed on reaction of CaCO3 of flux along with Fe. On increasing 

molybdenum addition to 0.20 % α-ferrite becomes almost negligible while cementite 

also decreases to a very low amount, while other phases such as MoO3, Mo, MoC 

undergo continuous fluctuation in amount.  

As per reference [21] following things may happen in molybdenum rich steels: 

1. In molybdenum containing alloy the α/γ boundary collects atoms during the 

transformation and, as a result, experiences an impurity drag. 

2. Molybdenum is carbide formers and as such, at low concentrations, go into 

solid solution in cementite, but will also form solid solutions in ferrite. 

3. In case where alloying element concentration reaches a critical level, the 

cementite will be replaced by another carbide phase. This change in the carbide phase 

does not necessarily alter the basic pearlitic morphology and consequently alloy 

pearlites are obtained in which an alloy carbide is associated with ferrite. These pearlites 

occur only in medium and highly alloyed steels, usually at the highest transformation 
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temperatures. At lower transformation temperatures in the same steel, cementitic 

pearlite may still form because of the inadequate diffusion of the alloying. 

However, in present investigation XRD analysis indicate that although 

molybdenum lowers the activity of carbon in austenite and promotes carbide formation 

from the thermodynamic point of view, as is evident from   XRD of molybdenum 

additions. In HAZ, at the growing interface, subsequent redistribution of molybdenum 

takes place between the ferrite and the cementite, i.e. molybdenum with its substantial 

solubility in cementite (carbide formers) will diffuse more intensively to cementite. In 

this way, the composition of cementite can vary over wide limits. The change in 

composition of cementite, while not affecting the crystal structure, will influence the 

pearlite interlamellar spacing, the detailed morphology and the tendency to spheroidize 

as is evident from microhardness results of HAZ [15]. Once the alloying element 

concentration reaches a critical level, the cementite will be replaced by another carbide 

phase. Example for this statement is formation of MoC carbide in present study. This 

change in the carbide phase does not necessarily alter the basic pearlitic morphology. 

Further TEM analysis is required to comment upon formation of alloy carbide in present 

investigation.  

 

Fig. 7. XRD of different cases 
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Conclusions 
1) Based on the present study following conclusions can be drawn: 

2) Welding speed has more dominant effect on bead width as compared to arc 

voltage for the present base metal plate geometry on the basis of regression 

analysis. 

3) Arc voltage and bead width are directly proportional, while welding speed and 

bead width are inversely proportional. 

4) The microstructure, microhardness of the weld zone and HAZ are affected by 

the varying amount of molybdenum addition. 

5) Mo addition results in more refined bainitic microstructure as compared to 

unalloyed weld metal microstructure. 

6) The microhardness of HAZ increases with increasing amount of Mo addition. 

7) The dilution of Mo decreases from weld zone to HAZ, resulting in decrease in 

microhardness from weld zone to HAZ. 

8) Mo addition results in higher toughness of weld bead as compared to unalloyed 

weld bead. 

9) Tensile strength first decreases upto 0.15 % Mo addition then increase in 0.20 

% Mo. 
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