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Abstract

Estimation of distribution functions has many real-world applications. We study ker-
nel estimation of a distribution function when the density function has compact support.
We show that, for densities taking value zero at the endpoints of the support, the kernel
distribution estimator does not need boundary correction. Otherwise, boundary correc-
tion is necessary. In this paper, we propose a boundary distribution kernel estimator which
is free of boundary problem and provides non-negative and non-decreasing distribution
estimates between zero and one. Extensive simulation results show that boundary distri-
bution kernel estimator provides better distribution estimates than the existing boundary
correction methods. For practical application of the proposed methods, a data-dependent
method for choosing the bandwidth is also proposed.

Keywords: boundary distribution kernel, distribution function estimation, integrated mean
squared error, kernel estimator, mean squared error.

1. Introduction

As an effect of global warming, the insurance industry is increasingly exposed to extreme
events such as hurricanes, hail storms and tornados, etc. Such events cause catastrophic
losses. It is necessary to estimate the probability of such events and the probability of the
payout exceeding certain amounts (such as $1,000,000) in order for the insurance companies
to determine the appropriate premiums. Denote by X the amount of the payout from an
accident, the quantity of interest is P(X > x) , where z is a pre-specified amount of payout.

In this paper, we assume that X is a random variable from a population with density f and
cumulative distribution function (CDF) F' = P(X < z) (hence P(X > z) =1 — F(x)). Fur-
ther assume that we have available the past data X, --- , X,, and assume that Xy, .-, X, are
independent and identically distributed (i.i.d.) random variables, a commonly used method
to estimate F' is the kernel method
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where K is defined by

t
K@) = [ k) @
and k is a kernel function satisfying
+oo +oo +o0 9
/ k(y)dy =1, / yk(y) dy = 0,/ Y k(y) dy # 0. 3)

Fn(m) is called a kernel distribution estimator. In the literature of density estimation, a kernel
satisfying (3) is called an order (0, 2) kernel, where “0” means that the purpose is to estimate
the density function and “2” means that such kernel yields bias of order O(h?), see Gasser
and Miiller (1979), Gasser, Miiller, and Mammitzsch (1985), Miiller (1991) and Zhang and
Karunamuni (1998, 2000) for more references on this topic. Since the purpose of this paper
is to discuss the estimation of the distribution function, to distinguish K from k, we will call
K defined by (2) a distribution kernel and k a density kernel.

For the kernel distribution estimator (1), it has been shown (Azzalini 1981; Jones 1990) that

Bias(Eu(r)) = BF(z) ~ F(x) = 3 1a(k)fO () + o(1?) (4)
and
Var(iy () = TECIED By 00) 4o, Q

where f() is the second derivative of F (or the first derivative of f), ua(K) = /kaz(y) dy

and Y(K) = 2/yk(y)K(y) dy, respectively.

Combining (4) and (5), we have

8B (F () = POOZLED) L L, 0@ - @) o)
and
IMSE(Fy(@) = - [ F@)( = Fa)do + 0 [110@)Pds - oK), (1)

where MSE and IMSE are the abbreviations of mean squared error and integrated mean
squared error.

It can be seen that the optimal bandwidths for minimizing (6) and (7) are both of order
O(n~1/3) and have the form

gy { PE) VL g@) VP
hy, (v) = { [M2(k>]2} { [f(l)(w)P } n (8)
and
opr_ [ VU 11 ! 13
ha = { (12 (K)]? } {f[f(l)(x)]Q dx}1/3 ’ 9)
respectively.

The bandwidths h%” 1t(ar;) and hOGpt are called the optimal local and optimal global bandwidths.
With their respective optimal bandwidths, the MSE and IMSE of Fn(:c) are

~ o _F@(-F@) 3 @ P M
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and

W [F@Q-F(), 3 1 WENY s
IMSE( ”(x))_/ n dm_4{f[f(1)(x)}2dx}1/3{[MQ(k)]Z} nn

Hence, the optimal rate of convergence of MSE and IMSE is of order O(n~!), the same as that
of the empirical cumulative distribution function (CDF') since the last two terms in (10) and
(11) converge to zero at the rate O(n~*3) . Note that the first term on the right hand side
(RHS) of (10) and (11) are the MSE and IMSE of the empirical CDF. Further note that the
second term on the RHS of (10) and (11) are both negative, the kernel distribution estimator
has smaller MSE and IMSE than the empirical CDF, which is the motivation of developing
the kernel distribution function estimators.

