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Abstract

This paper deals with the estimation procedure for inverse Weibull distribution under
progressive type-1I censored samples when removals follow Beta-binomial probability law.
To estimate the unknown parameters, the maximum likelihood and Bayes estimators
are obtained under progressive censoring scheme mentioned above. Bayes estimates are
obtained using Markov chain Monte Carlo (MCMC) technique considering square error
loss function and compared with the corresponding MLE’s. Further, the expected total
time on test is obtained under considered censoring scheme. Finally, a real data set has
been analysed to check the validity of the study.
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1. Introduction

In the modern lifetime scenario, it is often difficult or time taking to observe all the units
put on experiment due to some controlled or uncontrolled reasons, eg. time and cost con-
straints, accidental damage, disaster etc. The observations come from this type of situation
are called censored observation. The type-I and type-II are the two very common censoring
schemes which is widely used in the fields of survival and reliability studies. In type-I censor-
ing schemes, the experimental time is fixed, say (7p) but the number of observed failure is a
random variable while in type-II censoring schemes, number of observed failure is fixed, say
(m) but the experimental time is a random. Unfortunately, none of these censoring schemes
have discussed the importance of removals of the live units from the test at any time before
the completion of the experiment. Further, it is also possible that some units are intentionally
or unintentionally removed from the experiment while they are still alive, the data arise from
such type of phenomena call it as censored data. In survival/ reliability studies, we usually
deals with these censored data. Therefore, there is a need of more appropriate and flexible
sampling procedure for life-testing experiments. To attain this, a new censoring schemes is
introduced besides the above two schemes, namely progressively type-I and type-II censoring
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schemes which facilitates the removals of the units during the experiment.

Here, in this paper, we emphasize on estimation procedure under progressive type-II censor-
ing scheme, which is developed by Cohen (1963). The detailed description of the considered
scheme are as follows: Suppose, we have n experimental units are put on test at time (7p)
and going to observe m failure units/items during the experiment. The experiment proceeds
in such a way that when first failure x; observed, R; of the surviving units are randomly se-
lected from remaining (n — 1) surviving units and then removed i.e, we get R; removals from
the experiment and immediate after the second failure o is obtained, again Rs of the sur-
viving units are randomly selected from remaining (n — R; — 2) surviving units and removed
i.e, Ry removals obtained. This procedures continues until the m" failures. Then, at this
instance, the experiment terminates and remaining R,, =n—Rj — Re—R3—---— Rpp—1—m
surviving units are randomly removed from the experiment. If theses removals Ry = Ry =
Rs=...R,_1 = R, =0, then m = n, which correspond to complete sample situation and
if R =Re=R3=---= R;,_1 =0, then R,, = n — m, which is simply conventional type-
IT censoring. Thus the progressive type-1I censoring scheme is the generalization of type-I1
censoring schemes. This type of schemes generally obtained in medical/engineering fields.
For example, Consider a medical experiment with n cancer patients but after the death of
the first patient, some patients leave the experiment and go for treatment to other medical
institution. Similarly, after the second death a few more leave and so on. Finally, the doctor
stops taking observation as soon as the predetermined number of deaths (say, m) are recorded.

Statistical inferences based on estimation of parameters for different lifetime models under
progressive type-1I censoring scheme have been studied by Cohen (1963), Childs and Balakr-
ishnan (2000), Balakrishnan and Sandhu (1995) and cited authors therein. Balakrishnan and
Aggarwala (2000) is recommended to the readers for more detail. It may be noted here that,
in this censoring scheme, the number of removals Rj, Ro, R3, ..., at each stage are pre-fixed.
However, in some practical situations, these removals may occur at random e.g. in the previ-
ous example, the number of patients leaves the hospital at each stage is random and can not
be pre-determined. Utilizing this concept, Tse, Yang, and Yuen (2000), Wu and Chang (2003)
and Yuen and Tse (1996) have considered that the number of units removed at each stage
follows some specific distribution with certain probability for progressively censored samples.
After that, several papers have been published on the estimation of the model parameters
for various lifetime distributions under this procedure, see Singh, Singh, and Sharma (2014);
Kaushik, Singh, and Singh (2017); Singh, Singh, and Kumar (2013b) and references cited
therein.

It is assumed that the probability of removals remains same for all surviving units as well as
it remains same at all stages in the case of progressive type-II censored sample with binomial
removals. But this assumption seems to be too restrictive and unrealistic to be true in
practical situations. For example, in the case of clinical study, if the deaths are recorded in
the early stages of the test then definitely the probability of a removals will be high in the
beginning and may decrease as the time passes. On other hand, if all the patients in the study
are surviving for a longer period i.e. even the first death takes place after a long time, the
chance of a drop-out of patients will be relatively small in the beginning and may increase at
later stage. This confirms that, the probability of a drop-out at each stage of the experiment
may not be remain constant through out the entire experiment. However, this drop out rate
can not be observed although it effects the number of drop outs. Hence, one must think that
the number of removals is random in nature and it follows a binomial distribution at each
stage of removal with random probability of removal following some probability distribution.
Due to flexible nature of the beta distribution, capable of having wide range of shapes, we
have modelled the uncertainty about in the probability of a removal at various stages of
the experiment as random realization of beta variables. Compounding the distribution of
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number of removals with the probability of removals, results into the distribution of R; to
be beta-binomial and thus, the scheme named as progressive type-II censoring scheme with
beta-binomial removals, which is abbreviated as PT-II CBBR. In the present piece of work,
we have considered that the lifetime of the experimental units follow inverse Weibull (IW)
distribution. The probability density function of inverse Weibull distribution is given as,

f(z) =adz™* e 2> 0,0, X > 0. (1)

The corresponding cdf and hazard function are given by

Flx)=e ™" 2>0,a,A>0 (2)
and .
AT

h(t) = ST (3)

respectively, where a > 0 and A > 0 are the shape and scale parameters, respectively. The
plots of pdf and hazard function for different values of shape parameters are given in Figure 1.
As we can see that it is heavy tail distribution and as a — oo, the tail probability decreases.
For 0 < o < 1, the mean does not exist and for 1 < a < 2, the mean exists but the variance

does not exist.
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Figure 1: Probability density function and hazard rate for different values of shape and scale

parameters

The inverse Weibull distribution is more useful in those situations where data indicates the
non-monotone hazard rate characteristics. There are many real life examples where data
don’t shows the monotone hazard rate. For example, Langlands, Pocock, Kerr, and Gore
(1997) have studied breast cancer data and observed that the mortality increases initially,
reaches to a peak after some time and then declines slowly i.e., associated hazard rate is
modified bathtub or particularly uni-modal. Such types of data can be modelled through the
inverse Weibull (IW) distribution. Also, Nelson (1982) showed that, this distribution play
an important role in many applications including the dynamic components of diesel engines
the time to the breakdown of an insulating fluid subject to the action of a constant tension.
Calabria and Pulcini (1990) provide an interpretation of inverse Weibull distribution in the
context of the load-strength relationship for a component. Recently, Maswadah (2003) has
fitted the inverse Weibull distribution to the flood data reported by Dumonceaux and Antle

(1973)

In survival studies, the inverse Weibull distribution has been considered by several authors.
Khan, Pasha, and Pasha (2008) have discussed the classical statistical properties of IW distri-
bution. Kim, Lee, and Kang (2014) have derived the non-informative prior for the parameters
of IW distribution. Noor and Aslam (2013) have proposed the Bayes estimators of the pa-
rameters of inverse Weibull mixture distribution using type-I censored samples. Recently,
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Singh, Singh, and Kumar (2013a) have discussed the classical as well as Bayesian estimation
procedures for unknown parameters of inverse Weibull distribution under conventional type-I
and type-II censoring schemes. Thus, there is a need to developed a estimation procedure
(classical as well as Bayesian) for IW distribution under more realistic and advanced censor-
ing scheme such as progressive censoring schemes, where removals have also some probability
distributions.

