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Abstract

The Topp-Leone distribution was introduced by Topp-Leone in 1955. In this paper,
an attempt has been made to fit Topp-Leone Generalized Exponential distribution. Since,
Topp-Leone distribution contains only one parameter and its support set is restricted to
(0,1), because of this, in most practical situations it is not a better fit for the lifetime
modelling. So an extension of this distribution is required. A Bayesian approach has
been adopted to fit this model as survival model. A real survival data set is used to
illustrate. Implementation is done using R and JAGS and appropriate illustrations are
made. R and JAGS codes have been provided to implement censoring mechanism using
both optimization and simulation tools.

Keywords: Bayesian inference, LaplaceApproximation, posterior, LaplacesDemon, simulation,
JAGS, R.

1. Introduction

Topp-Leone (1955) constructed the distribution for empirical data with J-shaped histogram
such as powered band tool failures, and automatic calculating machine failure. In this paper,
aim is to fit the Topp-Loene Generalized Exponential distribution (Sangsanit and Bodhisuwan
2016) using a Bayesian approach and this distribution has an important role in lifetime mod-
elling. Statistical methods for lifetimes data analysis have continued to flourish in the last
few decades. Applications of the methods have been seen widened from their historical use in
cancer and reliability research to business, criminology, epidemiology, social and behavioural
sciences. Survival analysis measures the time to certain event, such as failure, death, response,
relapse, the development of given disease, parole or divorce. In many practical situations it
has been seen that the survival models are very effectively analyzed in Bayesian paradigm.
Ergo, for the purpose of Bayesian analysis of this model, two important techniques, one
is asymptotic approximation and the other is simulation methods, are implemented using
LaplacesDemon and R2jags packages of R. The package LaplacesDemon (Statisticat LLC
2015) facilitates high dimensional Bayeisan inference posing as its own intellect and is advan-
tageous regarding analysis. The function LaplaceApproximation approximates the posterior
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results analytically and the function LaplacesDemon simulates the results from the posterior
density with one of the several Metropolis algorithms Markov Chain Monte Carlo (MCMC).
Another function is JAGS (Just Another Gibbs Sampler). It can be run directly from R using
R2jags package. It is also used for simulation from posterior density. The JAGS function
takes data and starting values as input. It automatically writes a jags script, calls the model,
and saves the simulations for easy access in R. A real survival data set is used to illustrate
in R and JAGS. Thus, Bayesian analysis of Topp-Leone Generalized Exponential distribution
(TLGE) has been made with the following objectives:

• To define a Bayesian model, that is, specification of likelihood and prior distribution.

• To write down the R and JAGS code for approximating posterior densities with LaplaceAp-

proximation and simulation tools.

• To illustrate numeric as well as graphic summaries of posterior densities.

2. The Topp-Leone generalized exponential distribution (TLGE)

If a random variable T follows TLGE(α, λ, b) distribution (Sangsanit and Bodhisuwan 2016)
with shape parameters α (> 0), b (> 0) and scale parameter λ ( > 0) having probability
density function of the form

f(t;α, λ, b) =
2αb

λ
exp(−t/λ)(1−(1−exp(−t/λ))b)(1−exp(−t/λ))bα−1(2−(1−exp(−t/λ))b)α−1

(1)
and cumulative distribution function is

F (t;α, λ, b) = (1− exp(−t/λ))bα(2− (1− exp(−t/λ))b)α, t > 0. (2)

The survival and hazard function of TLGE(α,λ,b) distribution are given by

S(t;α, λ, b) = 1− (1− exp(−t/λ))bα(2− (1− exp(−t/λ))b)α (3)

h(t;α, λ, b) = f(t;α, λ, b)/S(t;α, λ, b). (4)

TLGE distribution has applications in the field of criminology, epidemiology, social and be-
havioural sciences. Therefore, we have taken a lifetime survival data to verify the application
of this distribution. From Figure 1, we see that the density function of TLGE distribution
given in Equation 1, can take two different situations. Such as, for α < 1, b < 1, the density
function is decreasing and for α > 1, b > 1, the density function is unimodal and right tailed.
Also the plots of distribution function, survival function and hazard rate are shown in Figure
1.

