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Abstract

A new generalized class of distributions called the Burr-Weibull Power Series (BWPS)
class of distributions is developed and explored. This class of distributions generalizes the
Burr power series and Weibull power series classes of distributions, respectively. A special
model of the BWPS class of distributions, the new Burr-Weibull Poisson (BWP) distri-
bution is considered and some of its mathematical properties are obtained. The BWP
distribution contains several new and well known sub-models, including Burr-Weibull, Burr-
exponential Poisson, Burr-exponential, Burr-Rayleigh Poisson, Burr-Rayleigh, Burr-Poisson,
Burr, Lomax-exponential Poisson, Lomax-Weibull, Lomax-exponential, Lomax-Rayleigh,
Lomax-Poisson, Lomax, Weibull, Rayleigh and exponential distributions. Maximum likeli-
hood estimation technique is used to estimate the model parameters followed by a Monte
Carlo simulation study. Finally an application of the BWP model to a real data set is
presented to illustrate the usefulness of the proposed class of distributions.

Keywords: Burr-Weibull distribution, Poisson distribution, Weibull distribution, Burr distri-
bution, maximum likelihood estimation.

1. Introduction

The Burr XII (Burr) distribution is a very useful model that was first discussed by Burr (1942)
as a two-parameter family. An additional scale parameter was introduced by Tadikamalla
(1980). Examples of data modeled by the Burr distribution include household income, crop
prices, insurance risk, travel time, flood levels, and failure data. Other applications include
simulation, quantal response, approximation of distributions, and development of non-normal
control charts. A number of standard theoretical distributions are limiting forms of the Burr
distributions. Rodriguez (1977) presented a comprehensive guide to the Burr distribution and
showed that this distribution covers various well-known and useful distributions, including the
normal, log-normal, gamma, logistic and extreme-value type-I distributions. Morais and Bareto-
Souza (2011) presented results on a compound class of Weibull and power series distributions.
The Burr power series distribution was given by Silva and Cordeiro (2015).

The primary motivation for developing the class of Burr-Weibull Power Series (BWPS) dis-
tributions is the versatility and flexibility derived from compounding continuous distributions
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including the new distribution called Burr-Weibull distribution with power series distributions
to obtain a new class of distributions with desirable properties including hazard function that
exhibits increasing, decreasing, bathtub and upside down bathtub shapes. Another important
reason for the development of the BWPS class of distributions is the modeling of income and
lifetime data with a model that takes into consideration not only shape and scale but also
skewness, kurtosis and tail variation. Also, motivated by various applications of power series
distributions in several areas including reliability, exponential tilting (weighting) in finance and
actuarial sciences, as well as economics we construct and develop the statistical properties of
this new class of generalized compound distribution called the Burr-Weibull Power Series class
of distributions and apply it to real lifetime data in order to demonstrate the usefulness of the
proposed distribution. This class of distributions generalizes the Burr power series and Weibull
power series class of distributions, and their sub-classes, respectively.

The results in this paper are organized in the following manner. In section 2, the Burr-Weibull
Power Series (BWPS) distribution is presented. The cumulative distribution function (cdf)
of the specific following cases: Burr-Weibull Poisson (BWP), Burr-Weibull geometric (BWG),
Burr-Weibull logarithmic (BWL) and Burr-Weibull binomial (BWB) distributions are given.
Maximum likelihood estimates of the BWPS model parameters are given in section 3. The
special case of BWP distribution is discussed in section 4. A Monte Carlo simulation study
to examine the bias and mean square error of the maximum likelihood estimates for the BWP
distribution is also presented in section 4. Section 5 contains an application of the BWP model
to a real data set. A short concluding remark is given in section 6.

