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Sylvia Frühwirth-Schnatter1 and Rudolf Frühwirth2
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Abstract: The multinomial logit model (MNL) possesses a latent variable
representation in terms of random variables following a multivariate logistic
distribution. Based on multivariate finite mixture approximations of the mul-
tivariate logistic distribution, various data-augmented Metropolis-Hastings
algorithms are developed for a Bayesian inference of the MNL model.

Zusammenfassung: Das multinomiale logistische (MNL) Regressionsmod-
ell besitzt eine latente Variablendarstellung, die einen zufälligen Fehlerterm
beinhaltet, der einer multivariaten logistischen Verteilung folgt. Aufbauend
auf einer finiten Mischungsapproximation der multivariaten logistischen Ver-
teilung werden mehrere Metropolis-Hastings-Verfahren für eine Bayes-Ana-
lyse im MNL Regressionsmodell entwickelt.
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1 Introduction

In the past decades, finite mixture modeling became a rapidly developing area with nu-
merous applications in biometrics, economics, genetics, medicine, among many others;
see Frühwirth-Schnatter (2006) for a review. An early application of finite normal mixture
models has been modeling aberrant observations in astronomical data of transit of Mer-
cury (Newcomb, 1886). One of the pioneering papers discussing a Bayesian approach
to outlier analysis based on finite normal mixtures is the work by Guttman, Dutter, and
Freeman (1978).

Finite normal mixture distributions are useful for practical data analysis because they
capture many specific properties of real data such as multimodality, skewness, and kur-
tosis. Also, they arise in a natural way as marginal distribution for statistical models in-
volving clustering or unobserved heterogeneity. Moreover, they are useful for developing
efficient estimation procedures for non-Gaussian models, early examples being Sorenson
and Alspach (1971) and Alspach and Sorenson (1972).

Finite mixture distributions possess the following approximation property (Titterington,
Smith, and Makov, 1985). Let g(ε) be an arbitrary probability density function and let
qK(ε) be a mixture of normals:

qK(ε) =
K∑
k=1

wkfN(ε;mk, s
2
k). (1)
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For sufficiently large K the Kullback-Leibler (KL-)distance between g(ε) and qK(ε),

dKL =

∫
ℜ
g(ε) log

g(ε)

qK(ε)
dε

can be made arbitrarily small. To approximate g(ε) for a fixed K, one has to select the
weights w1, . . . , wK , the means m1, . . . ,mK and the variances s21, . . . , s

2
K such that dKL

is minimized. It should be noted that this is not a parameter estimation problem, but a
problem of numerical optimization.

It has been noted by several authors that Bayesian inference is considerably simpler
for many non-Gaussian models if a certain density g(ε) is replaced by an accurate finite
mixture approximation qK(ε). This is in particular true for Markov chain Monte Carlo
(MCMC) estimation, where substitution of g(ε) by qK(ε) leads to simple Gibbs-type
sampling schemes; see Gamerman and Lopes (2006) for a review of MCMC methods.
Typically, the density g(ε) is independent of any parameters or depends only on an integer
parameter; hence the optimal parameters in (1) can be obtained beforehand.

Applications of this auxiliary mixture sampling approach include stochastic volatility
modeling (Shephard, 1994; Chib, Nardari, and Shephard, 2002; Omori, Chib, Shephard,
and Nakajima, 2007), where g(ε) is the density of the log of a χ2

1-distributed random
variable. A series of recent papers applies this approach to modeling discrete-valued
data such as count data (Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter,
Frühwirth, Held, and Rue, 2009) and binary and categorical data (Frühwirth-Schnatter and
Frühwirth, 2007, 2010). In these cases, g(ε) is, respectively, the density of the negative
logarithm of an E (1)- or a G (ν, 1)-distributed random variable with integer ν, or the
logistic distribution.

In all of these papers, g(ε) is a univariate density, hence even moderate values of K
yield a good approximation. The present work is a first attempt at taking the idea of aux-
iliary mixture sampling to higher dimensions, which requires that a multivariate density
g(ε) is approximated by a multivariate mixture distribution. As an example, we consider
Bayesian inference for multinomial logit regression modeling of discrete outcome vari-
ables with m + 1 categories. Data augmentation leads to an error term possessing an
m-variate logistic distribution which is independent of any parameters and has a quite
rigid structure. We will approximate this distribution by both multivariate normal and
multivariate Student-t mixtures, minimizing again the KL distance. However, due to the
curse of dimensionality, we do not expect to obtain perfect approximations. Nevertheless,
these mixture approximations may be used to construct a joint proposal for all regression
parameters within a Metropolis-Hastings (MH) algorithm.