2.1. Functions for Topp-Leone generalized exponential distribution in R

1. R code for probability density function is

dtpge <- function(x, alpha, lambda, b)

{

d1 <- 2 * alpha * (b/lambda) * exp(-x/lambda)

d2 <- (1-( 1-exp(-x/lambda))^b)

d3 <- (1 -exp(-x/lambda))^(b*alpha-1)

d4 <- (2-(1-exp(-x/lambda))^ b)^(alpha-1)

d <- (d1*d2*d3*d4)

return(d)

}
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2. R code for cumulative distribution function is

ptpge <- function(x, alpha, lambda, b)

{

p1 <- (1-exp(-x/lambda))^(b*alpha)

p2 <- (2-(1-exp(-x/lambda))^b)^(alpha)

p <- (p1*p2)

return(p)

}

3. R code for random generation function is

rtpge <- function(n, alpha, lambda, b){

u <- runif(n)

x <- - lambda * log(1-(1-sqrt(1-u^(1/alpha)))^(1/b))

return(x)

}

4. R code for survival function is

stpge <- function(x, alpha, lambda, b)

{

s <- (1 - ptpge(x, alpha, lambda, b))

return(s)

}

5. R code for hazard function is

htpge <- function(x, alpha, lambda, b)

{

h <- dtpge(x, alpha, lambda, b) / stpge(x, alpha, lambda, b)

return(h)

}

3. The half-Cauchy prior distribution

The uniform priors for shape and scale parameters are very unnatural in that they assumed
that the values of these parameters up to a threshold value are, a priori, all equally likely, and
values above the threshold are impossible. A more natural prior for these parameters would
be one with a large mass in a range of likely values with an upper tail that gradually becomes
smaller and approaches zero for unrealistically large values. The half-Cauchy distribution has
such shapes. However, inverse-gamma distribution which has similar properties but can result
in improper posterior distributions and could, therefore, cause troubles in the model fitting
process (Gelman 2006). For this reason, a practice choice is the half-Cauchy only.
The probability density function of half-Cauchy distribution with scale parameter α is given
by

f(x) =
2α

π(x2 + α2)
, x > 0, α > 0.

The mean and variance of the half-Cauchy distribution do not exist, but its mode is equal to
0. The half-Cauchy distribution with scale α = 25 is a recommended, default, noninformative
prior distribution for a scale parameter. At this scale α = 25, the density of half-Cauchy is
nearly flat but not completely (see Figure 2), prior distributions that are not completely flat
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Figure 1: The pdf, cdf, survival and hazard curve of TLGE distribution for b =2, α = 2 and
different values of λ

provide enough information for the numerical approximation algorithm to continue to explore
the target density, the posterior distribution. Gelman and Hill (2007) recommend that, the
uniform, or if more information is necessary the half-Cauchy is a better choice. In this paper,
the half-Cauchy distribution with scale parameter α = 25 is used as a noninformative prior
distribution.
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Figure 2: Density plot of the half-Cauchy distribution. It is evident from that from the plot
for scale=25 the half-Cauchy distribution becomes almost uniform

4. The Laplace approximation

Many simple Bayesian analyses based on noninformative prior distribution give similar results
to standard non-Bayesian approaches, for example, the posterior t-interval for the normal
mean with unknown variance. The extent to which a noninformative prior distribution can
be justified as an objective assumption depends on the amount of information available in the
data; in the simple cases as the sample size n increases, the influence of the prior distribution
on posterior inference decreases. These ideas, sometimes referred to as asymptotic approx-
imation theory because they refer to properties that hold in the limit as n becomes large.
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Thus, a remarkable method of asymptotic approximation is the Laplace approximation which
accurately approximates the unimodal posterior moments and marginal posterior densities in
many cases. In this section we introduce a brief description of LaplaceApproximation method.