2. Burr-Weibull power series distribution

In this section, the Burr-Weibull Power Series (BWPS) class of distributions is presented. In
a recent note, Mdlongwa, Oluyede, Amey, and Huang (2017) presented important results on
a new distribution called the Burr-modified Weibull (BMW) distribution which includes Burr-
Weibull (BW) distribution as a special case of BMW when λ = 0. An important motivation for
this family of distributions, particularly for use in survival and reliability studies is as follows.
Suppose the failure of a device is due to the presence of an unknown number of initial defects of
the same kind say N , which is identifiable only after causing failure and are repaired perfectly.
Let Yi, i = 1, ..., N, denote the time to the failure of the device due to the ith defect and assume
the Yi’s are independent and identically distributed (iid) BW random variables independent of
N which is a truncated power series random variable, then the time to the first failure can be
modeled by a distribution in the class of BWPS distributions.

The proposed class of distributions can be used for series systems with identical components,
which is often the case in many industrial applications and biological organisms. Now, consider
a sequence of N iid random variables, say Yi, i = 1, . . . , N , from the BW distribution. If Y is a
random variable following BW distribution with parameters c, k, α, β > 0, its cdf is given by

G(y) = 1− (1 + yc)−k exp(−αyβ), y ≥ 0. (1)

The corresponding BW survival function and pdf are given by

S(y) = (1 + yc)−k exp(−αyβ), and g(y) = e−αy
β

[1 + yc]−k
{
αyβ−1β +

kcyc−1

(1 + yc)

}
, (2)

for c, k, α, β > 0, and y ≥ 0, respectively.

Now, let N be a discrete random following a power series distribution assumed to be truncated
at zero, whose probability mass function (pmf) is given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . , (3)
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where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0, and {an}n≥1 a sequence of positive real numbers.

The power series family of distributions includes binomial, Poisson, geometric and logarithmic
distributions (Johnson, Kotz, and Balakrishnan 1994).

Let X = Y(1) = min(Y1, . . . , YN ). The conditional distribution of X given N = n is given by

GX|N=n(x) = 1−
n∏
i=1

(1−G(x)) = 1− Sn(x) = 1− (1 + xc)−kn exp(−nαxβ).

Thus, the cdf of the life length of the whole system, X, say Fθ, is given by

Fθ(x) = 1− C(θS(x))

C(θ)
= 1−

C
(
θ(1 + xc)−k exp(−αxβ)

)
C(θ)

.

Note that, G(t) = lim
θ→0+

Fθ(t).

Remark: Let C ′(θ) be the derivative of C(θ), that is, C ′(θ) =
∑∞

n=1 nanθ
n−1. Then the density

of Fθ, say fθ, is given by

fθ(x) =
dFθ(x)

dx
=
θg(x)C ′(θS(x))

C(θ)
.

The hazard and reverse hazard functions are given by

hθ(x) =
fθ(x)

Sθ(x)
= θg(x)

C ′(θS(x))

C(θS(x))
, and τθ(x) =

fθ(x)

Fθ(x)
= θg(x)

C ′(θS(x))

C(θ)− C(θS(x))
,

respectively, where Sθ(x) = 1 − Fθ(x). The quantile function of the proposed distribution is
obtained by inverting Fθ(x) = u, 0 ≤ u ≤ 1. This is equivalent to solving the equation

− lnC(θS(x)) + lnC(θ) + ln(1− u) = 0, (4)

which can be done using numerical methods. Consequently, random number can be generated
based on equation (4). Some special cases of the BWPS class of distributions are presented in
Table 1 for c, k, α, β, θ > 0.

Table 1: Special Cases of the BWPS

Distribution an C(θ) cdf

Burr-Weibull Poisson (n!)−1 eθ − 1 1− e(θ(1+x
c)−k exp(−αxβ))−1

eθ−1

Burr-Weibull Geometric 1 θ(1− θ)−1 1− (1−θ)(1+xc)−ke−αxβ

1−θ(1+xc)−ke−αxβ

Burr-Weibull Logarithmic n−1 − log(1− θ) 1− log(1−θ(1+xc)−ke−αxβ )
log(1−θ)

Burr-Weibull Binomial
(
m
n

)
(1 + θ)m − 1 1− (1+θ(1+xc)−ke−αx

β
)m−1

(1+θ)m−1

The rth moment of the BWPS distribution is given by

E(Xr) =
θ

C(θ)

∞∑
n,j=0

(−1)j(α(n+ 1))j

j!
bnθ

n

[
kB

(
kn+ k −

(
r + jβ

c

)
,
r + jβ + c

c

)

+
αβ

c
B

(
kn+ k −

(
r + jβ + β

c

)
,
r + jβ + β

c

)]
,
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where B(a, b) =
∫ 1
0 t

a−1(1− t)b−1dt is the beta function (see Appendix for the derivation).

