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Abstract

The paper deals with finite Markov chain of conditional order, that is a special case
of high-order Markov chain with a small number of parameters. Statistical estimators
for parameters and statistical tests for parametric hypotheses are constructed and their
properties are analyzed. Results of computer experiments on simulated and real data are
presented.
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1. Introduction

Finite Markov chain of the order s (1 ≤ s < ∞) described by Doob (1953) is a well-known
universal mathematical model to analyze long memory discrete-valued time series in many
applied fields. It is used for statistical data analysis in genetics (see Waterman 1999), eco-
nomics (see Ching 2004), signal processing (see Li, Dong, Zhang, Zhao, Shi, and Zhao 2010)
and other areas.

Unfortunately, there is a significant disadvantage of this model. It has exponential complexity
since the number of independent parameters D(s) of the N -state Markov chain of the order
s increases exponentially w.r.t. s:

D(s) = (N − 1)N s = O(N s+1).

Because of the “curse of dimensionality” to identify this model one needs time series of big
size (length of time series) n ≥ D(s) not available in practice Kharin (2013), Kharin (2005),
Kharin and Shlyk (2009). Therefore, small-parametric or parsimonious models are developed
to overcome this difficulty. These models are special cases of the s-order Markov chain, but
the number of parameters required to determine the one-step transition probability matrix is
much less than D(s). Let us give some examples of such parsimonious models: the Markov
chain of the order s with r partial connections (see Kharin and Petlitskii 2007), Raftery
model (see Raftery 1985), variable length Markov chain (see Buhlmann and Wyner 1999).
For example, the conditional probability distribution of the current state of the Markov chain
of the order s with r partial connections depends not on all s previous states, but only on r
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selected states. This paper is devoted to a new parsimonious model called Markov chain of
conditional order proposed by authors in Kharin and Maltsew (2012).

2. Mathematical model

At first let us introduce the notation: N is the set of positive integers,
N ∈ N, 2 ≤ N < ∞, A = {0, 1, . . . , N − 1} is the finite state space with N elements;
Jmn = (jn, . . . , jm) ∈ Am−n+1, m ≥ n, is the multiindex (subsequence of indices from a
sequence j1, j2, . . . ); {xt ∈ A : t ∈ N} is a homogeneous Markov chain of the order s,
(2 ≤ s <∞) with (s+ 1)-dimensional matrix of transition probabilities P = (pJs+1

1
):

pJs+1
1

= P{xt+s = js+1|xt+s−1 = js, . . . , xt = j1}, Js+1
1 ∈ As+1, t ∈ N;

L ∈ {1, 2, . . . , s − 1}, K = NL − 1 are some positive integers; Q(1), . . . , Q(M) are M
(1 ≤M ≤ K + 1) different square stochastic matrices of the order N :

Q(m) = (q(m)
i,j ), 0 ≤ q(m)

i,j ≤ 1,
∑
j∈A

q
(m)
i,j ≡ 1, i, j ∈ A, 1 ≤ m ≤M ;

< Jmn >=
m∑
k=n

Nk−njk ∈ {0, 1, . . . , Nm−n+1 − 1} is the numeric representation of the multiin-

dex Jmn ∈ Am−n+1; I{C} is the indicator function of event C.

The Markov chain {xt ∈ A : t ∈ N} is called the Markov chain of conditional order (see Kharin
and Maltsew 2012), if its one-step transition probabilities have the following parsimonious
form:

pJs+1
1

=
K∑
k=0

I{< Jss−L+1 >= k}q(mk)
jbk

,js+1
, (1)

where 1 ≤ mk ≤M , 1 ≤ bk ≤ s−L, 0 ≤ k ≤ K, min
0≤k≤K

bk = 1; it is assumed that all elements

of the set {1, 2, . . . ,M} occur in the sequence m0, . . . ,mK . The sequence of elements Jss−L+1

is called the base memory fragment (BMF) of the random sequence, L is the length of BMF;
the value sk = s − bk + 1 is called the conditional order. Thus the conditional probability
distribution of the state xt at time t depends not on all s previous states, but it depends only
on L + 1 selected states (jbk , J

s
s−L+1). Note that if L = s − 1, s0 = s1 = · · · = sK = s, we

have the fully-connected Markov chain of the order s. If M = K + 1, then each transition
matrix corresponds to only one value of the BMF, otherwise there exists a common matrix
which corresponds to several values of BMF.