Suppose −h(θ) is a smooth, bounded unimodal function , with a maximum at θ̂, and θ is a
scalar. By Laplace’s method (e.g., Tierney and Kadane 1986), the integral

I =

∫
f(θ)exp[−nh(θ)]dθ

can be approximated by

Î = f(θ̂)

√
2π

n
σ exp[−nh(θ̂)],

where

σ =

[
∂2h

∂θ2
|θ̂

]−1/2
.

As presented in Mosteller and Wallace (1964), Laplace’s method is to expand about θ̂ to
obtain:

I ≈
∫
f(θ̂) exp

(
−n

[
h(θ̂) + (θ − θ̂)h′(θ̂) +

(θ − θ̂)2

2
h′′(θ̂)

])
dθ.

Recalling that h′(θ̂) = 0, we have

I ≈
∫
f(θ̂) exp

[
−n

(
h(θ̂) +

(θ − θ̂)2

2
h′′(θ̂)

)]
dθ

= f(θ̂) exp[−nh(θ̂)]

∫
exp

(
−n(θ − θ̂)2

2σ2

)
dθ

= f(θ̂)

√
2π

n
σ exp[−nh(θ̂)].

Intuitively, if exp[−nh(θ)] is very peaked about θ̂, then the integral can be well approximated
by the behavior of the integrand near θ̂. More formally, it can be shown that

I = Î

[
1 +O

(
1

n

)]
.

To calculate moments of posterior distributions, we need to evaluate expressions such as:

E[g(θ)] =

∫
g(θ) exp[−nh(θ)]dθ∫

exp[−nh(θ)]dθ
, (5)

where exp[−nh(θ)] = L(θ|y)p(θ) (see, e.g., Tanner 1996).

4.1. Fitting with LaplaceApproximation

The LaplaceApproximation is a family of asymptotic techniques used to approximate the
integrals. It approximates accurately unimodal posterior moments and marginal posterior
distributions in many cases. This function deterministically maximizes the logarithm of un-
normalized joint posterior density with one of several optimization algorithms. The goal of
LaplaceApproximation is to estimate the posterior mode and variance of each parameter.
The function and arguments are as follows :

LaplaceApproximation (Model, parm, Data, Interval=1.0E-6,

Iterations=100, Method="SPG", Samples=1000, CovEst="Hessian",



6 Bayesian Analysis of TLGE Distribution

sir=TRUE, Stop.Tolerance=1.0E-5, CPUs=1, Type="PSOCK")

First argument Model is used as a user-defined function, where the model is specified. Laplace
Approximation passes two arguments to the model function, parm and Data. The parm argu-
ment requires a vector of initial values equal in length to the number of parameters. Data ar-
gument accepts a list of data. By default method is Method=SPG. In LaplaceApproximation

we have found that trust region is better than other methods. The Trust Region algorithm
of Nocedal and Wright (1999) is used.

5. Bayesian analysis of Topp-Leone generalized exponential model

5.1. The model

The pdf of TLGE(α,λ,b) distribution (Sangsanit and Bodhisuwan 2016) is given by

f(y;α, λ, b) =
2αb

λ
exp(−y/λ)(1−(1−exp(−y/λ))b)(1−exp(−y/λ))bα−1(2−(1−exp(−y/λ))b)α−1.

(6)
The survival function of TLGE (α,λ,b) distribution is

S(y;α, λ, b) = 1− (1− exp(−y/λ))bα(2− (1− exp(−y/λ))b)α. (7)

We can write the Likelihood function for right censored as

L =
n∏
i=1

Pr(yi, δi) (8)

=
n∏
i=1

[f(yi)]
δi [S(yi)]

1−δi (9)

with δi=1 if survival (uncensored) and δi=0 if not (censored).