It is obvious that minimization of (6) and (7) also concerns the choice of the kernel function.
This problem was solved in Swanepoel (1988) and Jones (1990) in which it is shown that the
[Y(K )]4)
(k2 (K)]?
for all values of h is the uniform density on [—v/3,+/3]. This, without loss of generality, can
be changed to the uniform density on [—1,1], i.e.,

optimal density kernel k& which minimizes the IMSE (or equivalently, maximizing

k(y) =1/2, -1<y <1, (12)

due to the invariance of the minimized IMSE to the change of scale. Consequently, the
resulting optimal distribution kernel is

0, y<—1
1

Kp)=q =2 —1<y<1 (13)
L, y=>1

2. The boundary problem of the kernel distribution estimator

The asymptotic results discussed in the previous section are obtained under the assumption
that the support of the density is (—oo,00). In practice, the data are often obtained from
a population whose probability density function has finite support. Examples of such data
include the truncated, survival or censored data which often appear in financial and clinical
studies. In such cases, the asymptotic results (4)-(7) do not hold anymore for the points
near the end of the support. Hence, the kernel distribution estimator (1) may not provide
appropriate estimates of the distribution function at such points. The purpose of this section
is to provide a detailed study of the performance of the kernel distribution estimator at the
points near or at the end of the support and propose a method to correct the boundary
problem.

Without loss of generality, assume that the density function has compact support [a, b] (hence
F(a)=0,F(b) =1), and assume that the density kernel k vanishes outside [—1, 1] . Then, it
can be shown that, for x = a + ch, 0 < ¢ < 1, we have

ias(F @) =nfla) { [ san-1- [ wka]

h2 c c (14)
o 10n e wods— 1= 2 [ pkdy i o+ o),

-1 _
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C
where po (k) = / y*k(y)dy. Similarly, for = b — ch, 0 < ¢ < 1, we have
-1

1 1
Bias(F (o) = = hf(0-) {el | Kdn =1+ [ yran
B2 o - 1 (15)
SO0 k11420 [ ykdy 50 ) + o)

—C —C

_|_

1
where y15 (k) = / y*k(y)dy.

—C

The proofs of (14) and (15) are provided in the Appendix. When f(a+) # 0 and f(b—) # 0,
(14) and (15) show that, for the points in the intervals [a,a + h) and (b— h, b], the bias of the
kernel distribution estimator F},(z) converges to zero at the rate O(h), which is slower than the
rate O(h?) observed in (4). This is the boundary problem of the kernel distribution estimator.
Note that the boundary problem in kernel density estimation has the non-consistency problem,
in addition to the slower convergence problem of the bias (Gasser and Miiller 1979; Gasser
et al. 1985; Miiller 1991; Zhang and Karunamuni 1998). The boundary problem in kernel
distribution estimation is less severe than in kernel density estimation. This is due to the
extra information F'(a) = 0, F'(b) = 1. As in density estimation, the intervals [a,a + h) and
(b — h,b] will be called the boundary region and the interval a + ch < x < b — ch is called the
interior region. However, if we know that f(a+) = 0 or f(b—) = 0, the first order term in
(14) and (15) dispappears and the bias converges to zero at the usual rate O(h?). Hence, the
distribution kernel estimator F,(z) is free of boundary problem in such a case.

Kolacek and Karunamuni (2009) considered the boundary problem in distribution function
estimation in estimating ROC curves using the transformation method discussed in Zhang et
al. (1999). Tenreiro (2013) proposed a boundary kernel method for correcting the boundary
problem. However, Tenreiro (2013) did not reveal the fact that there is no boundary problem
in distribution function estimation if the density has value zero at the endpoints of the support.
In his method, the boundary kernel k. is constructed by truncating a density kernel at [—c, ¢],
and then normalizing it so that it integrates to 1 on [—c,c|. Realizing the fact that such
boundary kernel corrects the boundary problem by shrinking the bandwidth to zero when
x — a+ or b—, the resulting distribution estimates may have high variability at such points.

