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Abstract: Benchmark experiments are the method of choice to compare
learning algorithms empirically. For collections of data sets, the empirical
performance distributions of a set of learning algorithms are estimated, com-
pared, and ordered. Usually this is done for each data set separately. The
present manuscript extends this single data set-based approach to a joint anal-
ysis for the complete collection, the so called problem domain. This enables
to decide which algorithms to deploy in a specific application or to com-
pare newly developed algorithms with well-known algorithms on established
problem domains.

Specialized visualization methods allow for easy exploration of huge amounts
of benchmark data. Furthermore, we take the benchmark experiment design
into account and use mixed-effects models to provide a formal statistical anal-
ysis. Two domain-based benchmark experiments demonstrate our methods:
the UCI domain as a well-known domain when one is developing a new al-
gorithm; and the Grasshopper domain as a domain where we want to find the
best learning algorithm for a prediction component in an enterprise applica-
tion software system.

Zusammenfassung: Benchmark-Experimente sind die Methodik der Wahl
um Lernalgorithmen empirisch zu vergleichen. Für eine gegebene Menge
von Datensätzen wird die empirische Güte-Verteilung verschiedener Lern-
algorithmen geschätzt, verglichen und geordnet. Normalerweise geschieht
dies für jeden Datensatz einzeln. Der vorliegende Artikel erweitert diesen
Datensatz-basierten Ansatz zu einem Domänen-basierten Ansatz, in welchem
nun eine gemeinsame Analyse für die Menge der Datensätze durchgeführt
wird. Dies ermöglicht unter anderem die Auswahl eines Algorithmus in einer
konkreten Anwendung, und der Vergleich neu entwickelter Algorithmen mit
bestehenden Algorithmen auf wohlbekannten Problemdomänen.

Speziell entwickelte Visualisierungen ermöglichen eine einfache Untersuch-
ung der immensen Menge an erzeugten Benchmark-Daten. Des Weiteren ver-
wenden wir Gemischte Modelle um eine formale statistische Analyse durch-
zuführen. Anhand zweier Benchmark-Experimenten illustrieren wir unsere
Methoden: die UCI-Domäne als Vertreter einer wohlbekannten Problem-
domäne für die Entwicklung neuer Lernalgorithmen; und die Grasshopper-
Domäne, für welche wir den besten Lernalgorithmus als Vorhersagekompo-
nente innerhalb einer konkreten Anwendung finden wollen.

Keywords: Benchmark Experiment, Learning Algorithm, Visualisation, In-
ference, Mixed-Effects Model, Ranking.
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1 Introduction

In statistical learning, benchmark experiments are empirical investigations with the aim
of comparing and ranking learning algorithms with respect to a certain performance mea-
sure. In particular, on a data set of interest the empirical performance distributions of a
set of learning algorithms are estimated. Exploratory and inferential methods are used
to compare the distributions and to finally set up mathematical (order) relations between
the algorithms. The foundations for such a systematic modus operandi are defined by
Hothorn et al. (2005); they introduce a theoretical framework for inference problems in
benchmark experiments and show that standard statistical test procedures can be used to
test for differences in the performances. The practical toolbox is provided by Eugster
(2011, Chapter 2); there we introduce various analysis methods and define a systematic
four step approach from exploratory analyses via formal investigations through to the
algorithms’ orders based on a set of performance measures.

Modern computer technologies like parallel, grid, and cloud computing (i.e., tech-
nologies subsumed by the term High-Performance Computing; see, for example, Hager
and Wellein, 2010) now enable researchers to compare sets of candidate algorithms on
sets of data sets within a reasonable amount of time. Especially in the Machine Learning
community, services like MLcomp (Abernethy and Liang, 2010) and MLdata (Henschel
et al., 2010), which provide technical frameworks for computing performances of learn-
ing algorithms on a wide range of data sets recently gained popularity. Of course there is
no algorithm which is able to outperform all others for all possible data sets, but it still
makes a lot of sense to order algorithms for specific problem domains. The typical appli-
cation scenarios for the latter being which algorithm to deploy in a specific application, or
comparing a newly developed algorithm with other algorithms on a well-known domain.

A problem domain in the sense of this paper is collection of data sets. For a benchmark
experiment the complete domain or a sample from the domain is available. Note that
such a domain might even be indefinitely large, e.g., the domain of all fMRI images of
human brains. Naturally, domain-based benchmark experiments produce a “large bunch
of raw numbers” and sophisticated analysis methods are needed; in fact, automatisms are
required as inspection by hand is not possible any more. This motivation is related to
Meta-Learning – predicting algorithm performances for unseen data sets (see for example
Pfahringer and Bensusan, 2000; Vilalta and Drissi, 2002). However, we are interested in
learning about the algorithms’ behaviors on the given problem domain.