So, the likelihood function is given below

L =
n∏
i=1

[
2αb

λ
exp(−y/λ)(1− (1− exp(−y/λ))b)(1− exp(−y/λ))bα−1(2− (1− exp(−y/λ))b)α−1

]δi

×
[
1− (1− exp(−y/λ))bα(2− (1− exp(−y/λ))b)α

]1−δi
.

By using Bayes’ theorem (Statisticat LLC 2015), the joint posterior density is given by(Khan,
Akhtar, and Khan 2016)

p(α, β, b|y,X) ∝ L(y,X|α, β, b)× p(β)× p(α)× p(b)

∝
n∏
i=1

[
2αb

λ
exp(−y/λ)(1− (1− exp(−y/λ))b)(1− exp(−y/λ))bα−1(2− (1− exp(−y/λ))b)α−1

]δi
×
[
1− (1− exp(−y/λ))bα(2− (1− exp(−y/λ))b)α

]1−δi
×

J∏
j=1

1√
2π × 103

exp

(
−1

2

β2j
103

)
× 2× 25

π(α2 + 252)
× 2× 25

π(b2 + 252)
.

Here, closed form is not available. Therefore, the marginal posterior densities of the parame-
ters are also not in closed form. These marginal densities are the basis of Bayesian inference,
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and therefore one needs to use numerical integration or MCMC methods. Therefore, using
LaplaceApproximation, LaplacesDemon and JAGS, the required model can be easily fitted
in Bayesian paradigm.

5.2. Data set: Prognosis for women with breast cancer

Breast cancer is one of the most common forms of cancer occurring in women living in the
Western World. Lifetime data set is carried out at the Middlesex Hospital, and documented
in Leathem and Brooks (1987) and discussed by Collett (2015). The data given in Table 1
refer to survival time in months of women who had received a simple or radical mastectomy
to treat a tumor of Grade II, III or IV, between January 1969 and December 1971. In the
table, the survival times of each women are classified according to wether their tumor was
positively or negatively stained. Censored survival times are labelled with an asterisk.

Table 1: Survival times of women with tumours that were negatively or positively stained
with HPA

Negatively Stained Positively Stained
23 5 68
47 8 71
69 10 76?

70? 13 105?

71? 18 107?

100? 24 109?

101? 26 113
148 26 116?

181 31 118
198? 35 143
208? 40 154?

212? 41 162?

224? 48 188?

50 212?

59 217?

61 225?

5.3. Implementation using LaplacesDemon

Bayesian modelling of TLGE(α, λ, b) distribution and fitting model using LaplaceApproximation

and LaplacesDemon functions.

Creation of data for LaplacesDemon

Prognosis for women with breast cancer data is used for Bayesian modelling of TLGE (α, λ, b)
distribution. Data creation requires model matrix X, naming of predictors, naming of the pa-
rameters, information regarding censoring and response variable.

y <- c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225)

x1 <- c(rep(0,13), rep(1,32))

censor <- c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,

0,1,0,1,1,rep(0,6))

X <- cbind(1, x1)

J <- 2

mon.names <- c("LP", "alpha", "b")

parm.names <- as.parm.names(list(beta=rep(0,J), log.alpha=0, log.b=0))

MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names,
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y=y, censor=censor)

There are J=2 independent variables, one for each column in design matrix X. mon.names
stands for the variable to be monitored. Censoring is taken into account, where 0 stands
for censored and 1 for uncensored values. parm.names stands for parameter must have a
name specified in the vector and parameter names must be included with data in a list called
as.parm.names.

Model specification

The function LaplaceApproximation can fit Bayesian model for which likelihood and prior
are specified (see, e.g., Khan et al. 2016).

To use this method must specify a model

y ∼ TLGE(α, λ, b).

Since, α, λ and b are positive, hence, logarithm link function is used to spread them on the
whole real line, that is

log λ = Xβ

λ = exp(Xβ).