The main objective of this chapter is to provide the maximum likelihood estimates and Bayes
estimates of unknown parameters under progressive type-II censoring scheme, where removals
follow the beta-binomial probability law. The Bayes estimates are obtained using informative
and non-informative prior under squared error loss function. It is noted here that the estimates
obtained are not in explicit forms and they can be analysed by some suitable numerical
integration technique. Therefore, we use Newton-Raphson method to find MLEs. MCMC
technique has been used to solve the integration involve in posterior distribution. Also, we
compare the MLEs with corresponding Bayes estimates of the unknown parameters by Monte-
Carlo simulations.

The rest of the chapter is organized as follows: the maximum likelihood estimators (MLEs)
of the parameter are obtained under the progressive type-1I censored data with beta-binomial
removals in section 2. In section 3, we have obtained Bayes estimators for unknown param-
eters of the IW distribution under progressive type-II censoring scheme with beta-binomial
removals. The risk of estimates has been obtained. The comparison of MLE and correspond
Bayes estimator under squared error loss function in term of their risks have been studied in
section 4. A real data study to illustrate the application of the results in section 5. Finally,
conclusions are presented in section 6.

2. The likelihood function

The likelihood function under progressive type-II censoring with pre-determined number of

removals R = (R; =71, Ry =79, , Ry, = 1) is given by
L(z|a,A) = C [ f(wir ) {1 = F(zi, 0, N}, (4)
i=1

where, C =n(n—m —ry)....n —m — > r; + 1). Substituting (1) and (2) into (4), we get
i=1

L(a, X; §|R =r) = Ca™\"e A iz T " ﬁ {x;o‘fl (1 - e_)‘mi_a)n} . (5)
i=1

It has been discussed above that in the progressive censoring scheme if the experimental units
are removed from the test with given probability, say p, then following Tse et al. (2000), the
number of removals at it" stage is given by,

i—1 ;
n—m—>y, rj

n—m— T’j
= )p’“i(1 —p) =i =1,2,,m— 1 (6)

Pr(R; = rilp) = (

i

Further, it is assumed in the considered form of the censoring scheme that the probability of
removals is not fixed over whole of the experimentation period and assumed to be a random
variable following the probability density function

P 1=-p)hE>0,(>00<p< L. (7)

90160 = 5
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Thus, the unconditional distribution of R}s can be derived as follows

1
Pr(R; =1;,§,¢) = /PT(RZ- = 1i|p)g(pl¢, {)dp (8)
0

Substituting (6) and (7) in (8), we get,

1—1

1 i

1 n—m— Zr n—m— 3 r;j+¢—1

Pr(R; =7i,6.0) = g <>< ]> /Wﬁ (l=p) = dp
0

After simplification, which can be written as

n—mfiirv B(ﬁ-ﬁ-m (+n—m— zi:rj)
pr(Ri:rhg,c):( z j> -

i—1

where, B(a,b) = a{z_l;gb,§C>0n—0 ;M= m — erJ—l o (m—1).
j=

It is the probability mass function (pmf) of beta—blnomlal distribution and it is denoted by

B(n',€, Q).
Thus, the joint probability of Ry = r1, Ry = ro, ..., Ry, = 1 is given by

P(R=r,£,¢) = P[R1 = r1] x P[Ry = ra|Ry = 1] x - - x

(10)
P[Rmfl = rmfl‘RmfZ =Tm_2,.., = rl]

Now, we further assume that R.s is independent of z}s for all . Then, the full likelihood
function takes the following form

L(f? 0,R,¢, C) = L(f? @|R)P(R:I‘,f7 C)

m

= CamM\e A" H {xi_o‘_l (1 - ef)‘“iiayi}

=t ' (11)
_— n—m—i_lrj B <§+Ti, <+nm]§rj>
11 ( ' ) B(€.C)

Maximum likelihood estimation for o« and A\

The likelihood function for progressively type-1I censored sample with beta-binomial removals
from (11) can be re-written as,

L(@, @, A R ,C) o Li(, AlR)La(€, C| ), (12)
where .
Li(a, A[R) = a™A"e AT T [;g;a*l (1 - e—kﬂff&)”} (13)
i=1
and

m—1 n_m—iilr- B<f+ri7f+n—m_irj)
weam =11 (" " -

81
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It may be noted here that L;(a, A\|R) involves the parameters of the considered model but it
is independent of the parameters of the distributions considered for removal probability. On
the other hand Ly(&, (|R) is free from the parameters of the considered model and includes
only the parameters of the distribution of the probability of removals. Therefore for finding
the MLE of o and A\, we must use L;(a, A|R) only. On maximizing the likelihood function
given by Li(a, A|R), we obtain the maximum likelihood estimates for model parameters «
and A. Hence, the corresponding log-likelihood function of (13) is given by,

m m m
InL; = lnC—l—mlna—i—mln)\—)\Zx;a - (a—l—l)Zlnxi—i—ann(l —e_)‘QC;A) (15)
i=1 = =

Then, the MLEs & and )\ of v and A, respectively can be obtained as the simultaneous solution
of the following two non-linear equations:

T_)\i “Ylnz;) — Zlnxl—i—)\z [n '_inxi] (16)
@ i=1 i=1 1—e?m)

and

DY [x Sl ] - (1)

i=1 -1 L(1—e AT )

As the above equations cannot be evaluated analytically, one can use numerical technique such
as Newton-Raphson method to solve these and find the MLEs. While attempting to obtain
interval estimates, we note that, the exact distribution of MLEs are not easy to obtain, we
suggest to use the concept of large sample theory to obtain the confidence intervals based on
I (o, ), the Fisher‘s information matrix, which can be estimated by

_dh’12L _dinlL
I (&75\> _ [ do d)\da] (18)
dlnL dlnL .
(a.3)

 dad) d\2

The diagonal elements of I~} (02, 5\) provides the asymptotic variances for the parameters «

and A\, respectively. Thus, two-sided 100(1 — )% normal approximation confidence interval

of @ and A can be obtained as {d F Zy 2\ var(a )} and {)\ F Zy)2 var():)}, respectively.

Maximum likelihood estimation for ¢ and (:

From equation (14), the joint probability of R=r is given by

PR=r,{,()=C WHBf‘FTz,n—m Z"”J"‘C (19)

7=1

Where, C* = ——=m!
IT ril(n—m— '21 ri)!
j=

i=1
Taking logarithm on both sides of equation (19), we get

m—1

LogP =In(C*) — (m — 1)[InT(§) + InT'(¢) —InT(£+ ¢)] + Z InT(§ + 1)
i=1

m—1 3 m—1 i—1
+Y WmT(n=m=Y rj+{) =Y WmT(n—m=>Y rj+{+()
i=1 j=1 i=1 j=1
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The MLEs é and é of £ and (, respectively can be obtained as the simultaneous solution of
the following two normal non-linear equations:

(m=1) p ey m=1 = Del€+74) =1 _
- &) + o D€+ Q)+ Y e =0
INGS) PE+¢) = TE+n) 3 I'(n—m— ém +&+0)
" (21)
m— Dg(n—m—iﬁ‘f‘o
(m — 1)D (m—1) 1 j=1
- O+ AP+ + i
I'(¢) I'(€+0) =1 T'(n—m— 217"] +¢)
. = (22)
m-1Dc(n—m—=73"71;+{+()
. ERaY
=l T'(n—m— ;lrj +&+¢)

Where D,(¢p(a)) = %F (¢(a)) is dia-gamma function. The equation’s are not solvable in nice
closed form therefore, we suggest the use of iterative methods.