The purpose of this paper is to develop a boundary distribution kernel method for correcting
the boundary problem of F,,(z) , which is continuous, non-decreasing and does not have the
aforementioned high variability problem of the estimator proposed in Tenreiro (2013).

2.1. The boundary distribution kernel estimator

It can be seen from (14) that the boundary problem can be removed if, at the boundary point
x =a+ch (0 <c<1), the density kernel function k satisfies

C C
C[/ ) k(y)dy — 1] - / yk(y)dy = 0. (16)
- -1
Since such k depends on ¢, to distinguish it from the interior kernel k we will denote it by
k.. It can be easily seen that (16) is satisfied if k. is a left hand side (LHS) boundary kernel
in density estimation (we will call it boundary density kernel) since a LHS boundary density
kernel satisfies . .
/ ke(y)dy = Land / ykc(y)dy = 0.
-1 -1
However, as will be seen in Section 3, the drawback of using the boundary density kernel
is that it may produce distribution estimates which are negative or larger than 1 for the
distribution due to the negative part on its support. In distribution estimation case, the
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derivation of (14) shows that the kernel is only required to satisfy (16) in order to solve the
boundary problem of F),(x) at the left boundary. Re-write (16) as

C

/C1 “hely)dy = 1. (17)

Given an interior symmetric density kernel k which satisfies (3), k. satisfying (17) can be
easily constructed as follows

y)/ c— ) -1<y<ec
kc(y) = / : (18)

— <
c—l/ sk(s ds// c—s)k(s)ds, c<y<l1

t

Define K.(t) = / k.(y)dy. K.(t) will be called a LHS boundary distribution kernel. Noticing
-1

C _
that / ﬂk(y)dy — 1 as ¢ — 1, we have k. — k as ¢ — 1. Hence, k. defined in (18) is a
-1 C

natural continuation of the interior kernel to the left boundary region.

t

Similarly, a RHS boundary distribution kernel K (t) = / k% (y)dy can be constructed by
-1

finding a function & satisfing

1 1
oA Kwiy-1+ [ ywiy=o (19)

C

or equivalently

/ Y ay = 1. (20)

C

Given an interior symmetric density kernel k, k¥ satisfying (20) can be constructed as follows

1 1

/ sk(s)ds/ [ (c+ s)k(s)ds, —1<y< —c

k=< ¢t - . (21)
ck(y)/ (C+8) (s)ds, —c<y<l

It is obvious that k) — k as ¢ — 1. Hence, k) defined in (21) provides a natural continuation

of the interior kernel to the right boundary region. The following result shows that the above

defined k.(y) and k}(y) are always non-negative.

Proposition. With a symmetric density kernel k satisfying (3), kc(y) and kX(y) defined in
(18) and (21) are non-negative.

Proof. The proof of the proposition is straight forward. Taking (18) for example, it is obvious
that ck(y // c¢—38)k(s)ds is non-negative on —1 < y < ¢ . For the part defined onc <y < 1,

¢

the non-negativity follows from the fact that / sk(s)ds < 0 for 0 < ¢ < 1. In the following
—1
we provide examples of k.(y) and k}(y) and their resulting boundary distribution kernels. [

Examples of boundary distribution kernel

As mentioned at the end of Section 1, the optimal interior distribution kernel is the uniform
kernel (12). Hence, it makes more sense to construct a boundary distribution kernel based on



6 Estimating a Distribution Function at the Boundary

the uniform kernel. Plugging (12) in (18) and (21), we have

2c <<
oy LXYSC
1 2
kely) ={ (D) (22)
1 c<y<l
¢
and
# _1<y<c
. +1 5 >
ki) = 3D . (23)
W, c<y<l
c

Hence, the resulting boundary distribution kernels are

0, t< -1
2c
t+1) —1<t<e
2 ( =
he(t) = ¢ (et (24)
, c<t<l1
c+1
1, t>1
for the left boundary, and
0, t<—1
t+1
i 1 -1<t< —c
* c
kc (t) = 02 + 2ct + 1 (25)
- T _e<t<1
(c+1)2
1, t>1

for the right boundary, respectively.