2 Data Augmentation for the Multinomial Logit Regres-
sion Model

Let {yi} be a sequence of categorical data, i = 1, . . . , N , where yi is equal to one of m+1
unordered categories, labeled by L = {0, . . . ,m}. Very often it is of interest to model
the probability that yi takes the value k, for each k ∈ {1, . . . ,m}, in terms of covariate
information. A popular choice is the multinomial logit (MNL) model for which the choice
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probabilities are easily computed. Usually, the MNL model takes the following somewhat
restricted form:

Pr(yi = k|β1, . . . ,βm) =
exp(xiβk)

1 +
m∑
l=1

exp(xiβl)

, (2)

where β1, . . . ,βm are category specific unknown regression coefficients of dimension d
and xi is a (1× d) row vector containing covariates which are not category specific.

However, for many important applications the MNL model takes a more general form,
where the choice probabilities contain regression coefficients that are not category spe-
cific. Examples include discrete choice models in marketing (Rossi, Allenby, and McCul-
loch, 2005) and the partial credit model, used in large educational assessment programs
such as PISA (Fox, 2010). In its most general form, the probability that yi takes the value
k is modeled for k = 1, . . . ,m in the following way:

Pr(yi = k|β) = exp(xkiβ)

1 +
m∑
l=1

exp(xkiβ)

, (3)

where xki is a (1× r)-dimensional, category specific covariate vector and β are unknown
regression coefficients of dimension r.

2.1 The RUM and the dRUM Representation
Following McFadden (1974), the MNL model (3) may be written as the following random
utility model (RUM):

yu0i = ϵ0i , (4)
yuki = xkiβ + ϵki , k = 1, . . . ,m , (5)
yi = k ⇔ yuki = max

l∈L
yuli . (6)

Thus the observed category is equal to the category with maximal utility. If the random
utilities ϵ0i, ϵ1i, . . . , ϵmi appearing in (4) and (5) are i.i.d. following an extreme value dis-
tribution, then the MNL model (3) results as the marginal distribution of yi.

An alternative way to write the MNL model (3) is a difference random utility model
(dRUM), which is obtained by choosing a baseline category k0, typically k0 = 0, and
considering the model in terms of the differences of the utilities. From (4) to (6) we
obtain the following dRUM representation:

zki = xkiβ + εki , εki ∼ LO , k = 1, . . . ,m , (7)

yi =

{
0, if maxl∈L−0 zli < 0,

k > 0, if zki = maxl∈L−0 zli > 0,

where zki = yuki − yu0i and εki = ϵki − ϵ0i, and L−0 is the set of all categories but 0.
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The dRUM representation is the standard choice for the multinomial probit model
(see e.g. McCulloch, Polson, and Rossi (2000) and Imai and van Dyk (2005)), but is
less commonly used for the multinomial logit model, exceptions being Holmes and Held
(2006) and Frühwirth-Schnatter and Frühwirth (2010).

Whereas in the multinomial probit model the error term follows a multivariate normal
distribution, the vector εi that appears in the dRUM representation (7) of the MNL model
has a multivariate logistic distribution. The multivariate logistic distribution was intro-
duced by Malik and Abraham (1973) as a generalization of Gumbel’s bivariate logistic
distribution (Gumbel, 1961). If m denotes the number of variates, its pdf reads

fLOm(ε) = fLOm(ε1, . . . , εm) = m!
exp(−

∑m
l=1 εl)

(1 +
∑m

l=1 exp(−εl))
m+1 .

As shown by Balakrishnan (1992, Section 11.2), a multivariate logistic distribution results
if an i.i.d. sequence of (m+1) random variables ϵ = (ϵ0, . . . , ϵm)

′ from the extreme value
distribution is transformed into a sequence of m random variables ε = (ε1, . . . , εm) by
setting εk = ϵk − ϵ0 for k = 1, . . . ,m. This is exactly the transformation of the error ϵ in
the RUM representation to the error ε in the dRUM representation.

Kotz, Johnson, and Balakrishnan (2000, Chapter 51) provides a comprehensive review
of further properties of the multivariate logistic distribution. For instance, while the errors
in the RUM representation (5) are i.i.d., the errors in the dRUM representation (7) are no
longer independent across categories, but correlated. The variance-covariance matrix R
of ε is given by

R =
π2

6
(Im + eme

′

m) =
π2

3


1 0.5 · · · 0.5
0.5 1 · · · 0.5

...
... . . . ...