3. Bayes estimation

In the Bayesian paradigm, we need to assume the prior distributions for unknown model
parameters. The prior probability density for the parameters o and A are assumed to be of
the following forms

p1
n

g1 (@) = e %Ml 0 >0, up >0, 11 >0 (23)

T
b2
g2 (\) = 2722\l XS0, g >0, vy >0, (24)
Lpa
where, p1, v1, po and o are the hyper-parameters. The joint prior pdf of  and A may be
obtain as,

gla,N)=g1(@)g2(A) 5 a>0, A>0 (25)

Thus, the joint posterior of a and X is given by

J
W(a,)\’if) = W (26)

where,

J=Ja,\) = =1 ymua =1~ (viatue A+ A ST 27 ) H [xfa* (1 _ e-”f“)”}

%
i=1

Let h(-) be a function of @ and A. Then, the Bayes estimator of A(-) under the squared error

loss function is given by,

~

hp(a,\) = Ez(h(a, X))
L2 h(a, A) J dad
[ T dovdn

(27)
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It is clear from the expression (26) that there is no closed form for the estimators, so we
suggest using an MCMC procedure to compute the Bayes estimates, see (Smith and Roberts
1993; Brooks 1998; Hastings 1970) for more detail. After getting MCMC samples from the
posterior distribution, we can find the Bayes estimate for the parameters in the following way

N
1
[E(©|data)] = | —— g CH
N=No, 54

where Ny is burn-in period of the Markov chain and ©; = [o, )\i]l. For computation of the
highest posterior density (HPD) interval of ©, order the MCMC sample of © as O, O(2),
O3), -+, O(n)- Then construct all the 100(1-v)% credible intervals of © say (O (1), O(n[1—y|+1))
(©@2); ON[1=7]+2)) = (O ny]), O(ay)- Finally, the HPD credible interval of a and 3 is that
interval which has the shortest length.

In order to obtain the MCMC samples from the joint posterior density of o and A, we use
the Metropolis-Hastings (M-H) algorithm. We consider a bivariate normal distribution as the
proposal density i.e. Na(u,Y) where ¥ is the variance-covariance matrix. It may be noted
here that if we generate observations from the bivariate normal distribution, we may get
negative values also, which are not possible as the parameters under consideration are positive
valued. Therefore, we take the absolute value of the generated observations. Following this,
the Metropolis-Hastings algorithm associated with the target density 7(-) and the proposal
density Na(p, ) produces a Markov chain ©% through the following steps.

(D Set initial values Oy = [ay, )\0}/.
@ Generate new candidate parameter values 0, = [, )\*]' from No(u, ).

@ Calculate the ratio

p(0.,0,1) = min { 72,1}
@ Draw u from uniform(0,1).

Accept ©, as 0; if u < p(04,0;_1).
If ©, is not accepted, then ©; = ©;_1.

In using the above algorithm, the problem arises as to how to choose the initial guess. Here, we
propose the use of the MLEs of («, \), obtained by using the method described in section 2, as
initial values for the MCMC process. The choice of covariance matrix ¥ is also an important
issue; see Natzoufras (2009) and Kaushik et al. (2017) for details. One choice for ¥ would
be the asymptotic variance-covariance matrix I~'(, 5\) While generating M-H samples by
taking ¥ = I-1(a, 5\), we noted that the acceptance rate for such a choice of ¥ is about
15%. By acceptance rate, we mean the proportion of times a new set of values is generated
at the iteration stages. It is well known that if the acceptance rate is low, a good strategy is
to run a small pilot run using a diagonal ¥ as a rough estimate of the correlation structure
for the target posterior distribution and then re-run the algorithm using the corresponding
estimated variance-covariance matrix; for more details see Gelmen, Carlin, Stern, and Rubin
(1995). Therefore, we have also used the latter described strategy for the calculations in the
following sections.

4. Expected total time on test

In practice, it is also desired to have an idea of the duration of a life test since the experiment
termination time is directly associated with the cost of the experiment. For progressive
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type-II censoring scheme, the termination time is given by the expectation of the m** order
statistics. From Balakrishnan and Aggarwala (2000), the conditional expectation of X, given
R = (Ry =r1,Ry=r9,..., Ry = 1) can be defined as

E (X R) = Z fj &l m_) () / sf (@) P e (28)
lhi=1  Ilp=1 H ( )

Where, h(l;) = Z + 4. Putting (1), (2) in (28) and then simplifying, we have

E(Xm| R)=C(r)ax ) _ .. Y (-1)= m_lilm / g% Am)z™ gy (29)
— — Vi

The expected termination time PT-II CBBR is evaluated by taking the expectation on both
sides of (29) with respect to the R. That is,

E (Xn| R)]
9(r1) 9(r2)  g(rm—1) (30)
=Y > .. > PR=r,&QE (Xnl R)

Where, g(r;)) =n—m —r; — ... — 1i_1.

5. Simulation study

In this section, we have compared the performances of the various estimators on the basis of
their mean square errors (MSEs). It may be mentioned here that the exact expression for
the mean square errors cannot be obtained, because the estimators are not in explicit form.
Therefore, MSEs are estimated on the basis of a Monte-Carlo simulation study of 2000 sam-
ples. For this purpose, we generated a specified number of observations from the distribution
given in equation (1) for fixed values of the parameters under the specified censoring schemes
and calculated different estimates of o and A following the procedure described in the previ-
ous sections. This process was repeated 2000 times to obtain the simulated biases and MSEs.
We have computed the MLEs by using the Newton-Raphson algorithm and Bayes estimates
using MCMC method. The ML and Bayes estimates of (a, A) are denoted as (a1, Aarz) and
(ap, A\B), respectively. It is noted that Newton-Raphson algorithm has a convergence rate of
90%-95%. We have reported the results omitting the cases where algorithm do not converge.
To simulate a progressive type-1I censored sample from the considered distribution, we have
used the algorithm given by Balakrishnan and Cramer (2014).

It may be noted here that the MSE of these estimators will depend on the sample size n, m,
values of a;, A and hyper-parameters u1, po, 1 and vo. We considered a number of values for
the sample size n; namely n = 10, 20, 30, 40 and 50 and m is taken as 50%, 60%, 70%, 80%, 90%
and 100% of the n. For an informative prior, the hyper parameters are chosen on the basis of
the information possessed by the experimenter, denoted as Bayesl. Also, we have considered
the choice of hyper-parameters as pu; = ps = v; = vo = 0 which reduces the prior to a
non-informative prior, denoted as Bayes2. In most of the cases, the experimenter can have
a notion of what are the expected value of the parameter and can always associate a degree
of belief to this value. In other words, the experimenter can specify the prior mean and
prior variance for the parameters. The prior mean reflects the experimenter’s belief about the
parameter in the form of its expected value and the prior variance reflects his confidence in
this expected value. Keeping this point in mind, we have chosen the hyper-parameters in such

85
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a way that the prior mean is equal to the true value of the parameter and the belief in the
prior mean is either strong or weak, i.e. the prior variance is small or large, respectively; for
details see Singh et al. (2013a). The MSE’s of the estimates of parameters with corresponding
confidence interval have been calculated and the results are summarized in Tables 1, 2 and
(3). From Tables 1-3, we have observed that the both MLEs and Bayes estimates provides
more accurate estimates with increasing sample information m although, the Bayes estimates
of the model parameters are more nearer to the true values of the model parameters. The
HPD intervals have shorter width than the asymptotic confidence intervals.

Table 1 provides the MSE of estimates of the parameters for « =2, A =3, £ =0.1, ( =3
and hyper-parameters pu; = 4, uo = 6,11 = 2,9 = 3. It can be seen from the Table that in
general, the MSE’s decrease as n increases in all the considered cases. It can also be seen that
the MSE of the MLE is more than that of the corresponding Bayes estimate in all cases but
the difference between the MSEs of the Bayes and ML estimates decreases for increases in the
value of n. It is also noted here that MSEs decreases as m increases for fix value of n. Similar
trend found in the MSE of the Bayes estimates and Bayes estimates with informative prior
having least MSE. The 95% asymptotic interval estimates are wider than HPD intervals. In
Table 2, we have shown the effect of variation of £ and (. Here, we noticed that increment
in the values of £ reflect the negative effect on the performance of all considered point and
interval estimates, however as ( increases the estimators performance becomes better. Table
3 provide the effect of magnitude of parameters a and A on the considered estimators. As
« increases or \ increases, in both of the situation the estimated MSEs of all the estimators
increases, along with the width of the asymptotic and HPD interval estimators are increases.