3. Estimation and inference

Let X ∼ BWPS(c, k, α, β, θ) and ∆ = (c, k, α, β, θ)T be the parameter vector. The log-
likelihood function ` = `(∆) based on a random sample of size n is given by

`n(∆) = n ln(θ)− n ln(C(θ)) +
n∑
i=1

ln(g(xi) +
n∑
i=1

ln(C ′(θS(xi))

= n ln(θ)− n ln(C(θ)) +
n∑
i=1

(−αxβi )− (k + 1)
n∑
i=1

ln(1 + xci )

+
n∑
i=1

ln[kcxc−1i + (1 + xci )αβx
β−1
i ] +

n∑
i=1

ln(C ′(θe−αx
β
i (1 + xci )

−k)),

where the S(x) and g(x) are given in equation (2). The elements of the score vector are given
in the Appendix.

The equations obtained by setting the elements of the score vector to zero are not in closed
form and the values of the parameters c, k, α, β, θ must be found via iterative methods. The
maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained by solving the
nonlinear equation (∂`∂c ,

∂`
∂k ,

∂`
∂α ,

∂`
∂β ,

∂`
∂θ )T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix is given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2`
∂θi∂θj

), i, j =

1, 2, 3, 4, 5, can be numerically obtained by NLMIXED in SAS or mle2 package in R software.
The total Fisher information matrix nI(∆) can be approximated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, ..., 5. (5)

Note that the expectations in the Fisher Information Matrix (FIM) can be obtained numerically.
Let ∆̂ = (ĉ, k̂, α̂, β̂, θ̂) be the maximum likelihood estimate of ∆ = (c, k, α, β, θ). Under the usual
regularity conditions and that the parameters are in the interior of the parameter space, but

not on the boundary, we have:
√
n(∆̂ −∆)

d−→ N5(0, I
−1(∆)), where I(∆) is the expected

Fisher information matrix. The asymptotic behavior is still valid if I(∆) is replaced by the
observed information matrix evaluated at ∆̂, that is J(∆̂). The multivariate normal distribution
N5(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct confidence
intervals and confidence regions for the individual model parameters and for the survival and
hazard rate functions.

4. Burr-Weibull Poisson distribution and simulation study

In this section, we present some results the Burr-Weibull Poisson (BWP) distribution including
Monte Carlo simulation study to examine the bias and mean square error of the maximum
likelihood estimates. Recall the BWP distribution is a special case of the BWPS class of
distributions with C(θ) = eθ − 1 and an = 1

n! . The cdf is given by

FBWP (x; c, k, α, β, θ) = 1− e(θ(1+x
c)−k exp(−αxβ)) − 1

eθ − 1
, (6)

for c, k, α, β, θ > 0.
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Figure 1: Plots of BWP PDF

Note that when β = 1 in the BWP distribution, we obtain the four parameter Burr XII
exponential-Poisson distribution. The plots show that the BWP pdf can be L-shaped, de-
creasing or right skewed among several other possible shapes as seen in Figures 1.
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Figure 2: Plots of BWP Hazard Function

Plots of the hazard function are given in Figures 2. The graphs exhibit increasing, decreasing,
unimodal, bathtub followed by upside down bathtub, bathtub and upside down bathtub shapes
for the selected values of the model parameters. This very attractive flexibility makes the BWP
hazard function useful and suitable for non-monotonic empirical hazard behaviors which are
more likely to be encountered in practice or real life situations.

4.1. Sub-models of the BWP distribution

The BWP distribution contains several new and known sub-models. In this subsection, we
present some of the sub-models.
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• If β = 1, we obtain Burr-Exponential Poisson (BEP) distribution.

• If β = 2, we obtain Burr-Rayleigh Poisson (BRP) distribution.