Therefore the Markov chain of conditional order is determined by the following parameters:

• unconditional order s of the Markov chain;

• the length of BMF L;

• K + 1 conditional orders {sk : 0 ≤ k ≤ K};

• K + 1 parameters {mk : 0 ≤ k ≤ K} which determine the transition matrices;

• M stochastic matrices of the order N which are described by MN(N − 1) independent
parameters.

Hence the transition matrix P = (pJs+1
1

), Js+1
1 ∈ As+1, of the Markov chain of conditional

order is determined by
d = 2(NL + 1) +MN(N − 1) (2)
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independent parameters. For example, we need no more than 66 parameters for the Markov
chain of conditional order if s = 10, L = 2, whereas the fully-connected Markov chain of this
order requires D(s) = 1024 parameters.

3. Statistical estimators for parameters

In this section we present statistical estimators for parameters of the Markov chain of con-
ditional order. Introduce the notation: Xn

1 ∈ An is the observed time series of length n,
π0
Js
1

= P{x1 = j1, . . . , xs = js}, Js1 ∈ As, is the initial probability distribution of the Markov
chain of conditional order (1);

νsl,y(J
l
1) =

n−s∑
t=1

I{xt+s−l−y+1 = j1, X
t+s
t+s−l+2 = J l2}, l ≥ 2, 0 ≤ y ≤ s− l + 1,

is frequency of the state J l1 ∈ Al with the time gap of length y between the elements j1 and
J l2; νs+1(Js+1

1 ) = νss+1,0(Js+1
1 ) is frequency of (s+ 1)-tuple Js+1

1 .
At first, let us give ergodicity conditions for the Markov chain of conditional order.
Theorem 1. The Markov chain of conditional order is ergodic if and only if there exists a
number m ∈ N, s ≤ m <∞, such that the following inequality holds:

min
Js
1 ,J

s+m
1+m∈As

∑
Jm

s+1∈Am−s

m∏
i=1

K∑
k=0

I{< J i+s−1
i+s−L >= k}q(mk)

jbk+i−1,ji+s
> 0. (3)

Proof. Consider the first-order vector-valued Markov chain

{Xt = (xt, xt+1, . . . , xt+s−1) ∈ As : t ∈ N}

with the extended state space like in Doob (1953) which is equivalent to the s-order Markov
chain {xt ∈ A : t ∈ N}. The transition matrix for Xt has the following form:

P̄ = (p̄J2s
1

), J2s
1 ∈ A2s, p̄J2s

1
= I{Js2 = J2s−1

s+1 }pJs
1 j2s . (4)

According to Kemeny and Snell (1963) the Markov chain Xt is ergodic if and only if there
exists a number m ∈ N, such that the following inequality holds:

min
Js
1 ,J

s+c
1+c∈As

p̄
(c)

Js
1J

s+c
1+c

> 0,

where p̄(c)

Js
1J

s+c
1+c

is the c-step transition probability from Js1 to Js+c1+c for the Markov chain Xt.

Using properties of probability and definition (1) we come to the criterion (3). Theorem is
proved.
In the sequel we will consider ergodic Markov chains. It is known, that the probability
distribution of an ergodic Markov chain tends to a stationary probability distribution. The
next theorem determines conditions under which the stationary distribution is uniform.
Theorem 2. If the Markov chain of conditional order is ergodic, then its stationary distri-
bution is uniform if and only if the following equations hold (k = 0, 1, . . . ,K): q

(mk)
ij = 1/N,∀i, j ∈ A, if sk ∈ {L+ 1, . . . , s− 1},∑
i∈A

q
(mk)
ij = 1,∀j ∈ A ( that is Q(mk) is a doubly stochastic matrix), if sk = s.