For investigating the expected total test time (TTT), we have considered the different com-
bination of the model parameters which are given below:

a=2, A =3, £(=0.5,1.0), ¢{=(15,9,3,1,0.5,0.25),(15,9,3,1,0.5,0.25)};
a=0.8 A=16, ((=0.5,1.0), &{=(15,9,3,1,0.5,0.25),(15,9,3,1,0.5,0.25)};
a=2, A =3, &(=1,3), ¢{= (15,9,3,1,0.5,0.25), (15,9, 3,1,0.5,0.25) };
a=0.8 X=16, ((=1,3), ¢&{=(15,9,3,1,0.5,0.25), (15,9, 3,1,0.5,0.25) }.
For each combination, we have taken n = (10,20, 30,40 and 50) and for each n, m is chosen
so that the sample contains the 100%, 90%, ---, 50% units of the available sample units,

respectively. All results are summarised in Tables 4 - 7. From this, we have observed that
the expected TTT is an increasing function of n and m as it is expected. It is interesting
to know that the expected TTT decreases as ( increases while £ is fixed and on other hand
expected TTT increases as £ increases for given fixed value of (. It can also be observed that
the expected T'T'T increases as « increases and decreases as A decreases.

6. Real data illustration

In this section, we illustrate our proposed methodology with the four real examples. The first
data set considered by us, represents the times between successive failures of air conditioning
equipment in a Boeing 720 airplane, reported by Proschan (1963):

75 57 48 29 502 12 70 21 29
386 99 27 153 26 326

Second data set used by Bhaumik, Kapur, and Gibbons (2009), is vinyl chloride data obtained
from clean upgradient monitoring wells in mg/litre:

5.1 1.2 1.3 0.6 0.5 24 0.5 1.1 8.0
0.8 0.4 0.6 0.9 0.4 2.0 0.5 5.3 3.2
2.7 2.9 2.5 2.3 1.0 0.2 0.1 0.1 1.8

0.9 2 4 6.8 1.2 0.4 0.2
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HPD intervals for the paramaters for fixed values of a =2, A=3,£=0.1, (=3
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n

m

MLEs

Asymptotic CI

Bayesl

HPD CI

Bayes2

HPD CI

20

30

10

12

14

16

18

20

18

21

24

27

30

30

35

40

50

2.0951(0.1175)
3.2994(0.6705)
2.0848(0.1144)
3.2889(0.6389)
2.0812(0.1119)
3.2751(0.6153)
2.0708(0.1121)
3.2651(0.6127)
2.0607(0.1086)
3.2544(0.5962)
2.0511(0.1068)
3.2365(0.5746)
2.0449(0.1048)
3.2279(0.5487)
2.0383(0.0722)
3.1577(0.3589)
2.0311(0.0703)
3.1553(0.3159)
2.0479(0.0689)
3.1520(0.3054)
2.0378(0.0657)
3.1219(0.2948)
2.0281(0.0557)
3.1018(0.2495)
2.0460(0.0619)
3.1277(0.4023)
2.0360(0.0604)
3.1158(0.3608)
2.0336(0.0609)
3.1127(0.3005)
2.0306(0.0485)
3.0915(0.2328)
2.0210(0.0442)
3.0819(0.2003)
2.0109(0.0408)
3.0765(0.1744)

(1.8206,2.2811)
(1.9215,4.5489)
(1.8265,2.2749)
(1.9833,4.4865)
(1.8312,2.2699)
(2.0296,4.4408)
(1.8305,2.2704)
(2.0354,4.4355)
(1.8376,2.2634)
(2.0669,4.4038)
(1.8413,2.2599)
(2.1097,4.3606)
(1.8223,2.2327)
(2.0261,4.1739)
(1.8859,2.1692)
(2.3980,3.8031)
(1.8896,2.1650)
(2.4820,3.7185)
(1.8931,2.1621)
(2.5027,3.6987)
(1.8986,2.1560)
(2.5240,3.6780)
(1.9186,2.1361)
(2.6121,3.5893)
(1.8894,2.1314)
(2.2880,3.8648)
(1.8915,2.1280)
(2.3686,3.7836)
(1.8908,2.1288)
(2.4868,3.6650)
(1.9150,2.1050)
(2.6194,3.5321)
(1.9241,2.0960)
(2.6834,3.4689)
(1.9306,2.0901)
(2.7337,3.4175)

1.9836(0.0775)
3.1328(0.4308)
1.9932(0.0744)
3.1224(0.4144)
2.0008(0.0720)
3.2048(0.3954)
2.0102(0.0719)
3.1950(0.3909)
2.0002(0.0682)
3.1853(0.3744)
1.9902(0.0660)
3.1670(0.3573)
1.9333(0.0645)
3.1693(0.3361)
1.9867(0.0564)
3.0992(0.2815)
1.9866(0.0552)
3.0782(0.2449)
1.9996(0.0524)
3.0577(0.1660)
2.0010(0.0502)
3.0438(0.2225)
2.0009(0.0400)
3.0240(0.1768)
2.0122(0.0466)
3.0696(0.3005)
2.0016(0.0448)
3.0409(0.2657)
2.0102(0.0447)
3.0420(0.2221)
2.0181(0.0329)
3.0407(0.1552)
2.0078(0.0282)
3.0304(0.1261)
1.9976(0.0247)
3.0254(0.1052)

(1.9036,2.1983
(2.4173,4.0567
(1.9094,2.1930
(2.4485,4.0252
(1.9135,2.1886
(2.4850,3.9887
(1.9137,2.1876
(2.4936,3.9802
(1.9206,2.1814
(2.5243,3.9491
(1.9252,2.1763
(2.5569,3.9164
(1.9047,2.1502
(2.4624,3.7405
(1.9204,2.1346
(2.5665,3.6360
(1.9223,2.1327
(2.6362,3.5664
(1.9279,2.1268
(2.7858,3.4167
(1.9325,2.1234
(2.6781,3.5244
(1.9518,2.1037
(2.7653,3.4372
(1.9218,2.0986
(2.5047,3.6442
(1.9248,2.0952
(2.5714,3.5785
(1.9250,2.0948
(2.6537,3.4954
(1.9479,2.0727
(2.7809,3.3697
(1.9564,2.0632
(2.8363,3.3148
(1.9637,2.0572
(2.8760,3.2750

N2 NNt NN NI NGNS NI NN NI SN NI A s N S NN N SN N2 N N

2.0675(0.1037)
3.2707(0.5914)
2.0778(0.0994)
3.2612(0.5559)
2.0595(0.0993)
3.2219(0.5419)
2.0693(0.0956)
3.2118(0.5220)
2.0594(0.0927)
3.2016(0.5056)
2.0496(0.0908)
3.1834(0.4851)
2.0177(0.0882)
3.0871(0.4616)
1.9778(0.0675)
3.0170(0.3369)
2.0099(0.0655)
3.0716(0.2931)
1.9861(0.0638)
3.1264(0.2480)
1.9755(0.0599)
3.0960(0.2701)
1.9655(0.0502)
3.0764(0.2256)
2.0136(0.0577)
3.0975(0.3718)
2.0035(0.0559)
3.1153(0.3314)
2.0168(0.0557)
3.1108(0.2756)
2.0301(0.0434)
3.0830(0.2064)
2.0208(0.0389)
3.0727(0.1747)
2.0105(0.0357)
3.0672(0.1508)

(1.8501,2.2509)
(2.0943,4.3746)
(1.8582,2.2426)
(2.1631,4.3060)
(1.8587,2.2430)
(2.1901,4.2790)
(1.8662,2.2356)
(2.2286,4.2410)
(1.8718,2.2297)
(2.2600,4.2089)
(1.8759,2.2261)
(2.2996,4.1694)
(1.8576,2.1980)
(2.2103,3.9909)
(1.8978,2.1577)
(2.4516,3.7513)
(1.9009,2.1539)
(2.5354,3.6670)
(1.9045,2.1503)
(2.6230,3.5796)
(1.9119,2.1429)
(2.5800,3.6225)
(1.9302,2.1242)
(2.6664,3.5360)
(1.8994,2.1216)
(2.3588,3.7921)
(1.9020,2.1175)
(2.4362,3.7136)
(1.9033,2.1173)
(2.5444,3.6067)
(1.9267,2.0936)
(2.6776,3.4732)
(1.9352,2.0847)
(2.7390,3.4128)
(1.9420,2.0789)
(2.7848,3.3663)
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Table 2: MLEs and Bayes estimators (MSE in brackets) with corresponding asymptotic and
HPD intervals for the paramaters for fixed value of a =2, A =3, n =50, n = 35