From our point of view the benchmarking process consists of three hierarchical lev-
els: (1) In the Setup level the design of the benchmark experiment is defined, i.e., data
sets, candidate algorithms, performance measures and a suitable resampling strategy are
declared. (2) In the Execution level the defined setup is executed. Here, computational
aspects play a major role; an important example is the parallel computation of the experi-
ment on different computers. (3) And in the Analysis level the computed raw performance
measures are analyzed using exploratory and inferential methods. This paper covers the
Setup and Analysis level and is organized as follows: Section 2 reviews the theoretical
framework for benchmark experiments defined by Hothorn et al. (2005) and extends it
for sets of data sets. In Section 3 we first define how the local – single data set-based
– benchmark experiments have been done. Given the computation of local results for
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each data set of the domain, Section 3.1 introduces visualization methods to present the
results in their entirety. In Section 3.2 we take the design of the domain-based bench-
mark experiments into account and model it using mixed-effects models. This enables an
analysis of the domain based on formal statistical inference. In Section 4 we demonstrate
the methods on two problem domains: The UCI domain (Section 4.1) as a well-known
domain; useful, for example, when one is developing a new algorithm. The Grasshop-
per domain (Section 4.2) as a black-box domain, where we simply want to find the best
learning algorithm for predicting whether a grasshopper species is present or absent in a
specific territory. Section 5 concludes the article with a summary and future work. All
computational details are provided in the section “Computational details” on page 23. All
methods proposed in this paper have been fully automated and will be made available as
open source software upon publication of this manuscript.

2 Design of Experiments
The design elements of benchmark experiments are the candidate algorithms, the data
sets, the learning samples (and corresponding validation samples) drawn with a resam-
pling scheme from each data set, and the performance measures of interest. In each trial
the algorithms are fitted on a learning sample and validated on the corresponding valida-
tion sample according to the specified performance measures.

Formally, following Hothorn et al. (2005), a benchmark experiment (for one data set
and one performance measure) is defined as follows: Given is a data set L = {z1, . . . , zN}.
We draw b = 1, . . . , B learning samples of size n using a resampling scheme, such as sam-
pling with replacement (bootstrapping, usually of size n = N ) or subsampling without
replacement (n < N ):

Lb = {zb1, . . . , zbn}
We assume that there are K > 1 candidate algorithms ak, k = 1, . . . , K, available for the
solution of the underlying learning problem. For each algorithm ak the function ak( · | Lb)
is the fitted model based on a learning sample Lb (b = 1, . . . , B). This function itself has
a distribution Ak as it is a random variable depending on L:

ak( · | Lb) ∼ Ak(L) , k = 1, . . . , K .

The performance of the candidate algorithm ak when provided with the learning data Lb

is measured by a scalar function p:

pbk = p(ak,L
b) ∼ Pk = Pk(L) .

The pbk are samples drawn from the distribution Pk(L) of the performance measure of the
algorithm ak on the data set L.

This paper focuses on the important case of supervised learning tasks, i.e., each ob-
servation z ∈ L is of the form z = (y, x) where y denotes the response variable and
x describes a vector of input variables (note that for readability we omit the subscript
i = 1, . . . , N for x, y, and z). The aim of a supervised learning task is to construct a
learner ŷ = ak(x | Lb) which, based on the input variables x, provides us with infor-
mation about the unknown response y. The discrepancy between the true response y and
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the predicted response ŷ for an arbitrary observation z ∈ L is measured by a scalar loss
function l(y, ŷ). The performance measure p is then defined by some functional µ of the
loss function’s distribution over all observations:

pbk = p(ak,L
b) = µ(l(y, ak(x | Lb))) ∼ Pk(L) .

Typical loss functions for classification are the misclassification and the deviance (or
cross-entropy). The misclassification error for directly predicted class labels is

l(y, ŷ) = I(y ̸= ŷ) ,

and the deviance for predicted class probabilities ŷg (g = 1, . . . , G different classes) is

l(y, ŷ) = −2× log-likelihood = −2
G∑

g=1

I(y = g) log ŷg .

The absolute error and the squared error are common loss functions for regression. Both
measure the difference between the true and the predicted value; in case of the squared
error this difference incurs quadratic:

l(y, ŷ) = (y − ŷ)2 .

Reasonable choices for the functional µ are the expectation and the median (in associa-
tion with absolute loss). With a view to practicability in real-world applications, further
interesting performance measures are the algorithm’s execution time and the memory re-
quirements (for fitting and prediction, respectively).

The focus of benchmark experiments is on the general performance of the the candi-
date algorithms. Therefore, using the performance on the learning data set Lb as basis for
further analyses is not a good idea (as commonly known). Thus – as in most cases we are
not able to compute µ analytically – we use the empirical functional µ̂T based on a test
sample T:

p̂bk = p̂(ak,L
b) = µ̂T(l(y, ak(x | Lb))) ∼ P̂k(L) .

This means we compute the performance of the model (fitted on the learning sample Lb)
for each observation in the test sample T and apply the empirical functional µ̂ to summa-
rize over all observations. Due to resampling effects it is not given that P̂k approximates
Pk; for example cross-validation overestimates the true performance distribution. The
most common example for the empirical functional µ̂ is the mean, that is the empirical
analogue of the expectation. Most further analysis methods require independent observa-
tions of the performance measure, therefore we define the validation sample T in terms of
out-of-bag observations: T = L \ Lb.

Now, in real-world applications we are often interested in more than one performance
measure (e.g., misclassification and computation time) within a domain of problems (e.g.,
the domain of patients’ data in a clinic). A domain is specified with a collection of data
sets. In detail, for the candidate algorithm ak we are interested in the j = 1, . . . , J per-
formance distributions on the m = 1, . . . ,M data sets which define the problem domain
D = {L1, . . . ,LM}:

pmbkj = pj(ak,L
b
m) ∼ Pj

mk = Pj
k(Lm) .
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The pmbkj are samples drawn from the jth performance distribution Pj
k(Lm) of the al-

gorithm ak on the data set Lm. Analogously as above the performance is measured on
a validation sample, i.e., p̂mbkj is computed and the empirical performance distribution
P̂j

k(Lm) is estimated.