With K.(t) and K} (t) defined above, the boundary distribution kernel estimator is defined
as

1 « —X;
*ZKc(x ), a<wz<a+hc=(x—a)lh
et h
. 1 o - X;
Fp(z) = ;ZK(mh ); a+h<z<b-—h . (26)
=1
1 - *IE*XZ'
pn;Kc( ), b-h<a<be=(b-w)/h

Theorem 1. Assume that the second derivative of F(x) (or the first derivative of f) exists
on [a,b] and is continuous in a neighborhood of x, we have

i). Fg(a) =0 and Fp(b) = 1.

i1). Fp(x) is non-decreasing.

i11). Forx =a+ch,0<c<1,

2 c
ias(Fula)) =y 1) | [ (=0t = |+ ol (21)
and oh . h
Var(Fo(w) = 2 fat) [ (e = nkelo)Kelu)dy + o). (28)

). Forx =b—ch,0<c¢<1,

2 1
Bias(Fua) = 5 00-) | [ @4 uPuy - ] + o) (20)

—C
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and

12

1
Var(Fp(e) = 2210-) [ (e ki)t = K)ldy +ol). (30)

e n

The proof of Theorem 1 is deferred in the Appendix. Theorem 1 shows that the bias and
variance of the boundary distribution kernel estimator Fg(z) converges to zero at the interior
rate O(h?) and O(%) at the boundary points, respectively. Hence the boundary distribution
kernel estimator is free of the boundary problem.

Combining (27)-(30) and the fact that the boundary distribution kernel estimator is the same
as Fy,(x) of (1) for the interior points in the interval [a + h,b — h] , we have

b—h

MISE(Fg) 2ih4[u2(k)]2/+h [f) (@) da
b—h b=h
i 711/ F(z)(1 — F(z))dz — %w(K) /+h f(z)dz

+h
1 a+h (z—a)/h T—a T —a 2
S @Ol [ [ = ey - (5| do

2h at+h p(z—a)/h T—a
+nf(a+)/ /1 (== = Wk@-a)n (W) K g—a)/n(y)dyde

b 1 o .
+HeoR [ [ [ O ks - >2] s

b—h |J—(—a)n P

R A B = A LR O
n oon ) o-wyn B (b—=)/h (b—=)/h

(31)
Unlike (7), minimization of (31) with respect to (w.r.t.) h does not yield explicit solution and
hence has to be solved numerically.

3. Numerical results

In this section, we numerically compare the performances of the empirical CDF (denote it
by F(z)), the kernel distribution estimator F,,(x) with distribution kernel (13), the boundary
distribution kernel estimator Fp(x) with distribution boundary kernels (24)-(25) and the
Tenreiro estimator (denote it by Fj,(x)) with distribution kernel (13).
As mentioned in the discussion circa (16), boundary correction can also be achieved by directly
using the density boundary kernels as k. and k] and their corresponding K. and K} in
the boundary, with the risk that such estimators may produce negative or larger than 1
distribution estimates. To see the extent of the negativity problem, in the comparison we also
included the density boundary distribution estimator which is basically (26) with K.(t) =
t t
/ kc(y)dy and K} (t) = / k% (y)dy , where
-1 -1
4(1—c+c?)  6(-1+c¢)
(14c)? (1+4c)?

k() = { t} 1[-1,d (32)

and

ke (t) =

{4(1 —c+c?)  6(-1+c¢)

1+ ) (1+c)p t} I=e1], (33)

respectively. The resulting distribution is denoted by F *(x) and will be called the density
boundary kernel distribution estimator. It is easy to see that k. and k) defined in (32) and
(33) become the uniform kernel when ¢ = 1.
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It is obvious that the negativity problem of the density boundary kernel distribution estimator
can be easily corrected by truncating the estimates at zero if it takes a negative value or at
1 if it takes a value large than 1. For the completeness of comparison, we also included the
truncated version of F () in the simulations.

3.1. The performances of the kernel distribution estimators based on their
respective optimal bandwidths

To account for different situations, we use the following four distributions in the simulations:

1. The truncated exponential distribution on [0, 1]:
1
flx) = exp(—2;v)// exp(—2x)dx,0 < x < 1.
0

2. The truncated normal distribution on [0, 1]:

f(z) = L ex (—ac2/2)//1 L exp(—22/2)dz,p0 < z < 1
N P o Vo P P .

3. The Beta(a, 3) distribution on [0, 1] with a = 2,8 = 2:

z(1—x)

flz)= m,

0<ax <,

where B is the beta function. Note that this density function satisfies f(0) = f(1) = 0.