13 ¢ MLE Asymptotic CI Bayesl HPD CI Bayes2 HPD CI
0.1 0.1 2.0135(0.0607) (1.9315,2.2814) 2.0339(0.0448) (1.9657,2.1985) 2.0777(0.0555) (1.9431,2.2518)
3.0823(0.2975) (2.6525,4.5494) 3.0120(0.2199) (2.8180,4.0571) 3.0804(0.2737) (2.7078,4.3751)

0.5 2.0117(0.0606) (1.9315,2.2752) 2.0320(0.0451) (1.9645,2.1939) 2.0758(0.0551) (1.9447,2.2434)
3.0793(0.2981) (2.6513,4.4870) 3.0092(0.2205) (2.8173,4.0254) 3.0769(0.2728) (2.7092,4.3062)

3 2.0094(0.0608) (1.9313,2.2701) 2.0302(0.0451) (1.9645,2.1890) 2.0738(0.0552) (1.9436,2.2435)
3.0759(0.2979) (2.6519,4.4413) 3.0060(0.2195) (2.8189,3.9889) 3.0738(0.2732) (2.7085,4.2791)

15 2.0076(0.0603) (1.9323,2.2706) 2.0279(0.0443) (1.9663,2.1885) 2.0718(0.0557) (1.9426,2.2356)
3.0726(0.2972) (2.6538,4.4362) 3.0029(0.2196) (2.8189,3.9802) 3.0707(0.2722) (2.7106,4.2418)

0.5 0.1 2.0296(0.0615) (1.9305,2.2643) 2.0502(0.0453) (1.9646,2.1821) 2.0131(0.0557) (1.9428,2.2297)
3.1066(0.3000) (2.6480,4.4044) 3.0364(0.2226) (2.8130,3.9495) 3.1052(0.2753) (2.7048,4.2092)

0.5 2.0278(0.0613) (1.9307,2.2605) 2.0489(0.0448) (1.9654,2.1767) 2.0113(0.0560) (1.9427,2.2266)
3.1042(0.3005) (2.6469,4.3610) 3.0332(0.2216) (2.8150,3.9164) 3.1022(0.2752) (2.7053,4.1696)

3 2.0260(0.0612) (1.9073,2.2332) 2.0464(0.0455) (1.9412,2.1508) 2.0908(0.0555) (1.9209,2.1987)
3.1005(0.2997) (2.5140,4.1747) 3.0308(0.2212) (2.6807,3.7407) 3.0986(0.2747) (2.5712,3.9915)

15 2.0244(0.0616) (1.9074,2.1698) 2.0446(0.0448) (1.9427,2.1348) 2.0885(0.0562) (1.9193,2.1582)
3.0975(0.2993) (2.5150,3.8031) 3.0273(0.2215) (2.6801,3.6365) 3.0954(0.2743) (2.5716,3.7516)

3 0.1 2.0220(0.0609) (1.9079,2.1653) 2.0420(0.0449) (1.9421,2.1336) 2.0862(0.0557) (1.9199,2.1546)
3.0946(0.2994) (2.5148,3.7186) 3.0243(0.2212) (2.6810,3.5674) 3.0926(0.2742) (2.5722,3.6672)

0.5 2.0196(0.0614) (1.9069,2.1629) 2.0401(0.0451) (1.9419,2.1269) 2.0847(0.0556) (1.9207,2.1506)
3.0913(0.2992) (2.5147,3.6990) 3.0211(0.2209) (2.6816,3.4168) 3.0897(0.2741) (2.5722,3.5800)

3 2.0177(0.0609) (1.9082,2.1563) 2.0379(0.0450) (1.9420,2.1237) 2.0817(0.0561) (1.9192,2.1432)
3.0886(0.2988) (2.5160,3.6782) 3.0184(0.2208) (2.6822,3.5244) 3.0869(0.2743) (2.5719,3.6233)

15 2.0155(0.0612) (1.9079,2.1363) 2.0359(0.0448) (1.9425,2.1038) 2.0804(0.0554) (1.9206,2.1245)
3.0856(0.2984) (2.5160,3.5897) 3.0155(0.2208) (2.6816,3.4380) 3.0837(0.2736) (2.5736,3.5367)

15 0.1 2.1158(0.0640) (1.8848,2.1323) 2.1226(0.0472) (1.9202,2.0996) 2.0991(0.0588) (1.8970,2.1219)
3.2392(0.3131) (2.4625,3.8649) 3.1651(0.2320) (2.6354,3.6446) 3.2371(0.2872) (2.5214,3.7930)

0.5 2.0744(0.0627) (1.8872,2.1283) 2.0803(0.0459) (1.9231,2.0958) 2.0579(0.0577) (1.8991,2.1184)
3.1754(0.3074) (2.4739,3.7840) 3.1029(0.2265) (2.6458,3.5791) 3.1732(0.2816) (2.5331,3.7142)

3 2.0340(0.0615) (1.8900,2.1289) 2.0702(0.0455) (1.9237,2.0953) 2.0176(0.0564) (1.9020,2.1183)
3.1131(0.3007) (2.4862,3.6656) 3.0427(0.2222) (2.6543,3.4964) 3.1112(0.2764) (2.5425,3.6071)

