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Abstract: Visualising indicators in thematic maps is nowadays state-of-the-
art and many statistical agencies and data providers support their figures also
within interactive visualisation. However, mostly raw data values are pre-
sented in maps and the visualisation of statistical estimation results is rarely
done and topic in this contribution.

For the estimation of cross-correlations of one reference time series to other
time series, we show that it is important to prewhiten the time series based
on the model estimates of the reference time series. In addition, a simple
weighting of time series to increase the importance of recent years over values
from the very past is proposed.

Finally, an application of our implemented visualisation tool using European
alcohol consumption statistics is shown.

Zusammenfassung: Statistische Ämter und Organisationen unterstützen heu-
te die Präsentation von statistischer Information mit (interaktiven) Grafiken.
Jedoch wurden bisher hauptsächlich nackte Zahlen (Totals, . . . ) in interak-
tiven Karten präsentiert, und auf eine Visualisierung von Schätzergebnissen
verzichtet, welche Inhalt dieses Beitrages sind.

Die Schätzung von Kreuzkorrelationen von Zeitreihen bezüglich einer Ref-
erenzzeitreihe ist erst nach einem prewhitening sinnvoll. Zusätzlich wird eine
Gewichtung vorgeschlagen, die Zeitreihenwerte in der jüngsten Vergangen-
heit höher gewichtet.

Anhand von Gesundheitsdaten über den Alkoholkonsum in Europa werden
die Schätzungen durchgeführt und mit der klassischen Kovarianzschätzung
verglichen. Die Ergebnisse werden entsprechend in Karten dargestellt.
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1 Introduction
Indicators are collected in large data bases, like the World Bank Database, or data bases
from the United Nations, UNESCO, UNIDO, OECD, Eurostat or statistical agencies,
providing more and more information each year. Visualisation is therefore an important
task and often graphics may help to provide a good overview of the main trends and
dependencies of data for both data analysts and policy makers.

Traditionally, raw indicator values are visualised in graphics like line graphs, bar
charts, scatterplots and thematic maps. For the latter one, typical interactive representa-
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tions are the flash-based cartographic product of Statistics Austria called i.Map (Katzlberger,
2011), or the interactive maps of the OECD eXplorer1 for regional statistics.

1.1 Combining Statistical Estimations and Thematic Maps
Gunawardane et al. (2007) introduced new concepts for visualizing indicators: Based on
indicators which are available over time for each country, they estimate the correlations
between these countries using the Pearson correlation coefficient based on raw data. In-
teractively, the user then can click on a country on a map. After clicking, the correlations
from that country to all other countries are visualised using a color scale for the corre-
lations. Moreover, predictions from simple OLS regression of the values of an indicator
of one country to another country and clustering of countries to show the relationships
between socio-economic indicators and countries are proposed.

However, the excellent approach to present not only raw indicator values in thematic
maps but to show the correlations between countries based on indicator values over time
lacks by the estimation of the correlation. The authors propose to use the usual Pearson
correlation coefficient (Pearson, 1996) to estimate correlations over time.

1.2 Outline
In the following we show that the estimation of the correlation should be based on state-
of-the-art time series methods and we give practical applications using the indicator al-
cohol consumption from the European Community Health Indicators (ECHI) data base2

for which currently the total amount of alcohol consumption is available from 1970 until
2008 for each country.

In addition, we show that it may also be important to estimate correlations between
lagged time series. Finally, we introduce a weighting of the indicator values in order
to respect the policy needs, e.g., to consider that actual values are more important than
values from the very past.

In the following sections several approaches to estimate correlation are discussed. In
Section 2.1 cross-correlation are motivated. However, these estimations should only be
applied to stationary time series, which are mentioned in the same section (Section 2.1).
To transform the time series adequately, prewhitening is used and discussed in Sec-
tion 2.2. As an extension, weighted correlations are introduced in Section 2.3, where
higher weights are given to actual observations. Section 3 illustrates the concepts, and
Section 4 concludes.

2 Correlation Between Indicators Over Time
The general approach in this contribution is to estimate correlations of one country to all
other countries. In the end, the user has the possibility to click on a country on a map, and
then the correlations of this country to all other countries are presented in the map. As

1www.oecd.org/gov/regional/statisticsindicators/explorer
2http://ec.europa.eu/health/alcohol/indicators/index en.htm
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mentioned before, the Pearson correlation coefficient using the raw data values is not an
adequate method to estimate correlations between one time series to all other time series.
In the following, we show that measuring correlation after modelling the data provides
more meaningful results.