3 Analysis of Experiments
The execution of a benchmark experiment as defined in Section 2 results in M×B×K×J
raw performance measures, i.e., M × K × J empirical performance distributions P̂j

mk.
This allows to analyze a multitude of questions with a wide variety of methods – for ex-
ample: computing an order of the algorithms based on some simple summary statistics
from the empirical performance distributions; or more sophisticated, testing hypotheses
of interest by modeling the performance measure distributions and using statistical infer-
ence. Additionally, each question can be answered on different scopes, i.e., locally for
each data set, or globally for the domain. For the remainder of this paper we assume that
the following systematic stepwise approach has been executed for each given data set Lm:

1. Compare candidate algorithms: The candidate algorithms are pairwise compared
based on their empirical performance distributions P̂j

mk by simple summary statis-
tics or statistical tests (parametric or non-parametric); this results in J comparisons.

Example: The algorithms svm, rpart, and rf are compared; the pairwise compar-
isons according to their misclassification errors are {svm ≺ rf, rpart ≺ rf, svm ∼
rpart} (based on a statistical test), and according to their computation times {rpart ≺
rf, rf ≺ svm, rpart ≺ svm} (based on the mean statistics).

2. Compute performance relations: The J comparisons are interpreted as an ensemble
of relations Rm = {R1, . . . , RJ}. Each Rj represents the relation of the K algo-
rithms with respect to a specific performance measure and the data set’s preference
as to the candidate algorithms.

Example (cont.): The data set’s preferences are R1 = svm ∼ rpart ≺ rf in case of
the misclassification error and R2 = rpart ≺ rf ≺ svm in case of the computation
time.

3. Aggregate performance order relations: The ensemble Rm is aggregated to, for
example, a linear or partial order R̄m of the candidate algorithms. As a suitable
class of aggregation methods we use consensus rankings. The individual relations
Rj can be weighted to express the importance of the corresponding performance
measure.

Example (cont.): The linear order with the weights w1 = 1 and w2 = 0.2 (i.e.,
computation time is much less important than the misclassification error) is then
rpart ≺ svm ≺ rf.

These data of different aggregation levels are available for each data set Lm of the
problem domain D. The obvious extension of the local approach to compute a domain-
based order relation is the further aggregation of the data sets’ algorithm orders (Hornik
and Meyer, 2007):
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4. Aggregate local order relations: The domain specific algorithms’ order relation R̄ is
computed by aggregating the ensemble of consensus relations R = {R̄1, . . . , R̄M}
using consensus methods.

This approach allows the automatic computation of a statistically correct domain-based
order of the algorithms. But the “strong” aggregation to relations does not allow state-
ments on the problem domain to a greater extent. In the following we introduce methods
to visualize and to model the problem domain based on the individual benchmark exper-
iment results. On the one hand these methods provide support for the global order R̄, on
the other hand they uncover structural interrelations of the problem domain D.

3.1 Visualizing the Domain

A benchmark experiment results in M×K×J estimated performance distributions P̂j
mk.

The simplest visualizations are basic plots which summarize the distributions, like strip
charts, box plots, and density plots, conditioned by the domain’s data sets. So called
Trellis plots (Becker et al., 1996) allow a relative comparison of the algorithms within
and across the set of data sets.

Figure 1 shows a Trellis plot with box plots of six algorithms’ misclassification errors
(knn, lda, nnet, rf, rpart, and svm) on a problem domain defined by 21 UCI data sets
(Section 4.1 provides the experiment details). Using this visualization we see that there
are data sets in this domain which are equally “hard” for all candidate algorithms, like
ttnc, mnk3 or BrsC; while the algorithms on other data sets perform much more hetero-
geneous, like on prmnt and rngn. From an algorithm’s view, lda for example, has the
highest misclassification error of the problem domain on data sets Crcl and Sprl (which
are circular data). Moreover, whenever lda solves a problem well, other algorithms per-
form equally.

Further basic visualizations allowing relative comparisons of the estimated perfor-
mance distributions P̂j

mk based on descriptive statistics are stacked bar plots, spine plots
and mosaic plots. In all visualizations one axis contains the data sets and the other the
stacked performance measure (either raw or relative). Figure 2a exemplarily shows the
stacked bar plot of the UCI domain’s mean misclassification errors (the order of the data
sets is explained below). Notice, for example, that for the candidate algorithms the data
set mnk3 is on average much “less hard” to solve than livr. This plot is an indicator for
a learning problem’s complexity; if all candidate algorithms solve the problem well, it is
probably an easy one. (Figure 2b is explained further down.)

Now, in addition to the empirical performance distributions P̂j
mk, the pairwise com-

parisons, the resulting set of relations Rm, and the locally aggregated orders R̄m are
available. To incorporate these aggregated information into the visualizations we intro-
duce an appropriate distance measure. Kemeny and Snell (1972) show that for order
relations there is only one unique distance measure d which satisfies axioms natural for
preference relations (we refer to the original publication for the definition and explanation
of the axioms). The symmetric difference distance d∆ satisfies these axioms; it is defined
as the cardinality of the relations’ symmetric difference, or equivalently, the number of
pairs of objects being in exactly one of the two relations R1, R1 (⊕ denotes the logical
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Figure 1: Trellis graphic with box plot panels. The plot shows the misclassification error
of the UCI domain benchmark experiment described in Section 4.1.

XOR operator):

d∆(R1, R2) = #{(ak, ak′)|(ak, ak′) ∈ R1 ⊕ (ak, ak′) ∈ R2, k, k
′ = 1, . . . , K} .