15 2.0320(0.0618) (1.8888,2.1057) 2.0687(0.0457) (1.9233,2.0737) 2.0157(0.0560) (1.9022,2.0942)
3.1103(0.3003) (2.4878,3.5327) 3.0394(0.2220) (2.6539,3.3698) 3.1083(0.2761) (2.5430,3.4740)
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Table 3: Average ML estimators and Bayes Estimators (Average MSE in brackets) with
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corresponding asymptotic/HPD Confidence interval for fixed value of £ = 0.1, ( = 3, n=50
and m=35
@ A Par ML Bayesl Bayes2
Estimates(MSE) Asymptotic CI ~Estimates(MSE) HPD CI Estimates(MSE) HPD CI
08 05 a 0.8025(0.0280)  (0.7472,0.8558)  0.8015(0.0124) (0.7770,0.8244)  0.8016(0.0223) (0.7575,0.8443)
A 0.5293(0.1661)  (0.2081,0.8495)  0.5240(0.0875) (0.3546,0.6937)  0.5295(0.1413) (0.2561,0.8021)
16 « 0.8051(0.0309) (0.7452,0.8648)  0.8018(0.0152) (0.7723,0.8314)  0.8043(0.0253) (0.7546,0.8534)
A 1.6290(0.1781)  (1.2849,1.9731)  1.6247(0.0996) (1.4310,1.8164)  1.6297(0.1534) (1.3328,1.9251)
2 «a 0.8066(0.0340)  (0.7401,0.8714)  0.8030(0.0182) (0.7661,0.8375)  0.8056(0.0283)  (0.7494,0.8596)
A 2.0291(0.1901)  (1.6619,2.3953)  2.0248(0.1117) (1.8080,2.2393)  2.0298(0.1652) (1.7096,2.34883)
3 « 0.8098(0.0369)  (0.7377,0.8%09)  0.8037(0.0212) (0.7619,0.8441)  0.8080(0.0314) (0.7467,0.8679)
A 3.0295(0.2019)  (2.6385,3.4186)  3.0249(0.1236) (2.7854,3.2630)  3.0297(0.1773) (2.6868,3.3717)
1 05 a 1.0022(0.0400)  (0.9236,1.0792)  1.0009(0.0243) (0.9531,1.0475)  1.0019(0.0345) (0.9340,1.0686)
A 0.5363(0.2139)  (0.1205,0.9510)  0.5306(0.1357) (0.2668,0.7936)  0.5366(0.1892) (0.1689,0.9042)
16 « 1.0051(0.0431)  (0.9215,1.0881)  1.0017(0.0273) (0.9480,1.0550)  1.0040(0.0375) (0.9311,1.0767)
A 1.6366(0.2261) (1.1977,2.0748)  1.6302(0.1476) (1.3435,1.9163)  1.6368(0.2013) (1.2458,2.0268)
2 a 1.0065(0.0460)  (0.9164,1.0954)  1.0023(0.0303) (0.9434,1.0613)  1.0057(0.0404) (0.9264,1.0833)
A 2.0369(0.2380) (1.5743,2.4977)  2.0302(0.1597) (1.7203,2.3400)  2.0367(0.2133) (1.6228,2.4502)
3 a 1.0092(0.0488)  (0.9138,1.1040)  1.0035(0.0333) (0.9378,1.0680)  1.0075(0.0435) (0.9233,1.0916)
A 3.0367(0.2500) (2.5505,3.5216)  3.0300(0.1717) (2.6969,3.3631)  3.0371(0.2253) (2.5993,3.4734)
2 05 a 2.0021(0.0521)  (1.9001,2.1032)  2.0014(0.0362) (1.9294,2.0710)  2.0018(0.0464) (1.9109,2.0923)
A 0.5721(0.2619)  (0.0608,1.0832)  0.5608(0.1836) (0.2015,0.9181)  0.5738(0.2374) (0.1096,1.0364)
16 « 2.0056(0.0549) (1.8972,2.1122)  2.0017(0.0393) (1.9245,2.0786)  2.0040(0.0493) (1.9073,2.1005)
A 1.6725(0.2739) (1.1372,2.2061)  1.6604(0.1955) (1.2782,2.0422)  1.6735(0.2494) (1.1867,2.1595)
2 a 2.0069(0.0580) (1.8926,2.1192)  2.0021(0.0422) (1.9198,2.0846)  2.0058(0.0524) (1.9028,2.1071)
A 2.0730(0.2861) (1.5136,2.6302)  2.0603(0.2076) (1.6550,2.4649)  2.0735(0.2613) (1.5637,2.5829)
3 a 2.0091(0.0610) (1.8896,2.1286)  2.0031(0.0452) (1.91452.0918)  2.0076(0.0554) (1.8987,2.1156)
A 3.0721(0.2980) (2.4911,3.6531)  3.0602(0.2196) (2.6316,3.4883)  3.0733(0.2732) (2.5395,3.6060)
3 05 « 3.0022(0.0539) (2.8950,3.1078)  3.0005(0.0383) (2.9255,3.0759)  3.0017(0.0483) (2.9057,3.0966)
A 0.6080(0.2919)  (0.0354,1.1810)  0.5907(0.2137) (0.1711,1.0093)  0.6103(0.2674) (0.0855,1.1339)
16 « 3.0050(0.0570) (2.8930,3.1169)  3.0018(0.0413) (2.9201,3.0825)  3.0046(0.0513) (2.9034,3.1050)
A 1.7087(0.3041)  (1.1117,2.3043)  1.6909(0.2257) (1.2478,2.1322)  1.7099(0.2793) (1.1621,2.2576)
2 « 3.0062(0.0600) (2.8880,3.1234)  3.0029(0.0443) (2.9149,3.0888)  3.0051(0.0544) (2.8977,3.1114)
A 2.1089(0.3160)  (1.4880,2.7277)  2.0900(0.2377) (1.6238,2.5564)  2.1101(0.2913) (1.5384,2.6805)
3 a 3.0100(0.0630) (2.8855,3.1327)  3.0032(0.0473) (2.9106,3.0961)  3.0079(0.0574) (2.8948,3.1196)
A 3.1090(0.3280) (2.4653,3.7512)  3.0904(0.2497) (2.6010,3.5794)  3.1098(0.3034) (2.5150,3.7038)
Table 4: Expected total time on test E[x,,| for a =2, A =3
n m £=0.5 ‘ E=1
¢— 15 9 3 T 05 025 01 15 9 3 T 05 025 01
10 5 4.14 4.29 5.34 9.92 16.31 20.21 22.37 4.37 4.76 7.18 15.24 19.69 21.95 23.14
10 6 562 587 807 1624 2322 2631 2849 593 681 1172 2261 2594 27.96 20.27
10 7 793 858 1278 2573  30.81 3261 3454 885 1042 194  30.96 329 3498 34.97
10 8 1204 1346  19.66 32.86 37.81 3881 39.06 1348 1635 2834  37.7 30.62 39.61  40.66
10 9 21.43 22.97  31.68 42.81 45.37  46.36 47.26 25.23 29.19 39.97  45.63 45.62 47.16 47.15
10 10 53.76 5376 53.76  53.76  53.76  53.76 5376 5184 5184 5184 5184 5184 5184 5184
20 10 468 514 952 3275 4534 4649 5125 551 6.8 2063 4517 47.17 4822  49.46
20 12 6.64  7.66 17.31 4951 5842 5841 6260 821 1103 3493 5508 6021 602  60.19
20 14 9.97 11.89 3098 6335 6804 7019 7342 1316 1986 55.02 70.98 73.88 73.87  73.86
20 16 1668 2077 4951 7926 7925 8141 83.03 2304 3577 7044 8213 8212 8211  82.66
20 18 3379 4275 7253 923 93.73 9372 9431 464  60.01 8978 9442 9441 97.04 97.03
20 20 106.53 10653 10653 106.53 106.53 10653 106.53 105.95 10595 105.95 105.95 105.95 10595 105.95
30 15 519 612 1791 6248 7196 7599 7598 668 999 4541 7223 7531 7648  76.47
30 18 757 965 358 852 8713 914 9139 109 1838 7134 89.97 89.96 94.09 94.08
30 21 1205 1676 647  99.88 103.86 103.97 10634 1895 3551 9632 107.6 112.06 11257 11256
30 24 21.1 31.33 95.65 121.96 124.63 124.62 127.81 37.2 65.97 119.8 12234 123.86 128.91 128.9
30 27 46.95 67.09 13231 138 142.00 14208 14207 77.66 108.58 13944 14142 14141 1414 14154
30 30 155.65 15565 155.65 155.65 155.65 155.65 155.65 160.83 160.83 160.83 160.83 160.83 160.83 160.83
40 20 5.7 739 346 9122 10019 10379 10378 826 152 8056 985  99.27 102.84 10436
40 24 8.77 12.76 66.61 112.59 119.96 119.95 121.01 14.97 31.98 111.78 120.89 123.22 123.21 126.38
40 28 146 2218 98.89 144.27 14425 14424 15073 27.93 64.99 14041 1404 1517 151.69 151.68
10 32 26.37  46.63 143.81 166.69 167.99 167.98 167.97 56.84 107.87 158.83 160.86 166.28 166.27 166.26
40 36 6258 97.06 183.99 101.68 191.66 197.22 197.21 112.85 150.9 179.14 189.35 189.34 189.33 194.26
40 40 219.46 219.46 219.46 219.46 219.46 219.46 219.46 212.09 212.09 212.09 212.09 212.09 212.09 212.09
50 25 63 906 5696 12119 132.62 132.61 132.6 1046 2417 112.63 13204 13203 132.02 132.01
50 30 1014 1682 103.61 1441 15532 15546 156.27 20.67 5348 14524 149.07 153.81 1538 153.79
50 35 1741 3214 152.99 179.2 179.19 180.86 180.85 43.59 10326 17507 175.06 182.02 182.01 185.33
50 40 3332 66.71 190.01 200.61 209.79 209.78 21351 8451 156.67 19953 203.22 210.74 210.73 210.72
50 45 79.76 137.76  250.87 250.86 250.85 250.84 250.83 164.01 217.16 22250 238.58 238.57 238.56 238.55
50 50 250.99 259.99 259.99 259.99 259.99 259.99 259.99 261.62 261.62 261.62 261.62 261.62 261.62 261.62
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Table 5: Expected total time on test E[x,,]| for a« = 0.8, A = 1.6