• When α→ 0+, we obtain Burr Poisson (BP) distribution.

• If c = 1, we obtain Lomax-Weibull Poisson (LWP) distribution.

• If c = β = 1, we obtain Lomax-Exponential Poisson (LEP) distribution.

• If c = 1 and β = 2, we obtain Lomax-Rayleigh Poisson (LRP) distribution.

• If c = 1 and α→ 0+, we obtain Lomax-Poisson (LP) distribution.

• When k → 0+, we obtain Weibull Poisson (WP) distribution.

• If k → 0+ and β = 1, we obtain Exponential-Poisson (EP) distribution.

• If k → 0+ and β = 2, we obtain Rayleigh-Poisson (RP) distribution.

• When θ → 0+, we obtain Burr-Weibull (BW) distribution.

• If θ → 0+ and β = 1, we obtain Burr-Exponential (BE) distribution.

• If θ → 0+ and β = 2, we obtain Burr-Rayleigh (BR) distribution.

• If α→ 0+ and θ → 0+, we obtain Burr (B) distribution.

• If c = 1 and θ → 0+, we obtain Lomax-Weibull (LW) distribution.

• If c = 1, β = 1 and θ → 0+, we obtain Lomax-Exponential (LE) distribution.

• If c = 1, β = 2 and θ → 0+, we obtain Lomax-Rayleigh (LR) distribution.

• If c = 1, θ → 0+ and α→ 0+, we obtain Lomax (L) distribution.

• If θ → 0+ and k → 0+, we obtain Weibull (W) distribution.

• If θ → 0+, k → 0+ and β = 2, we obtain Rayleigh (R) distribution.

• If θ → 0+, k → 0+ and β = 1, we obtain Exponential (E) distribution.

4.2. Monte Carlo simulation study

In this section, we examine the performance of maximum likelihood estimates of the BWP model
parameters by conducting various simulations for different sizes (n=35, 60, 100, 200, 400, 800)
via the R package. The true parameter values are set at I : (c, k, α, β, θ) = (5.5, 2.5, 0.7, 0.5, 0.5),
II : (c, k, k, α, β, θ) = (0.5, 0.6, 0.4, 2, 1) and III : (c, k, α, β, θ) = (5, 0.5, 1, 0.5, 0.5). We simulate
1000 samples for the true parameters values, also given in the Table 2. Table 2 lists the mean
MLEs of the five model parameters along with the respective root mean squared errors (RMSEs).
We observe that the estimates approach the true parameter values as the sample size increases,
thus implying consistency of the estimates. Also, from the results, we can verify that as the
sample size n increases, the mean estimates of the parameters tend to be closer to the true
parameter values, since RMSEs decay toward zero. The bias and RMSEs are given by

Bias(θ̂) =

∑n
i=1 θ̂i
n

− θ, and RMSE(θ̂) =

√∑n
i=1(θ̂i − θ)2

n
,
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respectively.

Table 2: Monte Carlo Simulation Results

(5.5,2.5,0.7,0.5,0.5) (0.5,0.6,0.4,2,1) (5,0.5,1,0.5,0.5)
Parameter Sample Size Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias

c 35 8.4050 18.7804 2.9050 0.5916 0.3340 0.0916 18.5822 65.2901 13.5822
60 5.9949 1.5954 0.4949 0.5446 0.2266 0.0446 9.6615 20.3314 4.6615
100 5.8853 1.1934 0.3853 0.5207 0.1469 0.0207 10.1759 25.6483 5.1759
200 5.6890 0.6879 0.1890 0.5054 0.0876 0.0054 5.8175 2.5540 0.8175
400 5.5902 0.4483 0.0902 0.5079 0.0645 0.0079 5.7954 2.3297 0.7954
800 5.5254 0.3015 0.0254 0.5198 0.0477 0.0198 5.4040 0.9526 0.4040

k 35 2.6775 0.9934 0.1775 1.2584 1.2832 0.6584 0.5830 0.5268 0.0830
60 2.6260 0.5884 0.1260 1.1109 0.9206 0.5109 0.5058 0.2959 0.0058
100 2.5843 0.4662 0.0843 1.0355 0.7291 0.4355 0.4676 0.2282 -0.0324
200 2.5771 0.2966 0.0771 0.9534 0.6013 0.3534 0.4860 0.1597 -0.0140
400 2.5126 0.2146 0.0126 0.8742 0.4875 0.2742 0.4503 0.1359 -0.0497
800 2.5279 0.1589 0.0279 0.7231 0.2866 0.1231 0.4656 0.1093 -0.0344