0.5 0.5 · · · 1

 .

Since the correlation coefficient is equal to 0.5 for all pairs (εk, εl), R is a uniform covari-
ance matrix. It follows immediately that the inverse R−1 can be computed explicitly:

R−1 =
6

π2
(Im − 1

m+ 1
eme

′

m) . (8)

2.2 Bayesian Inference
Subsequently, we pursue a Bayesian approach and assume that a priori the regression
coefficient β follows a normal distribution Nr (b0,B0) with known hyperparameters b0

and B0.
Since the posterior distribution p(β|y) of the regression coefficient β in the MNL

model does not have any closed form, it is usual to apply data augmentation and Markov
chain Monte Carlo estimation; see Frühwirth-Schnatter and Frühwirth (2010) for a recent
review. Data augmentation has been based both on the RUM representation (Frühwirth-
Schnatter and Frühwirth, 2007; Scott, 2011) and on the dRUM representation (Holmes
and Held, 2006; Frühwirth-Schnatter and Frühwirth, 2010). The case studies in Frühwirth-
Schnatter and Frühwirth (2010, Section 4) reveal that the corresponding MCMC samplers
are much more efficient for the dRUM representation than for the RUM representation.
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However, the presence of the multivariate logistic distribution complicates MCMC
sampling for the dRUM representation. If only category specific coefficients are present,
as in (2), then it is possible to derive a partial dRUM representation of the MNL model.
For each category k, the corresponding latent variable representation is a dRUM repre-
sentation of a binary logit model, with category k being one outcome and all alternative
categories being the second outcome. This allows to apply any of the efficient samplers
that have been developed in Frühwirth-Schnatter and Frühwirth (2010, Section 3.2) from
the dRUM representation of a binary logit model. The sampler developed by Holmes and
Held (2006) also works with the partial dRUM representation, but is much more involved
in terms of computing time and therefore less efficient.

Regrettably, the partial dRUM representation does not lead to simple MCMC sam-
pling for the more general model (3), which contains regression coefficients that are not
category specific. Alternative sampling methods for this case have been developed and
will be presented in the following section.

3 Data Augmented Metropolis-Hastings Algorithms in the
dRUM Representation

The data augmented MH algorithm operates in the dRUM representation (7) of the MNL
model. Following the MCMC literature on the multinomial probit model, the latent vari-
ables z = (z1, . . . , zN), where zi = (z1i, . . . , zmi)

′ are introduced as missing data. The
sampler iterates between sampling from β|z and sampling from z|β,y:

(a) Sample from β|z;

(b) Sample from z|β,y.

A closed form Gibbs step is available for joint sampling of z|β,y. To sample zi, for
i = 1, . . . , N , we sample the latent utilities yu

i = (yu0i, . . . , y
u
mi) in the RUM model (4) to

(6) from the posterior yu
i |β,y, which is given by:

yuki = − log

(
− log(Ui)∑m

l=0 λli

− log(Vki)

λki

I{yi ̸= k}
)

,

where Ui and V1i, . . . , Vmi are m + 1 independent uniform random numbers in [0, 1],
λli = exp(xliβ) for l = 1, . . . ,m, and λ0i = 1. Then we define zi = (z1i, . . . , zmi)

′ as
the differences in utility, i.e. zki = yuki − yu0i, k = 1, . . . ,m.

To sample from β|z, we rewrite the dRUM model (7) as multivariate regression
model:

zi = Xiβ + εi , (9)

where Xi is a (m × r)-matrix with the kth row being equal to xki. However, whereas
sampling from β|z is straightforward for the multinomial probit model, because εi is
multivariate normal, this step is non-standard in the MNL model because εi is multivariate
logistic. Subsequently, we suggest and compare various MH algorithms for joint sampling
from β|z.
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3.1 A Data-augmented Independence Metropolis-Hastings Sampler
First, we construct an independence MH step, by sampling βnew from a proposal density
q(β|z) which is independent of the previous draw of β. As usual, βnew is accepted with
probability P = min(α, 1), where:

α =
p(z|βnew)p(βnew)q(β|z)
p(z|β)p(β)q(βnew|z)

.