Computing all pairwise distances for the relations Rm (m = 1, . . . ,M ) results in a
symmetric M ×M distance matrix D representing the distances of the domain D based
on the candidate algorithms’ performances. An obvious way to analyze D is to hier-
archically cluster it. Because detecting truly similar data sets within a domain is most
interesting (in our point of view), we propose to use agglomerative hierarchical clustering
with complete linkage (see, e.g., Hastie et al., 2009). Figure 3 shows the corresponding
dendrogram for the UCI domain’s relation R = {R1, . . . , R21} based on the algorithms’
misclassification errors. Crcl and Sonr for example, are in one cluster – this means that
the candidate algorithms are in similar relations (note that the raw performance measures
are not involved anymore. Therefore, it is hard to see these similarities in basic visualiza-
tions like the stacked bar plot (Figure 2a), even if the data sets are ordered according to
the data sets’ linear order determined by the hierarchical clustering.

The benchmark summary plot (bsplot) overcomes these difficulties by adapting the
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(a)

(b)

Figure 2: Visualizations of the candidate algorithms’ misclassification errors on the UCI
domain: (a) stacked bar plot; (b) benchmark summary plot (legend omitted).
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Figure 3: Dendrogram showing the clustering of the UCI domain’s data sets based on
their candidate algorithms’ performance relations.

stacked bar plot and incorporating a set of relations R. Each bar uses the total width, and is
evenly divided into as many partitions as candidate algorithms. The partitions are assigned
to the candidate algorithms and their order is determined by the corresponding (linear or
partial) relation R̄m. A descriptive statistic of the corresponding empirical performance
distribution P̂j

mk of interest is then plotted as bar from the bottom up in each partition; the
values are scaled in a way that the domain’s worst performance fills the partition. Color
coding is used to simplify interpretation – partition backgrounds with light, performance
bars with dark colors. Moreover, the relations R̄m are visualized using borders between
partitions. So, if there is for example a significant difference in the performance of two
candidate algorithms, a (black) border is shown, otherwise no border is shown. The bars
are sorted according to a linear order of the distance matrix D; just like the one computed
by the hierarchical clustering. The axis representing the data sets is equivalent to the
stacked bar plot, the other axis is a podium for the candidate algorithms. Obviously,
this plot only works in case of linear orders. Visually interpreted, the aggregated global
consensus relation R̄ is the aggregation of the light colors over the data set axis.

Figure 2b shows the UCI domain’s bsplot. In comparison with the stacked bar plot
(Figure 2a) the individual benchmark experiment results are now more clearly visible. For
example, svm (blue) has the most first places – 13 times (6 times exclusively), and is never
worse than a third place. lda (purple) is the algorithm with the highest misclassification
(on data set Crcl) and knn (yellow) is the algorithm with the most last places. Based on
lda the domain splits into two clusters, one where it performs well (i.e., a set of linearly
separable data sets) and one where not (the non-linearly separable data sets). rf (orange)
also performs well within this domain, while nnet (green) is in most cases of medium
performance.

In the UCI problem domain the resulting relations are all transitive, this is not gener-
ally true for relations based on statistical tests (see Eugster, 2011), therefore the bench-
mark summary graph (bsgraph) enables a general visualization. The domain D is repre-
sented by a complete weighted graph KM with M vertices for the domain’s data sets and
M(M−1)/2 edges. The edges’ weights are defined by the distance matrix D. The graph’s
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Figure 4: Benchmark summary graph visualizing the relation of the UCI domain’s data
sets based on the distance matrix. The color of the nodes indicate the unique winner algo-
rithm; otherwise unfilled. The dashed circle highlights a subset A with similar algorithm
performances. The dashed line indicates two sub-domains; B – where svm performs best,
and C – where rf and lda perform best.

layout follows a spring model and is computed using the Kamada-Kawai algorithm (see,
e.g., Gansner and North, 2000, for a description and software implementation). The lay-
outed graph is then visualized with additional information available from the individual
benchmark experiments. Our implementation shows the data sets’ winner algorithms by
filling the nodes with the corresponding colors; if there is no unique winner algorithm
for a data set the node is unfilled. The edges’ widths and colors correspond to the dis-
tances, i.e., the shorter the distance the wider and darker the edge. Our implementation
allows showing only a subset of edges corresponding to a subset of distances to make the
visualization more clear.

Figure 4 shows the UCI domain’s bsgraph with edges visible which correspond to
tenth smallest distance. Here, for example, it is clearly visible that subset A of the do-
main’s data sets has similar algorithm performances (although only the winners are vi-
sualized). It is also visible that the domain splits into two sub-domains: sub-domain B
where the algorithm svm (blue) performs best, and sub-domain C where the algorithms
rf (orange) and lda (purple) perform best. In case of unfilled nodes the dominant sub-
domain algorithms are always winner as well together with other algorithms (compare
with Figure 2b).

The benchmark summary graph defines the basis for more complex visualizations.
One future work is an interactive version along the lines of the gcExplorer – an interac-
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tive exploration tool of neighbor gene clusters represented as graphs (Scharl and Leisch,
2009, cf. Figure 1). This tool enables the access to the nodes complex information using
interactivity; the same idea can be used for the benchmark summary graph. See Eug-
ster and Leisch (2010) for the interactive analysis of benchmark experiments based on a
single data set. Furthermore, looking at the introduced visualizations raises the question
“why” do some candidate algorithms perform similar on some data sets and not on others
– which data set characteristics affect the algorithms’ performances and lead to such clus-
ters as seen in Figure 4? We investigate this question in Eugster et al. (2010), where we
introduce a formal framework based on (recursively partitioning) Bradley-Terry models
(the most widely used method to study preferences in psychology and related disciplines)
for automatic detection of important data set characteristics and their joint effects on the
algorithms’ performances in potentially complex interactions.