(5)

Proof. As in the proof of Theorem 1 consider the first-order vector Markov chain Xt. It is
known from Borovkov (1998b), that the stationary distribution for Xt is uniform if and only
if P̄ is a doubly stochastic matrix, that is∑

Js
1∈As

p̄J2s
1

= 1, ∀J2s
s+1 ∈ As. (6)
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Define k =< J2s−1
2s−L > and transform (6) using (4) and (1):∑

Js
1∈As

p̄J2s
1

=
∑
Js
1∈As

I{Js2 = J2s−1
s+1 }q

(mk)
jbk

,j2s
=
∑
j1∈A

q
(mk)
jbk

,j2s
= 1. (7)

If sk = s, then bk = 1 and
∑
j1∈A

q
(mk)
j1,j2s

= 1. Hence Q(mk) is a doubly stochastic matrix, and we

have the second row in (5). If sk < s, then bk > 1,
∑
j1∈A

q
(mk)
jbk

,j2s
= Nq

(mk)
jbk

,j2s
= 1, and we have

the first row in (5). Theorem is proved.

We will use the likelihood function to estimate transition probability matrices {Q(mk)} and
conditional orders {sk}. In order to build it we have to find n-dimensional probability distri-
bution for the observed time series Xn

1 generated by the model (1).

Lemma 1. The n-dimensional probability distribution (n > s) for the Markov chain of
conditional order (1) has the following form:

P{x1 = j1, . . . , xn = jn} = π0
Js
1

n−1∏
t=s

K∑
k=0

I{< J tt−L+1 >= k}q(mk)
t−s+bk,jt+1

, j1, . . . , jn ∈ A. (8)

Proof. Using theorem on compound probabilities and the Markov property we have:

P{x1 = j1, . . . , xn = jn} = π0(Js1)
n−1∏
t=s

pJt+1
t−s+1

.

Hence, taking into account definition (1), we come to (8). Lemma is proved.

Corollary 1. The loglikelihood function for the Markov chain of conditional order (1) has
the following form:

ln(Xn
1 , {Q(i)}, L, {sk}, {mk}) = lnπ0

Xs
1
+

+
∑

JL+1
0 ∈AL+2

K∑
k=0

I{< JL1 >= k}νsL+2,sk−L−1(JL+1
0 ) ln q(mk)

j0,jL+1
.

Now we can construct maximum likelihood estimators (MLEs) for the transition probabilities
{Q(mk) : k = 0, . . . ,K} and the conditional orders {sk : k = 0, . . . ,K}.
Theorem 3. If the true values s, L, {sk : k = 0, . . . ,K} and {mk : k = 0, . . . ,K} are known,
then the MLEs for the one-step transition probabilities {q(mk)

j0,jL+
, j0, jL+1 ∈ A : k = 0, . . . ,K}

are

q̂
(mk)
j0,jL+1

=



∑
JL
1 ∈Mmk

νsL+2,g(sk,L)(J
L+1
0 )

∑
JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 )

, if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 ) > 0,

1/N, if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 ) = 0,

(9)

where Mi = {JL1 ∈ AL : m<JL
1 >

= i}, i = 1, . . . ,M ,
M⋃
i=1

Mi = AL, g(i, j) = i− j − 1.

Proof. In order to construct the MLEs we need to solve the following problem:

ln(Xn
1 , {Q(i)}, L, {sk}, {mk})→ max

{Q(mk)}1≤mk≤M

,∑
jL+1∈A

q
(mk)
j0,jL+1

= 1, j0 ∈ A, 1 ≤ mk ≤M.
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This maximization problem splits into NL+1 subproblems (j0 ∈ A, JL1 ∈ AL):

∑
jL+1∈A

K∑
k=0

I{< JL1 >= k}νL+2,g(sk,L)(J
L+1
0 ) ln q(mk)

j0,jL+1
→ max

q
(mk)

j0,jL+1

,

∑
jL+1∈A

q
(mk)
j0,jL+1

= 1.