α 35 1.1326 0.7176 0.4326 0.3357 0.2953 -0.0643 1.4704 0.9665 0.4704
60 1.0625 0.5796 0.3625 0.3612 0.2344 -0.0388 1.2684 0.5594 0.2684
100 1.0397 0.5260 0.3397 0.3674 0.1851 -0.0326 1.2596 0.5488 0.2596
200 0.9279 0.3792 0.2279 0.3858 0.1288 -0.0142 1.1446 0.3024 0.1446
400 0.8385 0.2460 0.1385 0.3776 0.0891 -0.0224 1.0620 0.1957 0.0620
800 0.8169 0.2149 0.1169 0.3840 0.0639 -0.0160 1.0327 0.1422 0.0327

β 35 0.5044 0.1708 0.0044 2.8622 1.6455 0.8622 0.4463 0.1683 -0.0537
60 0.4917 0.1202 -0.0083 2.4293 0.9872 0.4293 0.4723 0.1115 -0.0277
100 0.4994 0.0909 -0.0006 2.2547 0.6485 0.2547 0.4887 0.0865 -0.0113
200 0.4989 0.0672 -0.0011 2.0989 0.3601 0.0989 0.5047 0.0525 0.0047
400 0.5102 0.0484 0.0102 2.0680 0.2161 0.0680 0.5212 0.0437 0.0212
800 0.5106 0.0405 0.0106 2.0422 0.1403 0.0422 0.5205 0.0370 0.0205

θ 35 1.6513 1.6494 1.1513 7.5261 30.3501 6.5261 5.5386 21.2170 5.0386
60 1.5484 1.6015 1.0484 3.0886 10.1287 2.0886 1.5858 2.7391 1.0858
100 1.4356 1.4497 0.9356 2.0567 1.9375 1.0567 1.6857 6.4734 1.1857
200 1.1507 1.0925 0.6507 1.8855 1.6730 0.8855 0.8811 0.7901 0.3811
400 0.8869 0.7813 0.3869 1.6435 1.2600 0.6435 0.5971 0.4304 0.0971
800 0.8309 0.6704 0.3309 1.2479 0.7948 0.2479 0.5154 0.3532 0.0154

5. Application

In this section, we present an example to illustrate the flexibility of the BWP distribution and
its sub-models for data modeling. BWP distribution is fitted to real data set and these fits
are compared to the fits using the sub-models: Burr-Weibull (BW), Burr-exponential Poisson
(BEP), Burr-exponential (BE), Burr-Rayleigh Poisson (BRP), Burr-Rayleigh (BR), Burr Pois-
son (BP), Burr (B), Lomax-Weibull Poisson (LWP), Lomax-Rayleigh Poisson (LRP), Lomax
Poisson (LP), Weibull Poisson (WP), and Weibull (W) distributions. We also compare the BWP
distribution with the gamma log-logistic Weibull (GLLoGW) (Foya, Oluyede, Fagbamigbe, and
Makubate 2017) and beta modified Weibull (BetaMW) (Nadarajah, Cordeiro, and Ortega 2011)
distributions. The pdf of the BetaMW distribution is given by

gBetaMW (x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
e−bαx

γ exp(λx)(1− e−αxγ exp(λx))a−1, x > 0.