4. The Beta mixture distribution Zf w; Beta(ay, B;) with k = 2,w; = 1/4,00 = 1,51 =
6;’[1)2 = 3/4,0&2 = 6,52 =1.

Figure 1 below shows the form of the density function and the CDF of these distributions.

In the simulations the sample size was chosen as n = 100. Tables 1-4 report the IMSE values
of the six estimators. The IMSE values are calculated by integrating the MSE value of each
estimator in [0, 1] using their optimal global bandwidths. The use of optimal bandwidth is
necessary in order to have a fair comparison since the performance of a kernel estimator is
greatly affected by the bandwidth used. The optimal global bandwidth used for each estimator
is obtained by numerically minimizing the IMSE of each estimator from 1,000 samples on a
grid of possible h values between [0,1/2]. The obtained optimal global bandwidth hOGpt for
each estimator is shown in Column 2 of the tables. The IMSE values (multiplied by 1000 for
easy comparison) corresponding to hey (calculated as the average of the integrated squared
error (ISE) from the 1,000 samples) are reported in Column 3 of the tables.

It can be seen from Tables 1-4 that all the kernel distribution estimators have smaller IMSE
than the empirical CDF. Comparing among the kernel distribution estimators, we see that
the boundary distribution kernel estimator F B(z) has the smallest IMSE values for all dis-
tributions except Distribution 3, followed by the Tenreiro estimator, the truncated density
boundary kernel distribution estimator, the density boundary kernel distribution estimator,
and the kernel distribution estimator. Note that for Distribution 3 (the Beta(2,2)), the
kernel distribution estimator Fn(az) is free of boundary problem since the density satisfies
f(a) = f(b) = 0. In this case, Fj,(z) and the boundary distribution kernel estimator F(z)
have similar IMSE values, while the density boundary kernel distribution estimator F E(x) ,
its truncated version and the Tenreiro estimator F,(z) have similar IMSE values which are
smaller than those of F),(z) and Fg(z).
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Figure 1: Plots of distribution function and density function




10 Estimating a Distribution Function at the Boundary

Table 1: The IMSE values of F(z), Fj,(x), F(x), the truncated Fj(x), F,(x) and Fg(z) for
the truncated exponential distribution on [0, 1]

Method hOGpt IMSEx103 95% C.I. of  Average ISEx10?
based on hon hev based on Aoy

F(x) N/A 1.443 N/A N/A
Fo(z) 0.11 1.2194 0.12 (.04, .23) 1.2853
Fy(x) 0.18 1.081 0.19 (.06, .40) 1.2599
Truncated F5(z) 0.18 1.078 0.19 (.06, .44) 1.2622
ﬁn(x) 0.19 1.0693 0.20 (.07, .50) 1.2644
Fp(z) 0.19 1.0324 0.20 (.10, .29) 1.2635

Table 2: The IMSE values of F(z), Fj,(x), Fj;(x), the truncated Ej(x), F,(z) and Fg(z) for
1

the truncated normal distribution on [0,

o~

Method Rt IMSEx10? 95% C.I of  Average ISEx103
based on hg’t hov based on Aoy
F(x) N/A 1.6148 N/A N/A
E,(x) 0.16 1.29 0.17 (.06, .37) 1.3509
F3 () 0.42 0.9218 0.42 (.06, .50) 1.0473
Truncated F(z)  0.43 0.9021 0.42 (.06, .50) 1.0320
F,(x) 0.49 0.8990 0.43 (.06, .50) 1.0029
Fp(x) 0.5 0.6844 0.44 (0.2, 0.5) 0.89