3.2 Modeling the Domain
The analysis methods introduced so far – the aggregation of local relations to a domain-
based order relation and the visualization methods – rely on locally (data set-based) com-
puted results. In this section we take the design of domain-based benchmark experiments
into account and model the M×K×J estimated performance distributions P̂j

mk for J = 1
accordingly. This enables a domain’s analysis based on formal statistical inference.

A domain-based benchmark experiment with one performance measure of interest is
a type of experiment with two experimental factors (the candidate algorithms and the
domain’s data sets), their interactions, and blocking factors at two levels (the blocking per
data set and the replications within each data set). It is written

pmbk = κk + βm + βmk + βmb + ϵmbk (1)

with m = 1, . . . ,M , b = 1, . . . , B, and k = 1, . . . , K. κk represents the algorithms’ mean
performances, βm the mean performances on the domain’s data sets, βmk the interactions
between data sets and algorithms, βmb the effect of the subsampling within the data sets,
and ϵmbk the systematic error.

Linear mixed-effects models are the appropriate tool to estimate the parameters de-
scribed in Formula 1. Mixed-effects models incorporate both fixed effects, which are
parameters associated with an entire population or with certain repeatable levels of exper-
imental factors, and random effects, which are associated with individual experimental or
blocking units drawn at random from a population (Pinheiro and Bates, 2000). The can-
didate algorithms’ effect κk is modeled as fixed effect, the data sets’ effect βm as random
effect (as the data sets can be seen as randomly drawn from the domain they define). Fur-
thermore, βmk, βmb and ϵmbk are defined as random effects as well. The random effects
follow βm ∼ N(0, σ2

1), βmk ∼ N(0, σ2
2), βmb ∼ N(0, σ2

3), and ϵmbk ∼ N(0, σ2). Anal-
ogous to single data set-based benchmark experiments, we can rely on the asymptotic
normal and large sample theory (see Eugster, 2011).

The most common method to fit linear mixed-effects models is to estimate the “vari-
ance components” by the optimization of the restricted maximum likelihood (REML)
through EM iterations or through Newton-Raphson iterations (see Pinheiro and Bates,
2000). The results are the estimated parameters: the variances σ̂2

1 , σ̂2
2 , σ̂2

3 , and σ̂2 of the
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(a) (b)

Figure 5: The UCI domain’s simultaneous 95% confidence intervals for multiple (a) sig-
nificant and (b) relevant comparisons for a fitted linear mixed-effects model on the algo-
rithms’ misclassification errors.

random effects; and the K fixed effects. The model allows the following interpretation
– of course conditional on the domain D – for an algorithm ak and a data set Lm: κ̂k is
the algorithm’s mean performance, β̂m is the data set’s mean complexity, and β̂mk is the
algorithm’s performance difference from its mean performance conditional on the data
set (coll., “how does the algorithm like the data set”).

The parametric approach of mixed-effects models allows statistical inference, in par-
ticular hypothesis testing, as well. The most common null hypothesis of interest is “no
difference between algorithms”. A global test, whether there are any differences between
the algorithms which do not come from the “randomly drawn data sets” or the sampling
is the F-test. Pairwise comparisons, i.e., which algorithms actually differ, can be done
using Tukey contrasts. The calculation of simultaneous confidence intervals enables con-
trolling the experiment-wise error rate (we refer to Hothorn et al., 2008, for a detailed
explanation).

Figure 5a shows simultaneous 95 % confidence intervals for the algorithms’ misclas-
sification error based on a linear mixed-effects model. Two algorithms are significantly
different if the corresponding confidence interval does not contain the zero. The confi-
dence intervals are large because of the very heterogeneous algorithm performances over
the data sets (cf. Figure 2b; Section 4.1 describes the result in detail). Now, statistical
significance does not imply a practically relevant difference. As commonly known, the
degree of significance can be affected by drawing more or less samples. A possibility to
control this characteristic of benchmark experiments is to define and quantify how large
a significant difference has to be to be relevant. Let [∆1,∆2] be the area of equivalence
(zone of non-relevance). The null hypothesis is rejected if the (1− α) ∗ 100% confidence
interval is completely contained in the area of equivalence (equivalence tests are the gen-
eral method which consider relevance; see, for example, Wellek, 2003). Figure 5b shows
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the UCI domain’s pairwise comparisons with [−0.10, 0.10] as the area of equivalence. For
example, the difference between rpart and rf is significant (the interval does not contain
the zero) but is not relevant (the area of equivalence completely contains the interval); the
difference between svm and lda is significant and relevant. Of course, the definition of
the area of equivalence contains the subjective view of the practitioner – normally, it is
based on domain-specific knowledge.