Also, the pdf of the gamma log-logistic Weibull (GLLoGW) distribution (Foya et al. 2017) is
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given by

gGLLoGW (x) =
1

Γ(δ)θδ
(1 + xc)−1e−αx

β
[(1 + xc)−1cxc−1 + αβxβ−1]

×
(
− log[1− (1 + xc)−1e−αx

β
]

)δ−1
[1− (1 + xc)−1e−αx

β
](1/θ)−1. (7)

5.1. Time to failure of kevlar 49/epoxy strands tested at various stress level
data

The data for this example is concerned with the study of the lifetimes of kevlar 49/epoxy
spherical pressure vessels that are subjected to a constant sustained pressure until vessel failure,
commonly known as static fatigue or stress-rupture. The data set consists of 101 observations of
stress-rupture life of kevlar 49/epoxy strands which are subjected to constant sustained pressure
at the 90% stress level until all have failed, so that the complete data set with the exact times
of failure is recorded. These failure times in hours, are originally given in Barlow, Towland, and
Freeman (1984).

5.2. Comparison of distributions

The maximum likelihood estimates (MLEs) of the BWP parameters ∆ = (c, k, α, β, θ) are
computed by maximizing the objective function via the subroutine mle2 in R (R Development
Core Team 2011). The initial values for R code are c = 0.1, k = 0.1, α = 0.1, β = 0.1 and
θ = 5. In Table 3, the MLEs (standard error in parentheses),-2log-likelihood statistic, Akaike
Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information Criterion, BIC = p ln(n) −
2 ln(L), and Consistent Akaike Information Criterion, AICC = AIC+2 p(p+1)

n−p−1 , where L = L(∆̂)
is the value of the likelihood function evaluated at the parameter estimates, n is the number
of observations, and p is the number of estimated parameters are presented. The goodness-
of-fit statistics W ∗ and A∗, (Chen and Balakrishnan 1995) are also presented in the table.
These statistics can be used to verify which distribution fits better to the data. In general,
the smaller the values of W ∗ and A∗, the better the fit. We also presented the Kolmogorov-
Smirnov (K-S) statistics (and its corresponding p-value) for the purpose of comparisons. The
AdequacyModel package in R was used to evaluate the statistics stated above.

We can use the likelihood ratio test to compare the fit of the BWP distribution with its sub-
models for a given data set. For example, to test β = 1, the likelihood ratio test statistic
is ω = 2[ln(L(ĉ, k̂, α̂, β̂, θ̂)) − ln(L(c̃, k̃, α̃, 1, θ̃))], where ĉ, k̂, α̂, β̂ and θ̂ are the unrestricted
estimates, and c̃, k̃, α̃ and θ̃ are the restricted estimates. The likelihood ratio test rejects the
null hypothesis if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the χ2 distribution with

1 degrees of freedom.

For the probability plot, we plotted F (y(j); ĉ, k̂, α̂, β̂, θ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n,

where y(j) are the ordered values of the observed data. The measures of closeness, denoted by

SS are given by the sum of squares SS =
∑n

j=1

[
F (y(j))−

(
j − 0.375

n+ 0.25

)]2
. Plots of the fitted

pdf of BWP. BP, B, LEP, GLLOGW and BetaMW models and histogram, observed probability
versus predicted probability for the kevlar 49/epoxy strands data are given in Figure 3.
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Table 3: MLEs of the parameters, SEs in parenthesis and the goodness-of-fit statistics for kevlar
49/epoxy failure time data

Estimates Statistics
Model c k α β θ −2 log L AIC AICC BIC W ∗ A∗ SS K − S p− value
BWP 0.0816 8.0568 0.7810 1.0959 282.9154 202.07 212.07 212.70 225.15 0.12 0.72 0.1134 0.0718 0.6752

(0.0182) (0.3770) (0.2609) (0.1991) (0.0019)
BW 0.7099 0.4274 0.6842 1.1195 0 205.72 213.72 214.35 224.18 0.15 0.91 0.1526 0.0906 0.3778

(0.2179) (0.6220) (0.4694) (0.3497) -
BEP 0.6796 0.7718 0.8562 1 1.2892 204.81 212.81 213.45 223.27 0.14 0.82 0.1304 0.0719 0.6733

(0.1918) (0.8200) (0.2460) - (1.3273)
BE 0.8910 0.2313 0.8412 1 0 206.70 212.70 213.33 220.54 0.20 1.12 0.1867 0.0849 0.46