The biggest advantage of the boundary distribution kernel estimator F B(x) over the other
methods is the quality of estimation at the boundary. To see this, for each method we also
plotted 10 estimates of the CDF based on their respective optimal bandwidths. The results
are shown in Figures 2-5. For clarity, we only plotted the estimated CDF of each method at
the left and right boundaries separately. These figures clearly show the boundary problem
of the kernel distribution estimator: the estimates are systematically biased except Figure 4
of Distribution 3. They also show that it is quite common that the density boundary kernel
distribution estimator may produce estimates which are either negative or larger than 1.
The effect of truncation of the density boundary kernel distribution estimator can be clearly
seen in the figures, especially in Figure 4. It can also been seen that, although the Tenreiro
estimator does not have the boundary problem, its estimates at the boundary are rugged (as
mentioned in Section 2), not as smooth as those from the kernel distribution estimator and
the boundary distribution kernel estimator. As a matter of fact, we see that the Tenreiro
estimator behaves very similarly to the empirical CDF in the boundary region, due to the
fact that the bandwidth used in the boundary region (h = = — a) decreases to zero as x — a.
On the other hand, throughout all the plots we see that the boundary distribution kernel
estimator provides smooth estimates for the distribution function in the boundary region
while remaining to be free of boundary problem.

Recall that we observed for Distribution 3 that the IMSE of the boundary distribution kernel
estimator is higher than that of the truncated density boundary kernel distribution estimator
and the Tenreiro estimator. Figure 4 reveals that this is caused by the fact that the latter
estimators take zero values for the points near zero. The zero estimates are the results of
truncation for the truncated density boundary kernel distribution estimator and the result of
the shrinking bandwidth (h = x—a) for the Tenreiro estimator. It is obvious that an estimator
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Figure 5: Performance of the different distribution estimators for Distribution 4
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Table 3: The IMSE values of F(z), Fy,(x), Fj(x), the truncated F}(x), F,(x) and Fg(z) for
the beta(«, 8) distribution with o = 2,8 = 2

Method hOGpt IMSEx103 95% C.I. of  Average ISEx10?
based on hon hev based on Aoy

F(x) N/A 1.2501 N/A N/A
Fo(z) 0.13 0.9655 0.13 (.08, .17) 1.0111
FE(JJ) 0.16 0.9175 0.21(.09, .49) 0.9940
Truncated Ff(z) 0.17 0.9087 0.28(.09, .50) 0.9568
ﬁn(x) 0.18 0.8996 0.29(.09, .50) 0.9934
Fp(x) 0.15 0.9406 0.16 (.08, .26) 1.0477

Table 4: The IMSE values of EF(z), E,(x), Fg(m), the truncated FE(ZE), F,(z) and Fg(z) for
the Beta mixture distribution (4)

Method h' IMSEx10®  95% C.L of  Average ISEx10°
based on iLOG]mt hov based on hcy

F(x) N/A 1.8068 N/A N/A
E(x) 0.06 1.6981 0.06 (.01, .13) 1.7350
Fi(x) 0.09 1.6200 0.09 (.03, .14) 1.6826
Truncated Fi(z)  0.09 1.6186 0.09 (.03, .14) 1.6814
E,(x) 0.09 1.6098 0.09 (.03, .18) 1.6778
Fp(z) 0.09 1.5927 0.09 (.05, .12) 1.6760

which takes zero value in the neighborhood of x = a may have an advantage on the value of
IMSE since F(a) = 0. However, such an estimator does not provide useful information for
the points near the end of the support since the true distribution function is not zero at these
points.

3.2. Estimation of the optimal global bandwidth

In order to apply the proposed kernel distribution estimators in practical situations, we need
to develop a method to estimate the optimal global bandwidth. A number of methods have
been proposed in the literature to choose the bandwidth for the kernel distribution estimator
in the infinite support case. The simplest one is the reference distribution method in which
the bandwidth is estimated by replacing the true distribution by a reference distribution such
as the normal distribution. Other methods for choosing the bandwidth include the “leave-
one-out” method of Sarda (1993), the “plug-in” method of Altman and Leger (1994), and the
cross-validation (CV) method of Bowman, Hall, and Prvan (1998).
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In the following, we discuss how to use the CV method to select the bandwidth in kernel
distribution estimation for densities with finite support. Although we have discussed both
local and global bandwidths for kernel distribution estimation, we will only focus on the
estimation of the optimal global bandwidth due to the fact that the bandwidth selector
developed based on the global optimal bandwidth is more stable than that based on the local
optimal bandwidth. We follow the idea of Bowman et al. (1998) to use the CV method for
estimating the bandwidth for the kernel distribution estimators when the density has compact
support [a, b]. Define

1 [P .
SOEEDY / (Iwi < 2] — Foi(2))2da (34)
i=17a

where EF_;(z) is a kernel distribution estimator (boundary corrected or not) using the data
without observation x;. Then, following the same lines as those (page 801-803) of Bowman
et al. (1998), one can show that, by ignoring an unknown constant factor, CV'(h) is an
unbiased estimator of the true IMSE for sample size n — 1.