Besides that fact, the time series may be correlated at a specific lag, where the time
series is shifted in time. Comparing one time series of a country with a lagged time series
of another country, has practical reasons. For example, the economies of Austria and
Germany are closely connected to each other, which has historical and cultural reasons. If
we assume that the economy in Germany influences the economy in Austria with a delay
of one year, a usual correlation may not confirm that the time series are correlated, or
produce even misleading results.

To face that problem, the cross-correlation function comes into use. The cross corre-
lation function is a standard method for estimating the degree to which two time series
are correlated. However, the cross-correlation should only be estimated from stationary
time series.

2.1 Stationarity
Wei (1990) defines multivariate stationary time series as follows:
An m-variate time series Xt = (xt1, . . . , xtm)T is (weakly) stationary if

• µX(t) is independent of t and

• ΓX(t+ k, t) is independent of t for each k,

where µX = (µt1, . . . , µtm)T is the vector of means. ΓX denotes the covariance matrix

ΓX(k) =


γ11(k) . . . γ1m(k)

... . . . ...
γm1(k) . . . γmm(k)

 ,

consisting of cross covariance functions γij(k) as defined in the following.
The cross covariance function between xt and yt (for t = 1, . . . , T ) is defined as

γxy(k) =

E[(xt − µx)(yt+k − µy)] for 0 ≤ k ≤ T − 1
γxy(−k) for − T + 1 ≤ k < 0

,

for k = 0,±1, . . . ,±T , see Wei (1990) and Brockwell and Davis (1996). Here, µx and
µy are the expectations of the x and y vectors, respectively. k denotes the time difference
between the two time series. This leads to the following cross-correlation function:

ρxy(k) = γxy(k)
σxσy

,

for k = 0,±1, . . . ,±T , where σx and σy are the standard deviations of the vectors x and
y, respectively.

If a univariate time series xt, t = 1, . . . , n, is in focus, the condition “µxt is indepen-
dent of t” is sufficient for stationarity.
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2.2 Transformation to White Noise
To compare time series, systematic or deterministic effects over time have to be removed,
i.e., first the time series has to be transformed to white noise. White noise is a random
process, which has mean zero, a constant variance over time, and the covariance equals
zero between different time points.

To transform the time series to white noise, different methods can be used. The most
common used models for short time series are the ARIMA(1,0,0) and the ARIMA(0,d,0)
model (for details about ARIMA models, see, e.g., Box, Jenkins, and Reinsel, 2008).

One possibility is to fit an ARIMA model (autoregressive integrated moving average)
to the time series to transform them to (uncorrelated) white noise. There exists a never
ending discussion of some researchers about the kind of model to be used for the trans-
formation of the time series to white noise. If indicators are available only for short time
series, which is often the case (e.g. yearly estimates from 1970 until 2008), we propose to
use only simple models like the ARIMA(0,1,0) and the ARIMA(1,0,0) model. When non-
stationary behaviour is expected for the time series, differencing the time series by degree
d may induce stationarity, i.e., to apply an ARIMA(0,d,0) model. This is also known as
de-trending. In the following, ∆ denotes the differencing operator, i.e., ∆(xt) = xt+1−xt

for t = 1, . . . , T − 1. Hence ∆d is the differencing operator applied d times to the time
series xt, i.e., xtd

= ∆dXt. In practice, d is usually 0, 1 or 2. In general, this approach is
common to remove deterministic components of time series.

An ARIMA(1,0,0) model is also often used to tranform the time series to white noise.
An ARIMA(1,0,0) equals an autoregression of order 1 (AR(1)). This means that each
point of the time series is dependent on the previous. The third option is to apply an
ARIMA(1,d,0) model. This equals to apply an AR(1) model to the de-trended data.

Note that Moeller et al. (2003) (mentioned also in Warrenliao, 2005) introduced a
distance between two time series for unequally distributed sampling weights,

d2
ST S(x, y) =

nt−1∑
k=0

(
yk+1 − yk

tk+1 − tk
− xk+1 − xk

tk+1 − tk

)
.

In summary, they propose to use this distance measure – which is in fact the sum of the
squared distances between ∆(xt) and ∆(yt), t = 1, . . . , n, in our case of equal time points
– to measure the correlation between short time series instead of Pearson correlations.

To adequately estimate the cross-correlation between a reference time series xt to
other time series, the reference time series has to be made stationary. This is done by
applying a certain model to the data to obtain residuals that should now be white noise.
However, if a model is separately estimated to all time series, the estimation of the corre-
lation between time series is misleading even if all time series would now be white noise.
This is because the dependencies between the time series are corrupted by different mod-
els for each time series.