Finally, the pairwise comparisons of candidate algorithms’ significant or relevant dif-
ferences allow to establish a preference relation based on the performance measure for the
domain D. From now on, the analysis of domain-based benchmark experiments proceeds
analogously to the analysis of data set-based benchmark experiments. Following Eugster
(2011, Chapter 2), we use the concept of preference relations based on statistical tests and
their combination using consensus methods. Now, the methodology introduced above
makes it possible to model the experiment for each performance measure; i.e., to fit J
linear mixed-effects models, to compute the significant or relevant pairwise comparisons,
and to establish a preference relation Rj for each performance measure (j = 1, . . . , J).
Consensus methods aggregate the J preference relations to single domain-based order re-
lation of the candidate algorithms. This can be seen as a multi-criteria or multi-objective
optimization and allows, for example, to select the best candidate algorithm with respect
to a set of performance measures for the given domain D.

4 Benchmarking UCI and Grasshopper Domains

We present two domain-based benchmark experiments – one for each application scenario
we sketch in the introduction. The UCI domain serves as a domain for the scenario when
comparing a newly developed algorithm with other well-known algorithms on a well-
known domain. We already used the UCI domain in the previous sections to illustrate
the presented methods and we now give more details on this benchmark experiment and
complete the analysis. The Grasshopper domain serves as domain where we want to find
the best candidate algorithm for predicting whether a grasshopper species is present or
absent in a specific territory. The algorithm is then used as a prediction component in an
enterprise application software system.

4.1 UCI Domain

The UCI domain is defined by 21 data sets binary classification problems available from
Asuncion and Newman (2007). We are interested in the behavior of the six common learn-
ing algorithms linear discriminant analysis (lda, purple), k-nearest neighbor classifiers,
(knn, yellow), classification trees (rpart, red), support vector machines (svm, blue), neu-
ral networks (nnet, green), and random forests (rf, orange); see all, for example, Hastie
et al. (2009). The benchmark experiment is defined with B = 250 replications, boot-
strapping as resampling scheme to generate the learning samples Lb, and the out-of-bag
scheme for the corresponding validation samples Tb. Misclassification on the validation
samples is the performance measure of interest. A benchmark experiment is executed and
analyzed on each data set according to the local systematic stepwise approach (Steps 1-
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Table 1: UCI domain’s chains of preference relations R = {R1, . . . , R21}.

RBrsC: rf ∼ svm ≺ knn ≺ lda ≺ nnet ≺ rpart RCrds: rf ≺ lda ≺ rpart ∼ svm ≺ nnet ≺ knn

Rchss: svm ≺ nnet ∼ rf ∼ rpart ≺ knn ∼ lda RCrcl: svm ≺ knn ≺ rf ≺ nnet ≺ rpart ≺ lda

Rcrdt: lda ∼ rf ≺ svm ≺ rpart ≺ nnet ≺ knn RHrt1: lda ≺ rf ≺ svm ≺ rpart ≺ knn ≺ nnet

Rhptt: rf ≺ svm ≺ lda ∼ nnet ≺ knn ∼ rpart RHV84: lda ≺ rf ≺ rpart ∼ svm ≺ nnet ≺ knn

RInsp: rf ∼ svm ≺ rpart ≺ nnet ≺ knn ∼ lda Rlivr: rf ≺ lda ≺ rpart ∼ svm ≺ nnet ≺ knn

Rmnk3: rpart ∼ svm ≺ rf ≺ nnet ≺ knn ∼ lda Rmusk: svm ≺ rf ≺ knn ≺ lda ≺ rpart ≺ nnet

RPmID: lda ≺ rf ≺ rpart ∼ svm ≺ knn ≺ nnet Rprmt: rf ∼ svm ≺ nnet ≺ rpart ≺ knn ≺ lda

Rrngn: svm ≺ rf ≺ rpart ≺ nnet ≺ knn ∼ lda RSonr: svm ≺ knn ∼ rf ≺ nnet ≺ lda ∼ rpart

RSprl: knn ∼ rf ∼ svm ≺ rpart ≺ nnet ≺ lda Rthrn: svm ≺ rf ≺ lda ∼ nnet ≺ knn ≺ rpart

Rtctc: lda ∼ svm ≺ nnet ∼ rf ≺ rpart ≺ knn Rttnc: knn ∼ nnet ∼ svm ≺ rf ≺ rpart ≺ lda

Rtwnr: lda ≺ svm ≺ knn ∼ rf ≺ nnet ≺ rpart

3) given in the beginning of Section 3 (and defined in Eugster, 2011). The results are
21 × 6 × 1 estimated performance distributions P̂ j

mk, the corresponding pairwise com-
parisons based on mixed-effects models and test decisions for a given α = 0.05, and
the resulting preference relations R = {R1, . . . , R21}. Note that we present selected re-
sults, the complete results are available in the supplemental material (see the section on
computational details on page 23).

The Trellis plot in Figure 1 shows the box plots of the estimated performance distri-
butions. Table 1 lists the resulting preference relations Rm; in this benchmark experiment
all relations are transitive, therefore the listed chains of preferences can be built (ak ∼ ak′
indicates no significant difference, ak ≺ ak′ indicates a significantly better performance
of ak). The domain-based linear order relation R̄ computed by the consensus method
(Step 4) is:

svm ≺ rf ≺ lda ≺ rpart ≺ nnet ≺ knn .

This order coincides with the impression given by the bsplot’s light colors in Figure 2b:
svm (blue) has the most first places, rf (orange) the most second and some first places,
lda (purple) has some first places, rpart (red) and nnet (green) share the middle places,
and knn (yellow) has the most last places.