n m =05 ‘ E=1

(— 1 9 3 1 05 0% 01 15 9 3 T 05 02 01
0 5 265 28 368 831 1577 2044 2339 287 323 546 1403 1995 2279 24.04
10 6 3.95 4.22 6.19 15.62 2525 29.11  30.93 4.43 5.11 10.08 23.86 28.04 30.14 31.5
0 7 612 676 1093 2495 3522 365 4008 698 843 1877 3380 3976 39.75  30.73
10 8 1053 1194 1974 37.02 4753 4752 5013 1279 1614 3015 4771 477 49.23  49.22
10 9 2071 2422 36.93 5477 5573 57.23 5722 2528 3Ll 478 57.36 5757 57.56 5755
10 10 63.86  68.86 68.86 68.86 68.86 0886 68.86 G488 6488 64.88 G488 6488 G488 6488
20 10 318 356 807 3595 5375 6549 6548 383 505 2164 54 57.63 6044  60.43
20 12 4.82 5.88 17.11 59.37  77.21 77.2  82.36 6.34 94 4099 76.88 78.28 80.41 82.24
20 14 824 1061 3508 8364 9271 10115 10114 1151 1883 7106 9438 955 99.96 104.02
20 16 1552 2003 6441 10847 11331 12045 12173 2336  37.1 10187 11823 11822 119.19 119.18
20 18 3647 5027 11199 13338 133.37 13336 14027 5409 8043 13515 139.35 144.84 144.83 14482
20 20 163.32 16332 163.32 16332 163.32 163.32 16332 1636 1636 1636 1636 163.6 1636  163.6
30 15 3.60 444 1850 8587 9528 10316 10953 496 827 572 98 11249 11248 112.47
30 18 5.94 791 4366 12149 13658 136.57 137.03 919 17.79 10058 128.76 136.28 136.26 136.25
30 21 1023 1557 87.09 159.28 17141 1714 17138 1805 4245 14858 162.97 16296 167.86 167.85
30 24 20.87  34.92 142.66 194.16 19859 2037 203.69 44.03 8939 180.83 199.15 199.13 199.12 201.29
30 27 55.82 8945 198.10 22860 23100 23108 233.05 105.82 16453 226.63 2284 22839 22838 233.93
30 30 27639 276.39 27639 27639 276.39 27639 276.39 2702 270.2 2702 2702 270.2 2702  270.2
40 20 406 554  39.16 13445 15345 15344 1575 648 1414 109.25 15135 151.34 1543 154.29
10 24 701 10.66 9032 180.53 189.86 197.83 197.81 1358 35.69 17215 189.22 193.74 193.73 198.72
40 28 1301 2344 15595 235.60 24285 242.84 249.26 3145 8841 22343 244.67 244.66 24465 245.11
40 32 2754 5658 224.23 28421 2842 28419 284.18  79.07 164.19 27227 28949 28047 280.46 289.45
40 36 80.51 146.86 314.85 349.19 349.18 34917 349.16 18582 27536 314.88 32604 333.13 33312 333.11
40 40 388.78 388.78 38878 38878 388.78 38878 388.78 373.99 373.99 373.09 373.99 373.99 373.99 373.99
50 25 456 TO7 7698 19046 202.82 202.8 21333 850 2395 167.62 197.49 200.65 202.65 210.87
50 30 823 1538 15751 2369 25073 250.72 257.53 2079  66.23 23933 26275 26274 262.73 262.72
50 35 1644 3633 25571 300.86 31472 32341 32339 5149 1538 313.71 336.49 33648 33647 336.45
50 40 3852 0182 358.63 36376 363.79 376.93 384.22 131.05 289.07 36852 388.16 388.15 394.25 394.24
50 45 116.4 215.53 423.94 428.49 459.53 459.52  460.2 285.76 386.26 434.95 441.18 441.17 457.89 457.88
50 50 51371 51371 51371 51371 51371 51371 51371 510.02 51002 510.02 51002 510.02 510.02 510.02

Table 6: Expected total time on test E[x,,| for a =2, A =3

n m (=1 ‘ (=3

¢— 15 9 3 T 05 0% 01 15 9 3 T 05 0% 01
0 5 2191 219 2143 1565 1006 673 486 2176 2088 1438 72 53 457 414
0 6 2011 2831 283 2209 167 1023 684 2851 2756 228 1193 806 634 558
10 7 3412 3411 341 2077 2441 1655 1043 3543 3542  20.62 199 1262 949  7.94
10 8 4169 3920 39.28 3823 332 2543 17.02 4073 4067 3624 2011 1971 1476 1241
10 9 4556 4555  45.26 4477 4384 36.80 2691 4805 46.16  46.15 3959 3254 2533 216
10 10 51.63 5163 5163 5163 5163 5163 5163 5376 5376 5376 5376 5376 53.76  53.76
20 10 50.87 4778 46.85 4138 3204 17.56 741 40.82 4749 4343 2099 974 604 473
20 12 6176 60.92 6043 57 4938 30.82 1212 5844 5843 5638 3549 1727 954 67
20 14 7245  7L1 TLO6 694 6226 4547 206 7219  69.6 68.66 5437 3051 1563 1011
20 16 86.63 8373 8135 7976 76.66 G467 3524 8119 SLI8 80.85 7299 49.68 2845 1683
20 18 9139 9138 9137 9136 8821 8367 612 9335 9334 9333 8993 7603 5175 3285
20 20 106 106 106 106 106 106 106 10653 106.53 10653 106.53 10653 106.53 106.53
30 15 7415 7414 TAI3 TL72 6356 4046 1189  T3.93 72 70.99 4472 1923 815 534
30 18 9478 9312 9222 8539 8198 6306 2287 9329 8715 8703 723 3657 146 797
30 21 10711 1071 107.09 10296 102.14 9179 4192 107.27 10567 10566 97.75 6205 2645 1257
30 24 12581 1258 12416 12415 123.61 11085 67.62 12644 12225 1211 11960 9826 50.02 22.35
30 27 13948 139.47 13526 135.25 13524 13027 10742 140.74 13938 137.96 13497 130.13 9188 4661
30 30 160.75 16075 160.75 160.75 160.75 160.75 160.75 155.65 15565 155.65 155.65 155.65 155.65 155.65
40 20 10118 10117 10116 10115 931 68.03 2042 99.31 993 9699 80.61 3433 1136 585
40 24 12061 120.6 120.59 12058 11111 97.54 3957 11948 11947 11946 11193 658 2195 8.9
10 28 14173 14172 14171 1417 14169 13092 6929 15141 147.29 140.09 140.08 10344 4454 1522
40 32 163.59 16358 163.57 16356 163.55 163.54 10928 165.94 16592 161.08 160.71 14277 8155 2877
40 36 193.74 18975 180.46 18334 183.32 18253 154.8) 191.66 18891 187.71 1841 171.09 13658  65.21
40 40 21251 21251 21251 21251 21251 21251 21251 21946 21946 21946 21946 21946 21946 219.46
50 25 1266 12650 12658 12355 12089 99.43 3345 126.17 12456 12455 107.83 5912 1651  6.76
50 30 1511 15109 15107 151.06 15038 135.61 6274 157.09 15319 153.18 14556 10678 3579  10.61
50 35 17591 175.9 17588 175.87 173.35 17334 1047 173.60 173.68 173.67 173.66 14835 6861 1867
50 40 210.41 208.61 208.6 208.59 206.75 204.72 154.5 204.31 204.3 204.29 204.27 187.87 123.06 37.49
50 45 24615 23131 2313 22872 22871 2287 210.21 23115 227.27 227.26 22725 227.24 19228  83.63
50 50 261.62 261.62 261.62 261.62 261.62 261.62 261.62 259.99 250.99 250.99 259.99 259.99 259.99 259.99
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Table 7: Expected total time on test E[z,,] for a = 0.8, A = 1.6