(0.3950) (0.4582) (0.2787) - -
BRP 0.9010 2.1360 0.0626 2 1.6216 208.97 216.97 217.60 227.43 0.23 1.29 0.2128 0.0911 0.3711

(0.1557) (0.5229) (0.0429) - (1.0473)
BR 0.8585 1.3642 0.0821 2 0 210.28 216.28 216.92 224.13 0.25 1.42 0.3881 0.1314 0.0611

(0.1607) (0.2052) (0.0400) - -
BP 0.9856 2.3855 0 0 1.7333 212.40 218.40 219.04 226.25 0.34 1.87 0.3101 0.1065 0.2019

(0.1352) (0.4024) - - (0.8349)
B 0.7279 1.6858 0 0 0 216.33 220.33 220.96 225.56 0.52 2.81 1.3549 0.2107 0.0003

(0.1225) (0.1677) - - -
LWP 1 1.9773 5.4391 0.0393 382.7459 211.45 219.45 220.08 229.91 0.31 1.69 0.2887 0.1077 0.1921

- (0.3246) (0.2286) (0.0125) (0.0006)
LRP 1 1.9512 0.0552 2 1.1729 209.40 215.40 216.03 223.24 0.25 1.39 0.2277 0.0912 0.3702

- (0.4218) (0.0406) - (0.7172)
LP 1 2.3545 0 0 1.6666 212.42 216.42 217.05 221.65 0.34 1.86 0.3100 0.1060 0.2061

- (0.2741) - - (0.5421)
WP 0 0 1.4042 0.8060 1.2715 204.74 210.74 211.37 218.58 0.16 0.92 0.1507 0.0761 0.6021

- - (0.3730) (0.1281) (1.1074)
c α β δ θ

GLLoGW 0.2365 0.2591 0.9648 4.3962 0.1396 204.01 214.01 214.64 227.08 0.13 0.80 0.1293 0.0754 0.6135
(0.2965) (0.3727) (0.3741) (10.7190) (0.3332)

a b α γ λ
BetaMW 108.8600 25.6310 1.6632 0.0534 0.0343 207.31 217.31 217.94 230.08 0.20 1.12 0.1915 0.0931 0.3449

(0.0002) (0.0009) (0.0279) (0.0075) (0.0069)

Figure 3: Fitted Densities and Probability Plots for Time to Failure of kevlar 49/epoxy strands
tested at various stress level data

The likelihood ratio test statistic for testing H0: BW against Ha: BWP and H0: BRP against
Ha: BWP are 3.65 (p-value = 0.05607) and 6.9 (p-value = 0.00862). We can conclude that
there are significant differences in the fit of the BWP and the BW distribution as well as the
fit of BWP and BRP distribution. We can also conclude that there are significant differences
in the fit of the BWP and the LWP distribution as well as the fit of the BWP and the LP
distribution. There are significant differences in the fit of the BWP and the LRP distribution
based on the likelihood ratio test. There is no significant difference in the fit of the BWP and
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the WP distribution based on the likelihood ratio test, but the values of the goodness-of-fit
statistics W ∗ and A∗ presented are smallest for the BWP model, an indication that the BWP
distribution is the better distribution. The BWP model has the smallest K-S statistic and the
largest p-value. The values of the goodness-of-fit statistics W ∗ and A∗ show that the BWP
distribution is by far better than its sub-models and the non-nested GLLoGW and BetaMW
distributions. Also, the values of AIC and BIC show that the BWP distribution is better than
the non-nested GLLoGW and BetaMW distributions. We conclude that the BWP model has
the best fit with respect to the current goodness-of-fit criteria.