Computing the linear mixed-effects model leads to a model with the estimated candi-
date algorithm effects:

lda κ̂1 knn κ̂2 nnet κ̂3 rf κ̂4 rpart κ̂5 svm κ̂6

0.2011 0.1948 0.1885 0.1144 0.1750 0.1100

lda has the worst, svm the best mean performance. Data set mnk3 has the lowest and data
set livr the highest estimated performance effect (i.e., complexity) among the domain’s
data sets:

β̂m β̂mk

lda knn nnet rf rpart svm

mnk3: −0.0943 −0.0722 −0.0669 −0.0658 0.0009 −0.0696 −0.005
livr: 0.1693 −0.0326 0.0253 0.0152 0.0109 0.0175 0.0652

For data set mnk3, all algorithms except rf perform better than their mean performance;
for livr only lda. These estimated parameters conform with the performance visualiza-
tions in figures 1 and 2.
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knn lda nnet rf rpart svm

knn 0 0 0 0 0 0
lda 0 0 0 0 0 0
nnet 0 0 0 0 0 0
rf 1 0 1 0 0 0

rpart 0 0 0 0 0 0
svm 1 0 1 0 1 0

(a) (b)

Figure 6: Interpretation of the pairwise significant differences, i.e., Figure 5a, as pref-
erence relation: (a) incidence matrix, (b) the corresponding Hasse diagram (nodes are
ordered bottom-up).

Figure 5 shows the (a) significant and (b) relevant pairwise comparisons. There is,
for example, a significant difference between svm and rpart in favor of svm and no sig-
nificant difference between svm and rf. The interpretation of the pairwise significant
differences results in the incidence matrix shown in Figure 6a. The corresponding rela-
tion is no linear or partial order relation (as we can verify). However, plotting only the
asymmetric part of its transitive reduction as Hasse diagram enables a visualization and an
interpretation of the relation (Hornik and Meyer, 2010) – Figure 6b shows this Hasse dia-
gram, nodes are ordered bottom-up. For the UCI domain and based on the mixed-effects
model analysis we can state that rf and svm are better than knn, nnet, and rpart. In case
of lda this analysis allows no conclusion. This result corresponds with the global linear
order relation R̄ computed by the aggregation of the individual preference relations.

4.2 Grasshopper Domain

In this application example we are interested in finding the best algorithm among the can-
didate algorithm as a prediction component of an enterprise application software system.
The domain is the domain of grasshopper species in Bavaria (Germany), the task is to
learn whether a species is present or absent in a specific territory.

The data were extracted from three resources. The grasshopper species data are avail-
able in the “Bavarian Grasshopper Atlas” (Schlumprecht and Waeber, 2003). In this atlas,
Bavaria is partitioned into quadrants of about 40km2. Presence or absence of each species
it is registered for each quadrant. The territory data consist of climate and land usage
variables. The climate variables are available from the WorldClim project (Hijmans et
al., 2005) in a 1km2 resolution. These 19 bioclimate (metric) variables describe for ex-
ample the seasonal trends and extreme values for temperature and rainfall. The data are
primary collected between 1960 and 1990. The land usage variables are available from the
CORINE LandCover project CLC 2000 (Federal Environment Agency, 2004). Based on
satellite images the territory is partitioned into its land usage in a 100m2 resolution using
FRAGSTAT 3.3 (McGarigal et al., 2002). These 20 (metric and categorical) land usage
variables describe the percentage of, for example, forest, town and traffic (we binarized a
variable if not enough metric values are available). The climate and land usage variables
are averaged for each quadrant for which the grasshopper data are available. Additionally,
the Gauss-Krüger coordinates and the altitude are available for each quadrant. We use the
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Figure 7: Trellis graphic with box plot of the candidate algorithms’ misclassification error
on the Grasshopper domain. Each data set is one grasshopper species.

standardized altitude but omit the coordinates as the candidate algorithms are not able to
estimate spatial autocorrelation and heterogeneity. Now, to define the domain, we under-
stand each grasshopper species as individual data set. The quadrants where a species is
present are positively classified; as negatively classified quadrants we draw random sam-
ples from the remaining ones. If enough remaining quadrants are available we create a
balanced classification problem, otherwise we use all remaining quadrants. We only use
data sets with more than 300 positively classified quadrants – so, the Grasshopper domain
is finally defined by 33 data sets.

The candidate algorithms of interest are linear discriminant analysis (lda, purple), k-
nearest neighbor classifiers, (knn, yellow), classification trees (rpart, red), support vector
machines (svm, blue), naive Bayes classifier (nb, green), and random forests (rf, orange);
see all, for example, Hastie et al. (2009). The benchmark experiment is defined with B =
100 replications, bootstrapping as resampling scheme to generate the learning samples Lb,
and the out-of-bag scheme for the corresponding validation samples Tb. Misclassification
on the validation samples is the performance measure of interest. Note that we presents
selected results, the complete results are available in the supplemental material (see the



M. Eugster et al. 21

section on computational details on page 23).
Figure 7 shows the Trellis plot with box plots for the six algorithms’ misclassifica-

tion errors. We see that for most data sets the relative order of the candidate algorithms
seems to be similar, but that the individual data sets are differently “hard” to solve. The
locally computed preference relations R = {R1, . . . , R33} (using mixed-effects models;
see Eugster, 2011) contains non-transitive relations; therefore, a visualization using the
benchmark summary plot is not possible. Now, one possibility is to plot the asymmetric
part of the transitive reduction (like in Figure 6b) for each of the 33 relations in a Trellis
plot. However, such a plot is very hard to read and the benchmark summary graph pro-
vides a simpler visualization (albeit with less information). Figure 8a shows the bsgraph
with the six smallest distance levels visible. The nodes show the color of the algorithm
with the minimum median misclassification error. We see that for most data sets rf (or-
ange) is the best algorithm. The nodes’ cross-linking indicates that the relations do not
differ much in general. The algorithms follow the general order pattern even for data sets
where this plot indicates a big difference, for example the NEUS data set (cf. Figure 7).