Therefore, Box et al. (2008) proposed to model the first time series and apply the same
model to all other time series. Using this concept, the following steps have to be carried
out to estimate correlations of a reference time series of one country to time series from
the other countries (measuring the same indicator):

1. First an ARIMA model is fit to the time series xt.
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2. Transformation of the correlated input series xt to the uncorrelated white noise
series αt, which consists in fact of the residuals of the fitted time series.

3. The same transformation is applied to all other j = 2, . . . ,m time series using
the fitted parameters from point (1), i.e., from modelling xt, which leads to the
processes βtj , j = 2 . . . ,m.

4. Estimate the cross-correlation between the process αt and all processes βtj .

2.3 Weighted Correlation Estimation
In some cases the actual values of indicators are of higher interest. Thus a weighted
correlation function is needed that assigns higher weights to the recent values and assigns
low weights to values in the past.

Figure 1 illustrates different weighting schemes. The standard correlation is shown by
the solid line, where each observation has the same weight. Linearly decreasing weights
over time when moving into the past are indicated by the dashed line. The dotted line
results in an exponentially decreasing weight.

Since differentiation is done in many practical cases, let xtd
and ytd

, t = 1, . . . , T − d,
define two already differentiated time series. The same method as in the previous section
is applied to the time series leading to prewithened time series αtd

and βtd
. Furthermore,

the weighting vector w = (w1, . . . , wT −d) of dimension T − d, is known. The sum of
the weights should be one (

∑T −d
t=1 wt = 1). If this is violated, the weights have to be

normalized by dividing with the sum of weights. The difference to the previous section
is the different handling of the residuals. The focus is on the most recent observations.
Lower weights are assigned to residuals from time points in the very past.
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Figure 1: Various weighting functions.

Figure 1 shows different simple weighting functions for constant weights (classical
case), linear increasing weights and exponential increasing weights for a time series.
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The next step is the calculation of the weighted mean of the residuals αtd
and βtd

:

ᾱtd
=

T −d∑
t=1

wt · αtd
, β̄td

=
T −d∑
t=1

wt · βtd
.

After that, the subtraction of those values from residuals of each time series has to be
done, i.e., centering them and multiplying the result by the square root of the weights:

α∗
td

= √wt · (αtd
− ᾱtd

) , β∗
td

= √wt · (βtd
− β̄td

) , t = 1, . . . , T − d .

Now the weighted covariance is estimated in the following way:

s2(αtd
, βtd

) =
T −d∑
t=1

α∗
td
· β∗

td
.

In order to get an unbiased estimation of the covariance, the result has to be divided by
the scalar

1−
T −d∑
t=1

w2
t .

For default weights (all weights have the same value 1/(T − d)) the conventional
unbiased estimate of the covariance with divisor (T − d) is obtained. For estimating the
correlations the standard formula is now used:

r(αtd
, βtd

) = s2(αtd
, βtd

)√
s2(αtd

, αtd
) · s2(βtd

, βtd
)
,

where s2(αtd
, αtd

) = ∑T −d
t=1 α

∗2
td

and s2(βtd
, βtd

) = ∑T −d
t=1 β

∗2
td

.
r(αtd

, βtd
) is used as the estimation for the correlation between xt and yt.

3 Implementation and Examples

The advantages of prewhitening and weighting are first motivated in a simple artificial ex-
ample where it is known beforehand which time series are correlated. They are presented
in Figure 2.

The relation between the first time series (solid line in Figure 2) to all others is of
interest in this example as it is typical for the latter correlation plots in maps, where
one country is selected and the correlations from any other country to that country are
estimated.

An ARMA model is used for prewhitening and it is applied to the first time series
(ts1). This is realized with the arma() function in R, shown in Listing 1.

Listing 1: Fitting an ARMA model to the reference time series.
ts1a <- arma(ts1)
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Figure 2: Example for time series, with different correlations to each other. The upper
plot presents the original time series, the lower plot the time series after differentiating.

This leads to an ARMA(1,1) model with coefficients ϕ1 = 1.068 for the AR pro-
cess and θ1 = −0.623 for the MA process (for details about AR and MA processes,
see Brockwell and Davis, 1996). The model parameters are then applied to the other
time series by using the mod.prewhiten() function (see Listing 2) in the future version of
R package sparkTable (Kowarik, Meindl, and Templ, 2011), which includes a slightly
modified version of the prewithen() function in the R package TSA.