The large variance indicates a lot of uncertainty about each β and is hence a weak informative
prior distribution. Similarly, half-Cauchy is weakly informative prior for α and b (Statisticat
LLC 2015) .

Model <- function(parm, Data)

{

beta <- parm[1:Data$J]

alpha <- exp(parm[Data$J+1])

b <- exp(parm[Data$J+2])

beta.prior <- sum(dnorm(beta, 0, 1000, log=TRUE))

alpha.prior <- dhalfcauchy(alpha, 25, log=TRUE)

b.prior <- dhalfcauchy(b, 25, log=TRUE)

mu <- tcrossprod(beta, Data$X)

lambda <- exp(mu)

lf1 <- log(2) + log(alpha) + log(b/lambda)- y/lambda +

log(1-(1-exp(-y/lambda))^b) + (b*alpha-1) * log(1-exp(-y/lambda))+

(alpha-1) * log(2-(1-exp(-y/lambda))^b)

ls1 <- log(1-(1-exp(-y/lambda))^(b*alpha) * (2-(1-exp(-y/lambda))^b)^(alpha))

LL <- censor * lf1 + (1-censor) * ls1

LL <- sum(LL)

LP <- LL + beta.prior + alpha.prior + b.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,alpha,b),

yhat=rtpge(length(y), alpha, lambda, b), parm=parm)

return(Modelout)

}

A numerical approximation algorithm iteratively maximizes the logarithm of the unnormalized
joint posterior density as specified in this Model function. In Bayesian inference, the logarithm
of the unnormalized joint posterior density is proportional to the sum of the log-likelihood
and logarithm of the prior densities:

log[p(θ|y)] ∝ log[p(y|θ)] + log[p(θ)]
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where θ is a set of parameters, y is the data, p(θ|y) is the joint posterior density, p(y|θ) is the
likelihood and p(θ) is the set of prior densities (Statisticat LLC 2015).

Initial values

To start the optimization, the function LaplaceApproximation requires a vector of initial
values for the parameters. Each initial value is a starting point for the estimation of a param-
eter. So all the beta parameters have been set equal to zero and the remaining parameters,
log.α and log.b, have been set equal to log(1), which is zero. However, instead of taking
this default guess we have taken regression coefficients obtained from fitting the model

log(y) = β0 + β1x1.

This empirical guess converges faster.

Initial.Values <- c(coef(lm(log(y)~x1)), log(1), log(1))

LaplaceApproximation

To fit the above specified model

Fit <- LaplaceApproximation(Model, Initial.Values,

Data=MyData, Iterations=5000, Method="TR")

Summarizing output

Table 2 shows the analytic results using LaplaceApproximation function. It may noted that
posterior mode of parameters beta1 and log.b are 7.16 ± 0.70, −1.79 ± 0.86 respectively.
According to 95% credible intervals, beta1 and log.b are found to statistically significant.
Hence they are appropriate variables for modelling survival data. Table 3 shows the simulated
results using sampling importance resampling (SIR) method. This table represents posterior
mode (Mode), posterior standard deviation (SD), Monte Carlo standard error (MCSC), effective
sample size (ESS) and respective credible intervals LB (2.5%), Median (50%) and UB (97.5%).

print(Fit)

Table 2: Posterior mode, posterior sd and their quantiles

Parameter Mode SD LB UB
beta[1] 7.16 0.70 5.77 8.55
beta[2] -1.06 0.54 -2.13 0.01
log.alpha 2.32 1.29 -0.27 4.91
log.b -1.79 0.86 -3.51 -0.07