Solve these subproblems with Lagrange multiplier method and come to the estimators (9).
Theorem is proved.

In the rest of the paper we will assume that M = K + 1, i.e. K + 1 independent matrices
correspond to K + 1 different values of BMF, and mk = k + 1, k = 0, 1, . . . ,K. In this case
estimators (9) have the following form:

q̂
(k+1)
j0,jL+1

=


∑

JL
1 ∈AL

I{< JL1 >= k}
νsL+2,g(sk,L)(J

L+1
0 )

νsL+1,g(sk,L)(J
L
0 )

, if νsL+1,g(sk,L)(J
L
0 ) > 0,

1/N, if νsL+1,g(sk,L)(J
L
0 ) = 0.

(10)

We will also use the following notation for transition probabilities and their estimators:

q(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q(k+1)
j0,jL+1

, q̂(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q̂(k+1)
j0,jL+1

.

According to Kharin and Maltsew (2011) we construct estimators for the conditional orders
{sk}.
Theorem 4. If s and L are known, then the MLEs for conditional orders {sk : k = 0, . . . ,K}
are

ŝk = arg max
L+1≤y≤s

∑
JL
1 ∈AL

I{< JL1 >= k}
∑

j0,jL+1∈A
νsL+2,g(y,L)(J

L+1
0 ) ln(q̂(k+1)

j0,jL+1
). (11)

In order to estimate the order s and the BMF length L we use Bayesian information crite-
rion (BIC) (see Csiszar and Shields 1999):

(ŝ, L̂) = arg min
2≤s′≤S+, 1≤L′≤L+

BIC(s′, L′), (12)

BIC(s′, L′) = −2
∑

JL′+1
0 ∈AL′+2

K∑
k=0

I{< JL
′

1 >= k}νs′L′+2,ĝ(sk,L′)
(JL

′+1
0 ) ln q̂(k+1)

j0,jL′+1
+

+ d ln(n− s′),

where S+ ≥ 2, 1 ≤ L+ ≤ S+ − 1, are maximal admissible values of s and L respectively, d is
the number of independent parameters of the model (1) defined by formula (2).

4. Asymptotic properties of statistical estimators

Let us assume that the Markov chain (1) satisfies the stationarity condition. Define the
probability distribution of the l-tuple Xt

t+l−1 ∈ Al, l ∈ N:

πl(J l1) = P{xt = j1, . . . , xt+l−1 = jl}, J l1 ∈ Al, t = 1, 2, . . . .

At first, let us present results on consistency of the constructed statistical estimators from
the previous section.
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Theorem 5. If Markov chain of conditional order (1) is stationary, then the statistical
estimators (9) are consistent estimators as n→∞:

q̂
(k+1)
ij

P−→ q
(k+1)
ij , i, j ∈ A, k = 0, . . . ,K. (13)

Proof. It is known from Basawa and Prakasa Rao (1980) that frequencies of the states for
the first-order vector Markov chain Xt (considered in the proof of Theorem 1) tend to the
stationary probability distribution as n→∞:

1
n− s

n−s∑
t=1

I{Xt = Js1 , Xt+1 = Js+1
2 } P−→ πs+1(Js+1

1 ), Js+1
1 ∈ As+1.

Thus we can prove that π̂s+1(Js+1
1 ) = νs+1(Js+1

1 )/(n− s) P−→ πs+1(Js+1
1 ). Then we consider

νsL+2,g(sk,L)(J
L+1
0 ) and νsL+1,g(sk,L)(J

L
0 ) as sums of the frequencies of (s+1)-tuples νs+1(Js+1

1 ):

νsl+1,g(sk,L)(J
l
0) =

∑
Is+1
1 ∈As+1(g(sk,L),J l

0)

νs+1(Js+1
1 ), l ∈ {L,L+ 1},

where As+1(y, J l0) = {Is+1
1 ∈ As+1 : i1 = j0, I

y+l
y+2 = J l2}, y = 0, 1, . . . . So the following

convergence holds:

νsl+2,g(sk,L)(J
l+1
0 ) P−→ πl+1,g(sk,L)(J

l
0) = P{xt = j0, X

t+sk−L+l−1
t+sk−L = J l1}.