n m (=1 ‘ (=3

{— 15 9 3 1 0.5 0.25 0.1 15 9 3 1 0.5 0.25 0.1
10 5 24.7 2362 2148 13.71 8.66 4.75 329 2291 20.83 13.28 5.41 3.73 3.01 2.7
10 6 31.27 3126 29.61 23.74 16.01 8.72 513 3097 30.75 24.28 10.12 6.14 4.63 4.04
10 7 41.86 39.94 38.62 3436 25.15 15.53 8.46 39.52 37.68 3521 18.76 11.2 7.63 6.22
10 8 51.42 49.26  46.73 4544  37.16 26.57 15.47  47.81 47.77  43.26 32.27  20.15 13.6 10.69
10 9 57.87 57.86 57.12 57.11 51.1 42.5 28.4  56.95 55.14 55.13 49.11 36.01 2837 21.13
10 10 64.88 64.88 64.88 64.88 64.88 64.88 64.88 68.86 68.86 68.86 68.86 68.86 68.86 68.86
20 10 60.41  59.28  59.27  51.92 372 17.87 576  62.01 60.89  52.86 21.5 7.57 4.45 3.16
20 12 76.9 7575 7574 7344 59.84 3388 1047 80.34 79.99 7172 41,51 16.71 7.98 4.99
20 14 97.02  97.01 97 9497 8874 60.68 21.57 93.85 93.84 93.06 70.53 33.6 14.83 8.48
20 16 123.42 121.32 120.46 109.59 109.58 89.61 422 119.63 119.63 119.63 119.63 119.63 119.63 119.63
20 18 133.67 133.66 133.65 128.87 128.86 120.47 81.96 142.22 137.83 131.7 131.69 102.76 69.65  36.89
20 20 163.6  163.6 163.6 163.6 163.6 163.6 163.6 163.32 163.32 163.32 163.32 163.32 163.32 163.32
30 15 106.97 106.96 104.49  98.39 81.8 44.28 10.52 103.23 103.22 94.44 59.09 17.27 6.36 3.69
30 18 137.99 13798 135.06 135.05 119.34 80.9 23.7 131.01 131 129.83 101.29  42.07 12.85 6.01
30 21 165.34 165.33 164.46 164.45 151.73 131.8 48.86 162.89 162.88 161.04 135.98 88.6 28.74 10.71
30 24 192.69  192.1 192.09 192.08 192.07 182.78 92.67 199.23 198.09 190.15 190.14 148.14 62.01  22.25
30 27 240.11 233.36  221.5 22149 221.48 21597 160.35 231.29 231.28 229.57 228.22 190.41 136.69 58.26
30 30 270.2 2702 270.2 270.2 270.2 270.2 270.2 276.39 276.39 276.39 276.39 276.39 276.39 276.39
40 20 157.2 151.26 151.25 144.24 134.25 9536 21.22 149.95 149.94 148.7 11244 39.91 9.78 4.17
40 24 19291 1929 185.49 185.48 185.46 151.89 49.92 185.39 185.38 185.37 162.71 91.31  21.69 7.36
40 28 233.05 233.04 231.92 22838 22837 199.66 100.75 233.47 224.61 224.6 216.69 152.02 56.29 13.82
40 32 287.34 287.33 287.32 284.45 263.35 263.33 159.76  287.7 287.68 268.38 268.37 247.82 121.28  30.94
40 36 322.06 322.05 31543 31542 314.51 314.5 270.89 327.21 327.2 324.56 324.55 317.18 236.51 87.07
40 40 373.99 373.99 373.99 373.99 373.99 373.99 373.99 388.78 388.78 388.78 388.78 388.78 388.78 388.78
50 25 210.96 206.74 195.87 195.86 193.44 152.43 38.63 214.3 197.84 192.46 166.54 81.04 15.86 4.88
50 30 266.94  262.3 251.68 244.63 241.88 225.92 91.04 249.75 249.74 249.72 22743 147.81 40.85 8.77
50 35 306.25 296.78 296.77 296.76 296.75 292.66 164.97 318.49 318.48 308.98 306.7 256.79  96.77  18.26
50 40 388.53 374.21 374.08 362.64 361.01 357.37 262.62 381.86 380.28 362.88 362.87 338.05 208.41 42.96
50 45 425.17 425.16 425.15 425.14 416.05 416.03 377.57 441.93 438.81 438.8  425.8 410.41 349.73 123.17
50 50 510.02 510.02 510.02 510.02 510.02 510.02 510.02 513.71 513.71 513.71 513.71 513.71 513.71 513.71

The third data set represents the lifetime's data relating to relief times (in minutes) of 20
patients receiving an analgesic and reported by Gross and Clark (1975).

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7
2.7 4.1 1.8 1.5 1.2 14 3.0 1.7 2.3
1.6 2.0

Fourth data set reported by Efron (1988) represent the survival times of a group of patients
suffering from Head and Neck cancer disease and treated using a combination of radiotherapy
and chemotherapy (RT+CT).

12.20  23.56 23.74 25.87 31.98 37.0 41.35 47.38 55.46
58.36  63.47 68.46 78.26 74.47 81.43 84.00 92.00 94.00
110.0  112.0 119.0 127.0 130.0 133.0 140.0 146 155.0
159.0 173.0 179.0 194.0 195.0 209.0 249.0 281.0 319.0
339.0  432.0 469.0 519.0 633.0 725.0 817.0 1776

The MLEs for the unknowns are calculated for all above data sets based on complete sample
and reported in Table 8, using the procedure explained in section 2. In this Table, A M and
aprr represent the maximum likelihood estimates for the parameters a and A, respectively.
The quantity reported in brackets is the standard deviation (sd) computed based on the square
root of inverse of estimated Fisher information matrix as given in equation (18). Here, we
also compute the K-S statistic and corresponding p-value for the purpose of goodness-of-fit.
The quantity log of likelihood, AIC and BIC are also presented.

For the illustration of our methodology, we have generated censored data for a prefixed m, &
and ¢. It may be worthwhile to mention here that the number of drop-outs are random and we
are generating the progressive type-1I censored data from the complete sample data, therefore,
we can study the average performance of the estimators. For this purpose, we generated 2000
censored data sets for given m and accordingly the £’s and (’s from the considered complete
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data set. The m is chosen 80% of the complete sample size and £ = 3,( = 0.1 are considered.
The average ML estimates, Bayes estimates with corresponding average MSE and confidence
interval are reported in Table 9.

Table 8: MLEs with other statistic for considered real data sets

data Ao (sd) AL (sd) KS-Statistic p-value log-lik AIC BIC
Boing AC  1.1458(0.2357) 65.3018(53.3062) 0.1480 0.8970 -84.0772 172.1544 173.5705
Chloride 0.8803(0.1093) 0.6539(0.1347) 0.1134 0.7740 -58.6266 121.2532 124.3059
Relief Time 4.0173(0.6972) 6.0221(1.9636) 0.1019  0.9850 -15.4087  34.8174  36.8089
RT+CT 1.0134(0.1119) 80.7880(36.9616) 0.0926  0.8110 -279.5701 563.1403 566.7086

Table 9: Average estimates with corresponding average MSE and Assymptotic/HPD confi-
dence Interval for fixed £ = 3, ( = 0.1 and m = 0.80 x sample size, for considered real data
sets

Data « A

Boing AC ML 1.1248(0.2650) (0.6117, 1.6413) 65.8131(55.1362) (-42.2472, 173.8737)
Bayes 1.0250(0.2260) (0.6846, 1.6378) 65.3132(53.1317) (-36.7806, 171.4009)

Chloride ML 0.8995(0.1385) (0.6342, 1.1639 0.6331(0.1643) (0.3170, 0.9491)
Bayes 0.8498(0.1249) (0.6541, 1.1325 0.1339(0.1569) (0.3501, 0.9172)

Relief Time ML 3.9963(0.7268) (2.5818, 5.4195 5.7018(1.9933) (1.8030, 9.6023)
( ) ) )

( ) ) )

( ) ) )

Bayes 4.0066(0.7254 2.6356, 5.4123 5.8021(1.9809 (1.9252, 9.0770
RTCT ML 0.9928(0.1415
Bayes 1.0932(0.1294

0.7258, 1.2645
0.7915, 1.1693

79.7676(37.8907
81.2678(35.1421

(5.5043, 154.0242
(5.6798, 150.0634

NN N N N N N
D N

7. Conclusion

In this chapter, we have developed a sampling procedure for life-testing experiment called as
progressive Type-II censoring scheme with beta-binomial removals (PT-II CBBR) which cov-
ers the uncertainty of the real phenomenon of life-testing procedure. The Bayesian procedure
provides the more accurate and precise estimates of the parameters even if we consider the
vague prior. Finally, we can conclude that the discussed methodology provides the more flex-
ible procedure for life-testing experiment and can be recommended for their use in medical,
engineering and in other areas where such type of life-tests are needed.
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