The proposal density q(β|z) is based on approximating the distribution of εi in (9) by
a multivariate normal distribution with the expectation (which is equal to 0) and the
variance-covariance matrix R, given in (8), of the m-variate logistic distribution. This
leads to a multivariate regression model with homoscedastic, equi-correlated errors, which
reads for i = 1, . . . , N :

zi = Xiβ + ε̃i , ε̃i ∼ Nm (0,R) .

Under the prior distribution β ∼ Nr (b0,B0), the posterior of this approximate model is
equal to the multivariate normal distribution Nr (bN ,BN) with moments:

bN = BN

(
B−1

0 b0 +
N∑
i=1

X
′

iR
−1zi

)
, BN =

(
B−1

0 +
N∑
i=1

X
′

iR
−1Xi

)−1

.

This posterior is then used as proposal q(β|z). By using the explicit expression for R−1

in (8) we obtain:

B−1
N = B−1

0 +
6

π2

(
N∑
i=1

X
′

iXi −
1

m+ 1

N∑
i=1

wiw
′

i

)
,

B−1
N bN = B−1

0 b0 +
6

π2

(
N∑
i=1

X
′

izi −
1

m+ 1

N∑
i=1

wici

)
,

where wi = X
′
iem = (e

′
mXi)

′ is a (r × 1) column vector containing the column sums of
Xi and ci = e

′
mzi is a scalar containing the column sum of zi.

For the special case of model (2) where r = d · m and β = (β1, . . . ,βm) contains
only category specific covariates, Xi = Im ⊗ xi, hence

X
′

iXi = Im ⊗ (x
′

ixi) , wi = em ⊗ x
′

i , wiw
′

i = em ⊗ (x
′

ixi) ,

X
′

izi = zi ⊗ x
′

i , wici = ciem ⊗ x
′

i .

Therefore:

B−1
N

N∑
i=1

= B−1
0 +R−1⊗

(
N∑
i=1

x
′

ixi

)
, B−1

N bN = B−1
0 b0+

6

π2

(
N∑
i=1

(zi − ciem)⊗ x
′

i

)
.

If each coefficient βk has the same normal prior βk ∼ Nd

(
b̃0, B̃0

)
, then B−1

0 b0 =

em ⊗ (B̃−1
0 b̃0) and B−1

0 = Im ⊗ B̃−1
0 .
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3.2 Doubly Data-augmented Metropolis-Hastings Samplers
In this section we construct rather general MH samplers for the multinomial logit model
by approximating the distribution of εi in (9) by a mixture of multivariate distributions,
where the pdf p̃(εi) results as the marginal density of an (m + 1)-variate random vari-
able (εi, λi), with εi|λi following a normal distribution, i.e. εi|λi ∼ Nm (mi,Ri), and
λi ∼ p(λi). We focus on mixture distributions where it is easy to sample from the con-
ditional density λi|εi, such as the multivariate Student-t distribution, which is a scale
mixture of multivariate normal distributions, finite multivariate normal mixtures, and fi-
nite multivariate Student-t mixtures. Once the approximate distribution p̃(εi) has been
chosen, no further tuning parameters appear in this MH-sampler.

3.2.1 Sampling Scheme

The advantage of approximating the distribution of εi in (9) by a mixture of multivariate
normals is that double data augmentation, i.e. conditioning on the latent variables λ =
(λ1, . . . , λN) in addition to the latent variables z = (z1, . . . , zN), leads to a multivariate
regression model with normally distributed errors which reads for i = 1, . . . , N :

zi = Xiβ + ε̃i , ε̃i ∼ Nm (mi,Ri) . (10)

The posterior q(β|λ, z) of this model is given by

q(β|λ, z) = p(β)
∏N

i=1 fN(zi|β, λi)

p(z|λ)
,

and is equal to a normal distribution Nr (bN ,BN). All approximate error distributions
discussed below have in common that the error covariance matrix Ri in the approximate
model (10) is a uniform covariance matrix, i.e., Ri = σ2

iCi, where Ci = (1 − ρi)Im +
ρieme

′
m. This leads to a straightforward way to compute the moments bN and BN :

B−1
N = B−1

0 +

(
N∑
i=1

aiX
′

iXi −
N∑
i=1

biwiw
′

i

)
,

B−1
N bN = B−1

0 b0 +

(
N∑
i=1

aiX
′

i(zi −mi)−
N∑
i=1

biwidi

)
,

where the (r × 1)-vector wi = X
′
iem contains the column sums of Xi, the scalar di =

e
′
m(zi −mi) contains the sum of all elements of (zi −mi), and ai and bi are given by:

ai =
1

σ2
i (1− ρi)

, bi =
ρi

σ2
i (1− ρi)(1 + (m− 1)ρi)

.