Note that πL+2,g(sk,L)(J
L+1
0 ) =

K∑
k=0

I{< JL1 >= k}πL+1,g(sk,L)(JL0 )q(k+1)
j0,jL+1

; using this equation

and theorem on functional transformations of convergent random
sequences from Borovkov (1998a), we come to (13). Theorem is proved.

Theorem 6. Under conditions of Theorem 5 statistical estimators (11) are consistent as
n→∞:

ŝk → sk, k = 0, . . . ,K + 1. (14)

Proof. Introduce the notation:

Ik(y) =
∑

j0,jL+1∈A
πL+2,g(y,L)(J

L+1
0 ) ln

πL+2,g(y,L)(J
L+1
0 )

πL+1,g(y,L)(JL0 )π1(jL+1)
, y ∈ {L+ 1, . . . , s},

is the Shannon information on the random symbol xL+1 contained in the random symbol x0

under the fixed BMF XL
1 = JL1 ;

Īk =
∑

Hs−L
1 ∈As−L

∑
jL+1∈A

πs+1(Hs−L
1 JL+1

1 ) ln
πs+1(Hs−L

1 JL+1
1 )

πs(Hs−L
1 JL1 )π1(jL+1)

, y ∈ {L+ 1, . . . , s},

is the Shannon information on the random symbol xs+1 contained in the (s−L)-tuple Xs−L
1

under the fixed BMF Xs
s−L+1 = JL1 ;

Îk(y) =
∑

j0,jL+1∈A
π̂L+2,g(y,L)(J

L+1
0 ) ln

π̂L+2,g(y,L)(J
L+1
0 )

π̂L+1,g(y,L)(JL0 )π̂1(jL+1)
, y ∈ {L+ 1, . . . , s},

is the plug-in statistical estimator for Ik(y). At first, note that

arg max
L+1≤y≤s

∑
j0,jL+1∈A

νsL+2,g(y,L)(J
L+1
0 ) ln(q̂(k+1)

j0,jL+1
) = arg max

L+1≤y≤s
Îk(y), (15)
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where < JL1 >= k. The second statement we need to prove the theorem, is the following:

Ik(sk) = Īk. (16)

Using (16) and properties of Shannon information we can show that Ik(sk) ≥ Ik(y),
∀y 6= sk. Thus applying the first continuity theorem from Borovkov (1998a) and the equa-
tion (15) we come to (14). Theorem is proved.

Theorem 7. Under conditions of Theorem 5 statistical estimators (12) are consistent as
n→∞:

(ŝ, L̂) P−→ (s, L).

Proof. Let πl,y(J l1) = P{xt = j1, X
t+y+l−1
t+y+1 = J l2}, l ≥ 2, y ≥ 0. Then

q
(k+1)
j0,jL+1

=
πL+2,g(sk,L)(J

L+1
0 )

πL+1,g(sk,L)(JL0 )
, where < JL1 >= k. Note that if XL′

1 = JL
′

1 is fixed, then

−
∑

j0,jL′∈A
πL′+2,y(JL

′+1
0 ) ln

πL′+2,y(JL
′+1

0 )
πL′+1,y(JL

′
0 )

is a conditional entropy H
JL′
1 ,y
{xL′+1|x0} of xL′+1

given x0. Using asymptotic properties of the estimators (10) and (11) it is easy to show that
for n→∞ the following asymptotics holds:

− 1
n

∑
JL′+1
0 ∈AL′+2

K∑
k=0

I{< JL
′

1 >= k}νs′L′+2,g(ŝk,L′)
(JL

′+1
0 ) ln

νs
′

L′+2,g(ŝk,L′)
(JL

′+1
0 )

νs
′
L′+1,g(ŝk,L′)

(JL′0 )
P−→

P−→
∑

JL′
1 ∈AL′

K∑
k=0

I{< JL
′

1 >= k}H
JL′
1 ,g(yk,L′)

{xL′+1|x0},

where L′ + 1 ≤ yk ≤ s′. Using properties of entropy and methods described in Csiszar and
Shields (1999) we can prove that P{(ŝ, L̂) ∈ {[2, S+] × [1, L+]} \ {(s, L)}} P−→ 0 at n → ∞.
Theorem is proved.