Listing 2: Prewhitening of the other time series.
ts12 <- mod.prewhiten(ts1 ,ts2 ,ts1a)

ts13 <- mod.prewhiten(ts1 ,ts3 ,ts1a)

ts14 <- mod.prewhiten(ts1 ,ts4 ,ts1a)

ts15 <- mod.prewhiten(ts1 ,ts5 ,ts1a)

As expected, the first time series has a high correlation of 0.883 with the second
time series, while the correlation between the first and third time series has a correlation
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of 0.40. The correlation between the first and the forth and fifth time series is low as
expected, but at lag 1 the correlation is between the first and the fourth time series 0.87.

However, if we assume that the last observations of the time series are more important
for policy, the weighting comes into mind. In this example the last observations between
the first and the forth time series are higher correlated, which has to be considered. In this
example a linearly decreasing weighting function is used, which is then multiplied with
the residuals of the two time series after prewhitening, see Listing 3.

Listing 3: Weighted estimation of the correlation between time series.
w <- seq(length(ts1))

w <- w/sum(w)

ts14m <- mod.prewhiten(ts1d ,ts4d ,ts1a)

ccf(ts14m$alpha*w,ts14m$beta*w)

This leads to a better result of 0.858 for the correlation between the first and the forth
time series at lag 0 (unweighted = 0.40). However, this value strongly depends on the
weighting function, which should be chosen with care.

3.1 Visualization of the Correlation in Thematic Maps
The function mapCor(), which will be included in R-package sparkTable (Kowarik et
al., 2011), provides a map of Europe and visualises the correlations of a reference country
to all other countries. Note that the input for this function is either a matrix or a data frame
and the reference country can be selected by just clicking on a country on the map.

The correlations are presented in the map using hcl, rgb or grey colors. In addi-
tion there is an option to use user defined color schemes with the function parameter
"colorScheme".

The mapCor() function can handle three different representations of the color scale
by changing the parameter chart, as explained below:

• "correlation": A normal correlation matrix with values between −1 and +1.
The visualization will use the whole scale.

• "minmax": instead of the whole scale from −1 to +1, this option reduces the scale.
It reaches from the minimum of the correlation to the maximum of the correlation
for the chosen country. This is useful if correlations are close to each other.

• "distance": An option to present a distance matrix, representing a colour scale
between 0 and +1.

The estimation of the correlation matrix is done by any of the methods mentioned in
the previous section. The correlation of an indicator is then shown automatically and the
plot updates after picking a single country in the map of Europe.

Interactivity for this function is divided into two parts. On the one hand one can switch
between different countries of interest by just clicking on them in the map. The map is
then plotted again, using the correlation between the new country to all other countries.
On the other hand one can switch between three (respectively four, if a user color scheme
was defined) different color schemes and use the one which fits best to the data.
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3.2 Application to European Alcohol Consumption Time Series

The proposed methodology is applied to the total consumption of alcohol data from 1970
until 2008, which is one of the most popular indicator from the 88 European Community
health indicators provided by the European Commission3.

Especially, Europe has a problem with alcohol – or without alcohol depending on the
views of life. Nevertheless, the EU acknowledges that alcoholic beverages are important
economic commodities and they also represent a cultural value for several regions in
Europe. Nevertheless, without doubts, the decrease in total alcohol consumption is of
high interest for policy makers and for the society. Moreover, it is often of high interest
to evaluate the trend of one reference country to the other countries over time. Naturally,
the observations from the near past are often of higher interest than the values from the
very past for policy makers.

The (graphical) Table 1 shows summary statistics of the total consumption of alcohol
of 33 European countries from 1970 until 2008. The mean, min, max and standard devia-
tion (sdev) are shown in column 1, 3, 4 and 5. The second column of the table visualizes
boxplots based on all values for each country. In the last column, the time series for each
country are displayed as sparklines (Tufte, 2006).

The time series originally include 186 missing values (out of 1287 values) which were
imputed by regression imputation (response: total alcohol consumption, predictor: time),
i.e., a model was fit to each time series and the missing values are predicted by using the
fitted model parameters. To not influence the trend, no stochastic error is added to the
expected values. The imputations are visible, for example, in the sparkline of Hungary
where the values in the past are missing.

Figure 3 is an example for such a plot for which we are interested to look for similar
trends of one reference country to all other countries regarding the total alcohol consump-
tion. In left graphic, the Pearson correlations between France and all other countries are
presented.

From Table 1 we see that France should have high correlation to Switzerland, Estonia,
Italy, Malta and Macedonia, for example. When looking carefully at Table 1 it follows
that the time series of Switzerland have higher correlation than Austria that is different
especially in the end of the time series. In addition, the total consumption of alcohol over
time in Italy is very similar to France, more similar than for Switzerland or Austria.