6. Concluding remarks

A new class of distributions called the Burr-Weibull Power Series (BWPS) distribution have
been developed. Estimation of the model parameters via the method of maximum likelihood is
presented. The special case of Burr-Weibull Poisson (BWP) distribution is treated in details. A
simulation study to assess the performance of the maximum likelihood estimates was conducted.
Application of the BWP model to a real data set is presented to illustrate its applicability and
usefulness.
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Appendix

The rth moment of the BWPS distribution is given by

E(Xr) =

∫ ∞
0

xr
θg(x)C ′(θS(x))

C(θ)
dx

=
θ

C(θ)

∞∑
n=0

bnθ
n

∫ ∞
0

xr(1 + xc)−kne−nαx
β

× [(1 + xc)−k−1e−αx
β
(kcxc−1 + (1 + xc)αβxβ−1)]dx

=
θ

C(θ)

∞∑
n=0

bnθ
n

∫ ∞
0

xr(1 + xc)−kn−k−1e−(n+1)αxβ

× [(kcxc−1 + (1 + xc)αβxβ−1)]dx

=
θ

C(θ)

∞∑
n,j=0

(−1)j(α(n+ 1))j

j!
bnθ

n

∫ ∞
0

xr+jβ(1 + xc)−kn−k−1

× [(kcxc−1 + (1 + xc)αβxβ−1)]dx

=
θ

C(θ)

∞∑
n,j=0

(−1)j(α(n+ 1))j

j!
bnθ

n

[
kc

∫ ∞
0

xr+jβ+c−1(1 + xc)−kn−k−1dx

+ αβ

∫ ∞
0

xr+jβ+β−1(1 + xc)−kn−kdx

]
dx

=
θ

C(θ)

∞∑
n,j=0

(−1)j(α(n+ 1))j

j!
bnθ

n

[
kB

(
kn+ k −

(
r + jβ

c

)
,
r + jβ + c

c

)

+
αβ

c
B

(
kn+ k −

(
r + jβ + β

c

)
,
r + jβ + β

c

)]
,
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where we have used the transformation y = (1 + xc)−1, and B(a, b) =
∫ 1
0 t

a−1(1− t)b−1dt is the
beta function.

The elements of the score vector are given by

∂`

∂θ
=

n

θ
− C ′(θ)

C(θ)
+
C ′′(θ(e−αx

β
i (1 + xci )

−k))e−αx
β
i (1 + xci )

−k

C ′(θ(e−αx
β
i (1 + xci )

−k))
,

∂`

∂α
= −

n∑
i=1

xβi +
n∑
i=1

(1 + xci )βx
β−1
i

kcxc−1i + (1 + xci )αβx
β−1
i

−
n∑
i=1

C ′′(θ(e−αx
β
i (1 + xci )

−k))θe−αx
β
i (1 + xci )

−kxβi

C ′(θ(e−αx
β
i (1 + xci )

−k))
,

∂`

∂β
= −α

n∑
i=1

xβi ln(xi) +

n∑
i=1

α(1 + xci )[x
β−1
i (1 + β ln(xi))]

kcxc−1i + (1 + xci )αβx
β−1
i

−
n∑
i=1

C ′′(θ(e−αx
β
i (1 + xci )

−k))θ(1 + xci )
−ke−αx

β
i αxβi ln(xi)

C ′(θ(e−αx
β
i (1 + xci )

−k))
,

∂`

∂k
= −

n∑
i=1

ln(1 + xci ) +

n∑
i=1

cxc−1i

kcxc−1i + (1 + xci )αβx
β−1
i

−
n∑
i=1

C ′′(θ(e−αx
β
i (1 + xci )

−k))θe−αx
β
i (1 + xci )

−k ln(1 + xci )

C ′(θ(e−αx
β
i (1 + xci )

−k))
,

and

∂`

∂c
=

n∑
i=1

xci ln(xi)

1 + xci
+

n∑
i=1

k[xc−1i (1 + c ln(xi))] + αβxβ−1i (xi ln(xi))

kcxc−1i + (1 + xci )αβx
β−1
i

−
n∑
i=1

C ′′(θ(e−αx
β
i (1 + xci )

−k))θe−αx
β
i k(1 + xci )

−k−1xci ln(xi)

C ′(θ(e−αx
β
i (1 + xci )

−k))
.
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R algorithms

The R codes to compute cdf, pdf, moments, Rényi entropy, mean deviations, maximum like-
lihood estimates and variance-covariance matrix for the BWPS distribution are available on
request from the authors.
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