Now let us analyze the asymptotic normality property for estimators (10). Theorem 8 es-
tablishes asymptotic probability distribution of the normalized deviations of the statistical
estimators for transition probabilities:

q̄(JL+1
0 ) =

√
n− s(q̂(JL+1

0 )− q(JL+1
0 )) , JL+1

0 ∈ AL+2.

Theorem 8. Under conditions of Theorem 5 as n→∞ the normalized deviations {q̄(JL+1
0 ) :

JL+1
0 ∈ AL+2} have joint asymptotically normal probability distribution with zero mean and

covariance matrix Σq = Σq(HL+1
0 , JL+1

0 ), HL+1
0 , JL+1

0 ∈ AL+2:

Σq(HL+1
0 , JL+1

0 ) = I{HL
0 = JL0 }q(HL+1

0 )
I{hL+1 = jL+1} − q(HL

0 jL+1)
π(HL

0 )
. (17)

Proof. Let us give only a scheme of the proof. Complete proof can be found in Kharin and
Maltsew (2012). The theorem is proved using asymptotic normality property for frequencies
νs+1(Js+1

1 ) from Kharin and Petlitskii (2007). We represent the estimator q̄(JL+1
0 ) as a

function of these frequencies. Therefore using the third continuity theorem from Borovkov
(1998a) we can establish asymptotic normality property for estimators (10) and come to (17).
Theorem is proved.

5. Statistical testing of hypotheses on the values of {Q(k)}
Using the results of Section 4 let us construct a statistical test for two hypotheses:

H0 = {Q(1) = Q
(1)
0 , . . . , Q(K+1) = Q

(K+1)
0 }, H1 = H̄0, (18)
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where Q(1)
0 , . . . , Q

(K+1)
0 are some fixed K + 1 stochastic matrices of the order N .

For the decision making we will use the following statistic:

ρ = ρ(n) =
∑

JL
0 ∈AL+1

∑
jL+1∈Q(JL

0 )

q̄20(JL+1
0 )πL+1(JL0 )/q(JL+1

0 ),

Q(JL0 ) = {jL+1 ∈ A : q(JL+1
0 ) > 0},

where q̄20(JL+1
0 ) =

√
n− s(q̂(JL+1

0 )− q0(JL+1
0 )).

Theorem 9. Under conditions of Theorem 5 as n → ∞ the probability distribution of the
random variable ρ(n) tends to the standard χ2-distribution with u degrees of freedom,

u =
∑

JL
0 ∈AL+1

(
|Q(JL0 )| − 1

)
.

Proof. Let us give only a scheme of the proof. Complete proof can be found in Kharin
and Maltsew (2012). Since normalized deviations {q̄(JL+1

0 ) : JL+1
0 ∈ AL+1} have the joint

asymptotically normal distribution according to Theorem 8, we can establish the probability
distribution of ρ(n) using the theorem on quadratic forms for multidimensional Gaussian
vectors and the second continuity theorem from Borovkov (1998a). Theorem is proved.

Now we can construct the statistical test for the hypotheses (18) based on the statistic ρ(n):

accept the hypothesis
{
H0, if ρ(n) ≤ ∆,
H1, if ρ(n) > ∆,

(19)

where ∆ = G−1
u (1− α) is the (1− α)-quantile of the standard χ2-distribution with u degrees

of freedom, α ∈ (0, 1) is the given significance level.