However, using Pearson correlation coefficients on raw data, these findings are not re-
flected since Austria, Italy and Switzerland seems to have almost equally high correlation
to France, see Figure 3(a).

On the other hand, if a time series model is fit to a reference country and all time
series are prewhitened with this model, the results are as expected. This can be seen in
Figure 3(b). After prewhitening and weighting of the time series with reference country
France, clearly Austria has lower correlation as Switzerland and Switzerland has lower
correlation to France than Italy, which is clearly visible in Figure 3(b). As the weighting
scheme, simple the linear approach was taken (see Figure 1). Note, that an arma or arima
model may be fit to the reference time series and that the model and model parameters are
selected automatically based on the structure of the reference time series.

3http://ec.europa.eu/health/indicators/echi/list/index en.htm?echisub=24#echi 3
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Table 1: Summary statistics and sparklines for the European alcohol consumption data.
mean boxplot min max sdev series

AT 12.81 10.79 16.04 1.35
●

●

●

BE 11.74 9.69 13.49 1.27
●

●

●

BG 10.62 ● 7.87 11.79 1.06
●

●
●

CH 12.52 10.1 14.83 1.38
●

●

●

CY 7.97 4.1 10.95 2
●

●●

CZ 12.81 ●● 10.66 15.32 1.41
●

● ●

DE 13.09 11.62 14.82 0.83
●

●

●

DK 11.55 ● ● ● 8.86 12.78 0.79
●

●
●

EE 7.01 3.81 16.24 3.22
●

●

●

ES 14.23 9.67 19.59 3.28
●

●

●

FI 8.49 ● 5.84 10.45 0.96
●

●
●

FR 16.46 11.77 21.55 3.17
●

●

●

GR 9.9 6.74 13.21 1.7
●

●

●

HR 14.45 ● 11.23 21.6 1.98
●

●

●

HU 13.19 11.49 14.99 1.05
●

●

●

IE 11.25 8.57 14.22 1.59
●

●
●

IS 5.32 ● ● ● 4.25 7.53 0.87
●

●

●

IT 12.53 5.71 19.89 4.25
●

●

●

LI 9.07 3.62 13.01 2.48
●

●

●

LT 10.11 5.75 13.63 2.41
●

●

●

LU 13.89 11.75 15.71 1.04
●

●

●

MA 10.13 1.44 18.96 5.22
●

●

●

MT 9.67 1.99 17.72 4.63
●

●

●

NL 10.38 ● ● 7.84 12.2 0.89
●

●

●

NO 5.4 ● 4.55 6.75 0.55
●

●●

PL 9.02 7.64 11.49 1.03
●

●

●

PT 14.93 11.26 20.79 2.35
●

●

●

RO 10.16 ●● ●● ● 5.1 12.92 1.68
●

●

●

SE 6.54 4.71 8.06 0.74
●

●

●

SI 15.42 7.84 23.29 4.65
●

●

●

SK 11.74 9.27 13.86 1.26
●

●

●

TR 1.09 ●●● -0.62 1.54 0.52
●

●

●

UK 9.41 ● ● ● ●●●● 6.73 11.78 1.16
●

●

●

We learnt from this example that the approach of Gunawardane et al. (2007) – to
estimate Pearson correlation coefficients on raw time series – fails completely and that
prewhitening is essential when dealing with time depended observations to gain reliable
results.
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(a) Pearson correlation coefficients based on raw
data.

(b) Correlations coefficients after prewhitening
and weighting.

Figure 3: Correlations based on an (interactively) selected reference country (here:
France) to all other countries using the total alcohol consumption time series in Europe.
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4 Conclusion

In this contribution it is shown on practical examples that time dependent indicator values
have to be treated carefully. Applying standard estimators, like the Pearson correlation
coefficient as, for example applied in Gunawardane et al. (2007), may lead to wrong
conclusions. We show that all time series have to be prewhitened based on the reference
time series. In addition to that, we outlined that correlations may also be estimated from
lagged time series. However, using estimations from lagged time series includes a detailed
analysis of the corresponding time series and may not be applicable when presenting the
correlation in maps in an interactive manner.

Weighted estimation of prewithened time series may be prefered whenever the policy
makers are more interested in current values than in values from the very past.

The functionality for prewhitening and plotting the indicators in a map is implemented
in R and released in future version of the R package sparkTable (Kowarik et al., 2011).
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