Since q(β|λ, z) is an important building block of our MH-algorithm, we call the resulting
sampler a doubly data-augmented MH sampler. Conditional on the utilities z, the proposal
q(βnew|βold) is constructed in the following way:

q(βnew|βold) = q(βnew|λ, z)
N∏
i=1

q(λi|βold, zi) ,
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where q(βnew|λ, z) is the posterior of model (10) and q(λi|βold, zi) is equal to the condi-
tional posterior of λi given εi = zi −Xiβ

old:

q(λi|βold, zi) =
fN(zi|βold, λi)p(λi)

p̃(zi|βold)
,

which is available in closed form according to our assumption.
It is easy to show that

q(βnew|βold) =
p(βnew)

p(z|λ)

N∏
i=1

fN(zi|βnew, λi)
fN(zi|βold, λi)p(λi)

p̃(zi|βold)

=
p(βnew)

p(βold)

N∏
i=1

p̃(zi|βnew)

p̃(zi|βold)
q(βold|λ, z)

N∏
i=1

q(λi|βnew, zi)

=
p(βnew)

p(βold)
q(βold|βnew)

N∏
i=1

p̃(zi|βnew)

p̃(zi|βold)
.

Therefore, the acceptance probability P = min(α, 1) may be expressed entirely in terms
of likelihood ratios between the exact multivariate logistic distribution and the approxi-
mate distribution p̃(ε):

α =
p(z|βnew)p(βnew)q(βold|βnew)

p(z|βold)p(βold)q(βnew|βold)
=

N∏
i=1

fLOm(zi −Xiβ
new)p̃(zi −Xiβ

old)

p̃(zi −Xiβ
new)fLOm(zi −Xiβ

old)
.

Hence, if p̃(ε) is a good approximation to fLOm(ε) over a wide range of ε, then the
acceptance rate will be close 1. Subsequently, we consider several error distributions
p̃(ε), obtained by approximating fLOm(ε) in various ways.

Finally, note that λ is an auxiliary variable sampled only in order to construct the
proposal. Since the utilities are sampled from z|β using the exact dRUM model, the
latent variables λ may not be stored and used in any subsequent MCMC sweep, see van
Dyk and Park (2008) for a theoretical justification.

3.2.2 Using a Multivariate Student-t Distribution

Several authors (Albert and Chib, 1993; Liu, 2004) approximate the binary logit model by
a binary discrete choice models based on the cdf of a univariate tν-distribution with ν in
the range of 7 to 8, because the cdfs are very similar over a wide range. Since all univariate
marginal distributions of the multivariate logistic distribution are logistic distributions,
this suggests to approximate the multivariate logistic distribution by a multivariate Student
tν (0,Σ)-distribution. As the multivariate logistic distribution is invariant to permuting
the elements of ε, Σ has to be a uniform covariance matrix: Σ = σ2((1−ρ)Im+ρ eme

′
m).

The multivariate tν-distribution is a scale mixture of normal distribution, i.e., εi|λi ∼
Nm (0,Σ/λi) with λi ∼ G (ν/2, ν/2) being a scale variable taking values in ℜ+. Hence,
mi = 0 and Ri = Σ/λi in the approximate model (10). The conditional posterior
q(λi|β, zi) is given by:

λi|β, zi ∼ G
(
(ν +m)/2, (ν + (zi −Xiβ)

′
Σ−1(zi −Xiβ))/2

)
.
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Table 1: Parameters of the optimal multivariate Student-t distribution.
m 2 3 4 5 6
ν 8.3930 9.0449 10.0821 10.9011 11.8589
σ2 2.5060 2.5746 2.6515 2.6968 2.7463
ρ 0.5032 0.5041 0.5044 0.5061 0.5051
dKL 0.0421 0.1020 0.1719 0.2439 0.3219

It remains to choose ν, σ2, and ρ. We have determined them by minimizing the KL-
distance. The minimization was performed by the MATLAB implementation of the sim-
plex algorithm according to Nelder and Mead (1965). The corresponding optimal param-
eters for m = 2, . . . , 6 are reported in Table 1, along with the KL-distance to the target
distribution.

3.2.3 Using Multivariate Finite Normal Mixture Distributions

In the univariate case the approximation can be made accurate enough to have an accep-
tance rate of virtually 1. Hence, a Gibbs-type sampler can be run without a rejection step.
In the multivariate case a finite mixture approximation has to be found in m variates. Due
to the curse of dimensionality, it is not to be expected that an MH-step can be implemented
without a rejection step.