Corollary 2. Under conditions of Theorem 5 as n→∞ the asymptotic size of the test (19)
is equal to the given significance level α ∈ (0, 1):

αn = P{ρ(n) > ∆|H0} −−−→
n→∞

α.

Let us consider now the alternative hypothesis of the following special type:

H1n = {Q(1) = Q
(1)
1 , . . . , Q(K+1) = Q

(K+1)
1 }, (20)

Q
(k)
1 = Q

(k)
0 +

1√
n− s

γ(k), γ(k) = (γ(k)
i,j ), i, j ∈ A, k = 1, . . . ,K + 1,

where {γ(k)} are some fixed square matrices of the order N , such that
∑
j∈A

γ
(k)
i,j = 0,∑

i,j∈A
(γ(k)
i,j )2 > 0. Formula (20) means that the alternative hypothesis H1n tends to the null

hypothesis H0 as n→∞; such a family of hypotheses {H1n : n = 1, 2, . . . } is called the family
of contigual hypotheses (see Roussas 1972). For this case we can obtain the asymptotic power
of the test (19). The next theorem is proved by analogy with Theorem 9. Complete proof is
given in Kharin and Maltsew (2012).

Theorem 10. If the Markov chain of conditional order (1) is stationary and the contigual
family of alternatives (20) holds, then as n → ∞ the probability distribution of the random
variable ρ(n) tends to the noncentral χ2-distribution with u degrees of freedom and the non-
centrality parameter λ:

λ =
∑

JL
0 ∈AL+1,

jL+1∈Q(JL
0 )

πL+1(JL0 )
q(JL+1

0 )
γ2(JL+1

0 ),
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where γ(JL+1
0 ) =

K+1∑
k=1

I{< JL1 >= k}γ(k)
j0,jL+1

.

Corollary 3. Under conditions of Theorem 9 the power of the test (19) as n → ∞ tends to
the limit:

w = 1−Gu,λ(G−1
u (1− α)), (21)

where Gu,λ is the distribution function of the noncentral χ2-distribution with u degrees of
freedom and the noncentrality parameter λ and α ∈ {0, 1} is the given significance level.

Let us note that the power doesn’t tend to 1 because the alternative hypothesis H1n tends to
the null hypothesis as n→∞.

6. Computer experiments on hypothesis testing

Simulated data. At first, we evaluate the test (19) performance for contigual alterna-
tives (20) in two series of computer experiments by the following scheme: U = 1000 realiza-
tions of the Markov chain of conditional order were simulated according to (1). Parameters
of the model: N = 2, A = {0, 1}, s = 8, L = 2, M = 4, s0 = 8, s1 = 6, s2 = 8, s3 = 3. The
length of the time series n ∈ {1000, 1500, . . . , 20000}. In the first series of experiments the
transition probabilities were chosen randomly for the null hypothesis H0. In the second
series of experiments transition probabilities were chosen randomly to provide alternative
hypothesis H1. In both series the frequency of the decision “accept the hypothesis H1” was
calculated at the fixed value of n:

νρ =
1
U

U∑
u=1

I{ρu(n) > ∆},

where ρu(n) is the value of ρ(n) calculated by the u-th realization. In the first series νρ is the
estimator of the error I probability, we will denote it α̂. In the second series νρ is the estimator
of the power, we will denote it ŵ. Results for the first series of experiments are presented
in Figure 1; results for the second series of experiments are presented in Figure 2. On both
figures horizontal axis corresponds to the time series length n, vertical axis corresponds to
the value of νρ; in both cases α = 0.05. Solid line in Figure 1 plots the significance level α.
Solid line in Figure 2 plots the theoretical power (21) of the test. As we can see, theoretical
values of α and w are close enough to their experimental values α̂, ŵ respectively which are
indicated by dark circles.

Figure 1: Dependence α̂ on n.