Table 3: Posterior mode, posterior sd and their quantiles

Parameter Mode SD MCSE ESS LB Median UB
beta[1] 7.14 0.76 0.02 1000.00 5.86 7.14 8.68
beta[2] -0.98 0.66 0.02 1000.00 -2.25 -1.01 0.10
log.alpha 1.82 1.27 0.04 1000.00 -0.18 1.95 4.35
log.b -1.46 0.90 0.03 1000.00 -3.07 -1.57 0.11
Deviance 315.31 2.58 0.08 1000.00 311.70 314.66 320.81
LP -180.97 1.28 0.04 1000.00 -183.66 -180.75 -179.21
alpha 13.72 24.12 0.76 1000.00 0.83 7.04 77.70
b 0.35 0.32 0.01 1000.00 0.05 0.21 1.12
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5.4. Fitting with LaplacesDemon

The LaplacesDemon function is the main function of LaplacesDemon package. This func-
tion maximizes the logarithm of the unnormalized joint posterior density with MCMC and
provides samples of the marginal posterior distributions, deviance, and other monitored vari-
ables. The LaplacesDemon function for this model, simulates the data from posterior density
with Independent Metropolis (IM) algorithm. The main arguments of the LaplacesDemon

can be seen by using the function args as:

LaplacesDemon(Model, Data, Initial.Values, Covar= NULL,

Iterations= 10000, Status= 1000, Thinning= 100, Algorithm= "RWM",

Specs= NULL,...)

The arguments Model and Data specify the model to be implemented and list of data, which
are specified in the previous section, respectively. The argument Iterations accepts integers
larger than 10, and determines the number of iterations that Laplace’s Demon will update
the parameters while searching for target distributions.

The function LaplacesDemon is used to analyze the same breast cancer data.

Initial.Values <- as.initial.values(Fit)

FitLD <- LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=Fit$Covar, Iterations=80000, Status=0, Thinning=1,

Algorithm="IM",

Specs=list(mu=Fit$Summary1[1:length(Initial.Values), 1]))

Summarizing output

Table 4 shows the simulated results using LaplacesDemon function with Independent

Metropolis algorithm. Posterior density plots and survival curve are presented in Figure 3
and Figure 4, respectively. Fitted object FitLD is printed.

print(FitLD)

Table 4: Posterior mode, posterior sd and their quantiles

Parameter Mean SD MCSE ESS LB Median UB
beta[1] 7.16 0.40 0.02 1074.92 6.41 7.16 8.01
beta[2] -1.06 0.31 0.01 1036.57 -1.70 -1.06 -0.47
log.alpha 2.26 0.73 0.03 937.21 0.83 2.25 3.70
log.b -1.74 0.49 0.02 972.14 -2.66 -1.75 -0.76
Deviance 312.80 0.98 0.05 776.80 311.39 312.61 315.13
LP -179.66 0.51 0.03 657.74 -180.87 -179.54 -179.08
alpha 12.49 10.54 0.45 930.68 2.30 9.51 40.29
b 0.20 0.10 0.00 1032.24 0.07 0.17 0.47
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Figure 3: Posterior density plots for TLGE(α,λ,b) model, LA stands for
LaplaceApproximation and LD for LaplacesDemon
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Figure 4: Survival curve of TLGE(α,λ,b) model.

6. Fitting Bayesian model in JAGS

JAGS is Just Another Gibbs Sampler. It is built on a version of numerical library(Rmath)
used for R, many of the functions in base R for mathematical and statistical calculations are
also available in the JAGS (Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012).
Let us consider the Bayesian analysis of Prognosis of women breast cancer data with JAGS us-
ing its interface of R that is, R2jags package of R. R2jags is designed for inference on Bayesian
models using Markov chain Monte Carlo (MCMC) simulation. It is also used for simulation
from posterior density. The JAGS function takes data and starting values as input. It au-
tomatically writes a jags script, calls the model, and saves the simulations for easy access in R.
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Creation of data

For fitting the model with JAGS, the specification of data is needed in a list containing the
name of each vector. This can be done R as follows

y <- c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225)

x1 <- c(rep(0,13), rep(1,32))

censor <- c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,0,1,0,1,1,rep(0,6))

X <- cbind(1, x1)

J <- ncol(X)

n <- length(y)

zeros <- rep(0, n)

C <- 10000

data <- list(n=n, J=J, y=y, X=X, zeros=zeros, censor=censor, C=C)

where n is number of observations, J number of predictors, X is the model matrix, zeros is
a vector of zero values equal to the number of observations, censor indicates the censoring
status, and C is sufficiently large positive value. Poisson zeros trick used for modelling
Topp-Leone Generalized Exponential distribution in JAGS.