The density of the multivariate finite normal mixture approximation reads

p̃(εi) =
K∑
k=1

wkfN(εi;µk,Σk) .

The corresponding latent variable representation involves the discrete random variable
λi ∼ MulNom (w1, . . . , wK) taking values in the set {1, . . . , K} and εi|λi ∼ Nm

(
µλi

,Σλi

)
.

Hence, mi = µλi
and Ri = Σλi

in the approximate model (10). The conditional posterior
q(λi|β, zi) is given by λi ∼ MulNom (pi1, . . . , piK), where

pik ∝ wkfN(zi −Xiβ;µk,Σk) ,

and
∑K

k=1 pik = 1 for all i = 1, . . . , N .
Finding an approximation with acceptance rate close to 1 is difficult. However, the

multivariate logistic distribution has a rigid structure, which allows to impose restrictions
on the means and covariance matrices of the mixture components. In particular, the mul-
tivariate logistic distribution in m variates is invariant under a permutation of the variates
and therefore has m-fold symmetry with respect to the axis vector a = (1, . . . , 1). Conse-
quently, each component k of the mixture consists of m copies. Each copy has the same
weight wk/m and the same covariance matrix σ2

k Rk, with

Rk =


1 ρk · · · ρk
ρk 1 · · · ρk
...

... . . . ...
ρk ρk · · · 1

 .
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The mean vectors of the m copies are arranged symmetrically according to:

mk,i = λka+ µkbi , i = 1, . . . ,m ,

with bi = (bi,1, . . . , bi,m)
′, where

bi,j =

(
δij

√
m− 1√

m

)
, j = 1, . . . ,m .

It is easy to see that every bi is orthogonal to a and that the angle φ between any two bi

is equal to

φ = arccos

(
− 1

m− 1

)
.

The set of all vectors bi is invariant under a permutation of the variates, and so are there-
fore the mean vectors mk,i.

The length of vector a is equal to
√
m. The vectors bi are confined to a subspace of

dimension m− 1, therefore they are scaled to a length of
√
m− 1. With this convention

we expect the coefficients λk and µk to stabilize for increasing values of m. This is borne
out by our results.

Each mixture component is parameterized by its weight wk, its variance σ2
k, its correla-

tion ρk, and the two coefficients λk and µk. The total number of parameters to be estimated
is therefore 5 times the number of components, irrespective of the dimension m.

We have computed the approximating mixtures for m = 2, . . . , 12 and K = 1, . . . , 6,
by minimizing the KL-distance. The integral was computed by averaging over a sample
of up to 250,000 simulated data points. As an example, Figure 1 shows the contour
lines of the bivariate logistic distribution and the approximating normal mixture with five
components (m = 2, K = 5). The univariate marginal distributions are also shown.

Figure 2 shows the KL-distances as a function of m and K. Note that for m > 12
the parameters of the mixtures for m = 12 have been used. We find that the KL-distance
rapidly increases as we move from the bivariate to higher-dimensional distributions.

Figure 3 shows the development of the coefficients λk and µk for K = 5. Above
m = 10 both sets of coefficients are fairly stable, as are the other parameters.

3.2.4 Using Multivariate Finite Student-t Mixture Distributions

Finally, we consider the density of the finite multivariate Student-t mixture as the approx-
imate error distribution:

p̃(εi) =
K∑
k=1

wkfSt(εi; νk,µk,Σk) .

The corresponding latent variable representation involves a bivariate random variable
λi = (λ1i, λ2i), where λ1i ∼ MulNom (w1, . . . , wK) is a discrete random variable taking
values in the set {1, . . . , K} and λ2i|λ1i ∼ G (νλ1i

/2, νλ1i
/2) is a scale variable taking val-

ues in ℜ+. The conditional distribution of εi given λi reads εi|λi ∼ Nm

(
µλ1i

,Σλ1i
/λ2i

)
,

hence mi = µλ1i
and Ri = Σλ1i

/λ2i in the approximate model (10).
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Figure 1: Top: Contour lines of the bivariate logistic distribution and the approximating
Gaussian mixture with five components (m = 2, K = 5). The corresponding contour
lines are at the same height. The plus signs indicate the locations of the ten component
means. Bottom: the univariate marginal distributions. They are virtually identical.
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Figure 2: The KL-distance between the Gaussian mixtures and the multivariate logistic
distribution as a function of the dimension m and the number K of mixture components.
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Figure 3: Top: the coefficients λk for K = 5, as a function of the dimension m. Bottom:
the coefficients µk for K = 5, as a function of the dimension m.