Real data. The real data we used is a genetic sequence from the human DNA. Splitting of
genes into coding segments (exons) and noncoding segments (introns) is an important problem
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Figure 2: Dependence ŵ on n.

in bioinformatics, and fitting a stochastic model for genetic sequence is a fruitful approach to
this problem decsribed in Burge and Karlin (1997).

The sequence of introns from the human gene HSHMG17G taken from “Bioinformatics and
genomics” (http://genome.crg.es/) was analyzed. The length of the sequence n = 6922,
S+ ≤ 6, the size of the state space A is 4 (0 corresponds to nucleotide A, 1 to C, 2 to G, 3 to T).
We used in computer experiments the following three Markov chain models: fully-connected
s-order Markov chain (MC(s)), the Markov chain of order s with r partial connections (MC(s,
r)) and the Markov chain of conditional order with BMF length L (MCCO(s, L)). For each
model the value of BIC was calculated. Results are presented in Table 1. Minimum value of
BIC is marked by bold type.

Table 1: Values of BIC.
model BIC model BIC model BIC
MC(1) 17792.7 MC(4, 3) 18162.9 MCCO(3, 1) 17557.5
MC(2) 17595.7 MC(5, 1) 18108.2 MCCO(4, 1) 17472.6
MC(3) 18293.1 MC(5, 2) 17553.8 MCCO(4, 2) 18205.2
MC(4) 22252.5 MC(5, 3) 18219.8 MCCO(5, 1) 17482.5
MC(5) 39894.1 MC(5, 4) 21896.6 MCCO(5, 2) 18170.6
MC(6) 116798.2 MC(6, 1) 18119.8 MCCO(5, 3) 22616.9

MC(2, 1) 18112.9 MC(6, 2) 17568.9 MCCO(6, 1) 17448.8
MC(3, 1) 18116.7 MC(6, 3) 18150.0 MCCO(6, 2) 18139.9
MC(3, 2) 17535.8 MC(6, 4) 21849.5 MCCO(6, 3) 22520.2
MC(4, 1) 18123.6 MC(6, 5) 26457.0 MCCO(6, 4) 41618.7
MC(4, 2) 17532.9

As we can see from Table 1, the most adequate model is the Markov chain of conditional
order with parameters: s = 6, L = 1. Estimators for conditional orders are: ŝ0 = 4, ŝ1 = 3,
ŝ2 = 3, ŝ3 = 6. Estimates for transition matrices for this MCCO(6, 1) model are:

Q̂(1) =


0.484 0.376 0.083 0.057
0.463 0.405 0.085 0.047
0.251 0.181 0.373 0.195
0.312 0.201 0.294 0.193

 , Q̂(2) =


0.372 0.485 0.040 0.103
0.309 0.509 0.081 0.101
0.220 0.265 0.240 0.275
0.216 0.329 0.108 0.347

 ,
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Q̂(3) =


0.254 0.210 0.270 0.266
0.170 0.370 0.285 0.175
0.205 0.320 0.320 0.155
0.196 0.253 0.306 0.245

 , Q̂(4) =


0.201 0.181 0.331 0.287
0.099 0.326 0.276 0.299
0.125 0.230 0.342 0.303
0.125 0.230 0.342 0.303
0.193 0.206 0.215 0.386

 .

Let us note that the values of BIC close to the minimum are obtained for MCCO(4, 1) and
MCCO(5, 1). These two models describe similar dependence to MCCO(6, 1), but they have
shorter memory depth. Thus MCCO(6, 1) is chosen as the most adequate model, because the
number of parameters for all three models is the same.

7. Conclusion

In this paper we consider a new parsimonious model for discrete-valued time series called
Markov chain of conditional order. Probabilistic and statistical properties of the model are
established. Ergodicity conditions and conditions under which the stationary probability
distribution is uniform are found. Statistical estimators for parameters are constructedwhich
and their consistency is proved. Asymptotic probability distribution of the estimators for the
transition one-step probabilities is found. Statistical test for the values of transition matrices
is constructed and its asymptotic power for contigual alternatives is evaluated. Computer
experiments on simulated time series and on real DNA sequences are conducted.
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