A consensus aggregation of R results in the following linear order:

rf ≺ lda ≺ svm ≺ rpart ≺ nb ≺ knn .

This order confirms the exploratory analysis. To formally verify this order we compute the
domain-based linear mixed-effects model and the resulting pairwise comparisons. Fig-
ure 8b shows the corresponding simultaneous 95% confidence intervals and the resulting
order is:

rf ≺ lda ≺ svm ≺ rpart ≺ nb ∼ knn .

All three analyses, exploratory, consensus-, and mixed-effect model-based, lead to the
same conclusion: the random forest learning algorithm is the best algorithm (according
to the misclassification error) for the Grasshopper domain.

5 Summary
The great many of published benchmark experiments show that this method is the pri-
mary choice to evaluate learning algorithms. Hothorn et al. (2005) define the theoretical
framework for inference problems in benchmark experiments. Eugster (2011) introduce
the practical toolbox with a systematic four step approach from exploratory analysis via
formal investigations through to a preference relation of the algorithms. The present pub-
lication extends the framework theoretically and practically from single data set-based
benchmark experiments to domain-based (set of data sets) benchmark experiments.

Given the computation of local – single data set-based – benchmark experiment results
for each data set of the problem domain, the paper introduces two specialized visualization
methods. The benchmark summary plot (bsplot) is an adaption of the stacked bar plot.
It allows the visualization of statistics of the algorithms’ estimated performance distribu-
tions incorporated with the data sets’ preference relations. This plot only works in case of
linear or partial order relations, while the benchmark summary graph (bsgraph) enables a
general visualization. The problem domain is represented by a complete weighted graph
with vertices for the domain’s data sets. The edges’ weights are defined by the pairwise
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(a)

(b)

Figure 8: (a) The Grasshopper domain’s benchmark summary graph; the color of the
nodes indicate the algorithm with the minimum median misclassification error. (b) The
Grasshopper domain’s simultaneous 95 % confidence intervals for multiple significant
comparisons for a fitted linear mixed-effects model on the algorithms’ misclassification
errors.
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symmetric difference distances. The layouted graph is visualized with additional infor-
mation from the local benchmark experiments which allows to find patterns within the
problem domain.

An analysis of the domain based on formal statistical inference is enabled by taking
the experiment design – two experimental factors, their interactions, and blocking factors
at two levels – into account. We use linear mixed effects models to estimate the param-
eters where the algorithms are defined as fixed effects, all others as random effects. The
estimated model allows the interpretation – conditional on the domain – of the algorithms’
mean performances, the data sets’ mean complexities and how suitable an algorithm for
a data set is. Furthermore, testing hypotheses of interest is possible as well. A global
test of the most common hypothesis of “no difference between the algorithms” can be
performed with an F-test, a pairwise comparison can be performed using Tukey con-
trasts. The definition of an area of equivalence allows to incorporate practical relevance
instead of statistical significance. Finally, the pairwise comparisons establish a preference
relation of the candidate algorithms based on the domain-based benchmark experiment.
The two domain-based benchmark experiments show that this domain-based relation con-
forms with the exploratory analysis and the approach of aggregating the individual local
relations using consensus methods.

Computational Details

All computations and graphics have been done using R 2.11.1 (R Development Core
Team, 2010) and additional add-on packages.

Setup and Execution: For the candidate algorithms of the two benchmark experiments
the following functions and packages have been used: Function lda from package MASS

for linear discriminant analysis. Function knn from package class for the k-nearest
neighbor classifier. The hyperparameter k (the number of neighbors) has been determined
between 1 and

√
n, n the number of observations, using 10-fold cross-validation (using

the function tune.knn from package e1071, Dimitriadou et al., 2009). Function nnet

from package nnet for fitting neural networks. The number of hidden units has been de-
termined between 1 and log(n) using 10-fold cross-validation (using function tune.nnet

from package e1071), each fit has been repeated 5 times. All three algorithms are de-
scribed by Venables and Ripley (2002). Function rpart from package rpart (Therneau
and Atkinson, 2009) for fitting classification trees. The 1-SE rule has been used to prune
the trees. Functions naiveBayes and svm from package e1071 for fitting naive Bayes
models and C-classification support vector machines. The two C-classification support
vector machines hyperparameters γ (the cost of constraints violation) and C (the kernel
parameter) have been determined using a grid search over the two-dimensional parameter
space (γ, C) with γ from 2−5 to 212 and C from 2−10 to 25 (using function tune.svm

from package e1071). And function randomForest from package randomForest (Liaw
and Wiener, 2002) for fitting random forests.
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Analysis: The presented toolbox of exploratory and inferential methods is implemented
in the package benchmark (Eugster, 2010). The benchmark package uses functional-
ity of other packages: coin (Hothorn et al., 2006) for permutation tests; lme4 (Bates
and Maechler, 2010) for mixed effects models; multcomp (Hothorn et al., 2008) for the
calculation of simultaneous confidence intervals; relations (Hornik and Meyer, 2010)
to handle relations and consensus rankings; ggplot2 (Wickham, 2009) to produce the
graphics.

Code for replicating our analysis is available in the benchmark package via
demo(package = "benchmark").
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