The conditional posterior q(λi|β, zi) = q(λ1i|β, zi)q(λ2i|λ1iβ, zi), where λ1i is sam-
pled marginally from λ1i ∼ MulNom (pi1, . . . , piK) with

pik ∝ wkfSt(εi; νk,µk,Σk) ,

and
∑K

k=1 pik = 1 for all i = 1, . . . , N , and q(λ2i|λ1iβ, zi) is given by:

λ2i|λ1i,β, zi ∼ G
(
(νλ1i

+m)/2, (νλ1i
+(zi−Xiβ−µλ1i

)
′
Σ−1

λ1i
(zi−Xiβ−µλ1i

))/2
)
.

The approximating Student-t mixtures were obtained in the same way as the Gaussian
mixtures, with the number of degrees of freedom as an additional parameter, which was
assumed to be the same for all components. Figure 4 shows the KL-distances between
the target distribution and the mixtures, as a function of the dimension m and the number
K of mixture components. Again, for m > 12 the parameters of the mixtures for m = 12
have been used.

4 Illustrative Applications
For all examples, we take an independent standard normal prior for each regression coef-
ficient, i.e., b0 = 0 and B0 = Ir. We use each of the four MH methods presented above
to produce M = 10000 draws from the posterior distribution after running burn-in for
2000 iterations. For any proposals based on a finite mixture approximation, we increase
the number of mixture components K from 2 to 6.
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Figure 4: The KL-distance between the Student-t mixtures and the multivariate logistic
distribution as a function of the dimension m and the number K of mixture components.

4.1 Simulated Data Sets
To evaluate the acceptance rate of the four MH samplers with increasing dimension, we
consider a simple example, namely N i.i.d. observations y1, . . . , yN with m+1 categories,
drawn from Pr(yi = k|β) = πk = exp(βk)/(1 + exp(βk)) for k = 1, . . . ,m and Pr(yi =
0|β) = π0 = 1/(1 + exp(βk)). β = (β1, . . . , βm) is therefore a vector of dimension m.
The latent equation in the corresponding dRUM model reads for i = 1, . . . , N

zi = Imβ + ε̃i . (11)

Note that the mixture approximation is applied to equation (11) not only once, but N
times.

We made various comparisons with respect to the true parameter β and investigated
both balanced distributions, where the πk are roughly the same, and unbalanced distri-
butions, where some of the πk are very small. We found, however, that the acceptance
rate of the samplers were insensitive to these change. Hence, we decided to assume that
π0, . . . , πm is a uniform distribution over the (m+ 1) categories.

To evaluate the quality of the various mixture approximations, we start with a single
observation, i.e., N = 1. Note that the proper prior distribution p(β) guarantees that the
posterior p(β|y1) is proper although the dimension of β is larger than N = 1. Table 2
shows the acceptance rate as a function of the number K of components (K = 1, . . . , 6)
and the dimension m (m = 2, . . . , 6). We see the expected behavior, as the acceptance
rate drops with increasing m and rises with increasing K. For N = 100 observations
the acceptance rate drops by about 15 to 20 percentage points, and the effect is more
pronounced for small K. If N is increased to 1000, the acceptance rate drops only slightly,
by a couple of percentage points in the worst case.

4.2 Real Data Sets
Furthermore, we consider two real data sets. First, the car data (Scott, 2011), which is a
medium sized data set (N = 263) with 3 categories and 4 regressors, i.e. r = 8; second,
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Table 2: Acceptance rate of the various mixture approximations for a single observation
(N = 1) as well as for N = 100 and N = 1000 observations; K varies between 2 and 6;
the dimension m increases from 2 to 6.