Model definition

For modelling the breast cancer data , the TLGE model is used and defined as (see, e.g., Khan,
Akhtar, and Khan 2017)

yi ∼ TLGE(α, λ, b).

with log-link function

log λ = Xβ

where, X is model matrix and β is the vector of regression coefficients.

Moreover, prior probabilities for parameters are specified as

β ∼ N(0, 0.001)

α ∼ U(0, 40)

b ∼ U(0, 10).

Thus, the JAGS code of the this model is

cat("model{

for (i in 1:n){

zeros[i] ~ dpois(phi[i])

phi[i] <- - l[i] + C

l[i] <- censor[i] * (log(2) + log(alpha) + log(b/lambda[i]) - y[i]/lambda[i] +

log(1-(1-exp(-y[i]/lambda[i]))^b) + (b*alpha-1) * log(1-exp(-y[i]/lambda[i])) +

(alpha-1) * log(2-(1-exp(-y[i]/lambda[i]))^b)) + (1-censor[i]) * log(1-(1-exp(-

y[i]/lambda[i]))^(b*alpha) * (2-(1-exp(-y[i]/lambda[i]))^b)^(alpha))

log(lambda[i]) <- inprod(X[i,], beta[])

}

## Priors
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alpha ~ dunif(0, 40)

b ~ dunif(0, 10)

for (j in 1:J){

beta[j] ~ dnorm(0, 0.001)

}

}", file="TLGE.txt")

To Start the MCMC simulation, the initial values for the parameters are

inits <- list(list(alpha=12, b=0.19, beta=c(7,-1)),

list(alpha=24, b=.38, beta=1.5*c(7.0,-1.0)))

The above defined model is fitted with JAGS function

set.seed(001)

Fit.jags <- jags(data=data, inits=inits, param=c("alpha", "b", "beta"),

n.chains=2, n.iter=25000, model.file="TLGE.txt")

Summarizing output

The summary of JAGS simulations after being fitted to the TLGE(α,λ,b) model for the breast
cancer data. JAGS simulates the data from posterior density using Metropolis-within-Gibbs
algorithm and approximate the results, which are reported in Table 5, Rhats are very close
to 1.0, indicates good convergence. Plot of the posterior densities can be seen in Figure 5.

print(Fit.jags)

Table 5: Posterior mean, posterior SD, quantiles, Rhat and effective sample size (n.eff)

Parameter Mean SD 2.5% 50% 97.5% Rhat n.eff
beta[1] 7.440 0.754 6.226 7.354 9.164 1.00 2000
beta[2] -1.171 0.597 -2.481 -1.135 -0.100 1.00 2100
alpha 18.075 11.239 1.673 16.943 38.761 1.00 2100
b 0.167 0.140 0.060 0.119 0.586 1.00 2100
deviance 314.603 2.562 311.501 314.059 321.163 1.00 1
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Figure 5: Posterior density plots for TLGE(α,λ,b) model, using the functions
LaplaceApproximation, LaplacesDemon, and JAGS, respectively

7. Conclusion

In this paper, TLGE model is used to analyze the lifetime data in Bayesian paradigm. A real
survival data set is used for illustrative purposes. The analytic approximation and simulation
methods are implemented using LaplacesDemon and R2jags packages of R. From the tables,
it is clear that simulation tools provide better results as compared to that obtained by asymp-
totic approximation.
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