K K
2 3 4 5 6 2 3 4 5 6

N = 1 Normal Student-t
m = 2 92.7 95.1 97.7 98.4 98.4 94.5 96.9 98.5 98.4 98.9

3 89.9 92.4 94.1 95.9 95.8 90.7 93.1 93.7 94.6 95.5
4 87.4 89.1 90.8 90.5 92.1 86.7 89.4 89.7 92 91.6
5 84.7 86.1 88.2 87.6 88.5 82.9 86.4 86.4 87.2 87.9
6 81.8 83.2 84.1 84.4 84.6 81.2 83.2 82.9 84.8 83.5

N = 100 Normal Student-t
m = 2 79.4 88.7 92.3 94.1 94.7 88.4 92.3 95.6 94.8 96

3 75.1 82.2 85.6 88.8 88.8 79.8 84.8 85.2 87.8 89.3
4 69.5 76.2 80.7 80.6 81.6 71.2 78.1 77.6 81.7 81.5
5 64.3 69.7 72.8 72.9 73.1 63.6 71.4 69.5 75.1 73.5
6 57.8 63.4 64.7 67.1 67.8 61.9 65.6 64.7 67.4 67.6

N = 1000 Normal Student-t
m = 2 77.6 85.3 88 89.7 87.6 84.6 85.5 87.9 87.9 90.7

3 74.3 81.4 84.5 87.5 87.9 77.9 83.4 83.2 86.2 86.6
4 68.3 75.8 79.5 77.4 78.6 70.7 77.1 76.5 82.2 80.7
5 63.1 69.9 72.7 68.6 66.5 63.4 71 69.6 74.3 72.2
6 57.3 58.1 61.9 59.7 67.4 61.2 65 63.5 67.1 66.6

the Caesarean birth data (Fahrmeir and Tutz, 2001, Table 1.1), where N = 251, the
outcome variable has 3 categories, and a model with 8 regressors is fitted, i.e. r = 16.

Table 3 and Table 4 evaluate and compare the various MH samplers using common
measures such as the average acceptance rate after burn-in (in percent, Acc) and runtime
in terms of the CPU time TCPU after burn-in (in seconds, CPU). In addition, for each
regression coefficient βk, k = 1, . . . , r, the inefficiency factor τ = 1 + 2 ·

∑H
h=1 ρ(h) is

computed, where ρ(h) denotes the empirical autocorrelation of the MCMC draws at lag
h, and H is determined by the initial monotone sequence estimator (Geyer, 1992), the
effective sampling size (Kass, Carlin, Gelman, and Neal, 1998), defined by ESS=M/τ ,
as well as the effective sampling rate defined as the ratio ESS/TCPU. Table 3 and Table 4
report the median inefficiency factor (Ineff) and the median effective sample rate (ESR)
over all regression coefficients.

In both examples, the acceptance rate rises with increasing number K of components,
and the inefficiency factor drops. These effects, however, are not strong enough to com-
pensate for the rise of the computational load with increasing K, so that we observe no
net gain in terms of the effective sample rate, and even a net loss in three out of the four
cases studied.
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Table 3: Evaluating the various MH-algorithms for the car data.

Normal mixtures Student-t mixtures
K Acc Ineff ESR TCPU Acc Ineff ESR TCPU

1 39.4 10.4 74.4 12.9 55.9 8.76 80.2 14.2
2 59.2 9.18 47.2 23.1 75.3 10.4 36.4 26.5
3 77.1 6.92 55.9 25.8 84.6 8.17 41.5 29.5
4 84.1 7.32 48.8 28 89.1 7.03 43.3 32.9
5 88.5 8.02 41.3 30.2 90.2 8.28 33.8 35.7
6 89.6 7.89 40.1 31.6 91.3 8.8 30.5 37.3

Table 4: Evaluating the various MH-algorithms for the Caesarean birth data.
Normal mixtures Student-t mixtures

K Acc Ineff ESR TCPU Acc Ineff ESR TCPU

1 31.4 11 66.2 13.7 48.7 7.7 89.6 14.5
2 51.5 8.09 51.8 23.9 70.5 8.16 46.5 26.3
3 72.4 6.14 60.2 27 82.3 6.47 52.5 29.4
4 81.4 5.69 65.3 26.9 88 5.2 61.6 31.2
5 85.8 6.14 55.5 29.3 88.5 6.22 46.6 34.5
6 88.6 5.49 58 31.4 91.3 6.06 46 35.9

5 Concluding Remarks

We have shown how to construct data-augmented Metropolis-Hastings samplers for the
general multinomial logistic model. The data augmentation relies on two mixture ap-
proximations to the multivariate logistic error distribution, which is characteristic for the
dRUM representation of the model. We have studied the corresponding MH samplers
on simulated and on real data sets. The results show that the sampling scheme is sound,
but that the approximations are not yet precise enough to yield an acceptance rate and an
inefficiency factor that more than offsets the rise in the computational load inherent to the
evaluation of the multivariate mixtures.
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Institute of High Energy Physics
Austrian Academy of Sciences
Nikolsdorfer Gasse 18
1050 Wien
Austria