To evaluate the performance of the bandwidth selector CV'(h), for each method and each
sample we obtained hcy, the estimated optimal global bandwidth, by minimizing (49) on a
grid of possible h values between [0,1/2]. The mean, the 95% confidence interval of these
bandwidths are also reported in Column 4 of Tables 1-4. These results show that the CV
method based on (34) provides satisfactory estimates of the optimal global bandwidth for
the kernel distribution estimator F'(x). For the boundary distribution kernel estimator Fi(x)
and the Tenreiro estimator F,(z), the bottom two row of Table 2 shows that the estimated
optimal global bandwidth hey are smaller than the optimal global bandwidths. This is
caused by the fact that the true optimal bandwidth for Fz(z) are too close to 0.50 (.49 and
.50 respectively), the right endpoint of the interval [0, 1/2], in which we search for the optimal
bandwidth. We also conducted the simulations (not reported here) for truncated normal
densities with support [0, 2], and found that this problem had disappeared for both methods.
For the density boundary kernel distribution estimator, its truncated version and the Tenreiro
estimator, Table 3 shows that the estimated optimal global bandwidths are significantly larger
than the true optimal global bandwidths. This indicates the instability of (34) as a bandwidth
selector for these three estimators.

In order to see the performance of the estimators w.r.t. their respective estimated optimal
bandwidths, we also calculated their average ISE values. The results (multiplied by 1000) are
reported in Column 5 of Tables 1-4. As expected, the IMSE values reported in Column 5 are
greater than those in Column 3 due to the use of estimated optimal bandwidths. Column 5
also confirms the findings from Column 3 that the boundary kernel estimator in general has
the best performance among all the estimators we have discussed in this paper.

3.3. A real data example

To examine the performance of different methods in real applications, we applied the methods
we have discussed in this paper to the Massachusetts auto bodily injury liability data, which
are provided in Rempala and Derrig (2005). The data consist of outpatient medical provider’s
total billings on a sample of 348 auto bodily injury liability claims closed in Massachusetts
during 2001. The data range from 0.045 to 50.00 in thousands of dollars. We randomly
divided the data into the training sample (50% of the data) to fit the kernel estimators and
the test sample (the remaining 50% of the data). The histogram in Figure 6 shows that
the majority of claims are small claims (less than 5 thousand dollars), indicating that the
value of the density function may be larger than zero at zero-the left endpoint of the support.
Hence, boundary correction around zero is necessary. In our analysis, we first obtained the
bandwidths from the training sample using the CV method (49), and they are 0.40 for the
kernel distribution estimator, 0.48 for the density boundary kernel distribution estimator, the



Austrian Journal of Statistics 17

truncated density boundary kernel distribution estimator and the Tenreiro estimator, and .49
for the boundary distribution kernel estimator, respectively.

Histogram of Claim amount

o _
[c°]
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o - —'_|_I ——T— —

claim amount

Figure 6: Histogram of claim amounts from the training sample

In Figure 7, we plotted the estimated exceedance probabilities for each method for claim
amounts 0 < x < .5 in the test sample, and these probabilities were compared with the
proportions of claims exceeding x from the test sample (the solid line). The exceedance
probability can be useful in premium calculation in the insurance industry. Figure 7 clearly
shows the boundary problem of the kernel distribution estimator F' (x) (the short dashed line)-
it down-estimates the exceedance probability for claim amounts less than $200. The density
boundary kernel distribution estimator and its truncated version (the dot-dash line) are the
same line (i.e., no need for truncation). Since the value of these two estimator at x = 0 is less
than 1, this shows that they both down-estimate the exceedance probability for small claims.
On the other hand, both the Tenreiro estimator (the long dashed line) and the boundary
distribution kernel estimator (the dotted line) take the value 1 at = 0. It can also been seen
the Tenreiro estimator is less stable in the boundary region than the boundary distribution
kernel estimator. The flat region of the Tenreiro estimator (F),(z) =1) for the points near at
x = 0 does not provide useful information for insurance claims falling into this region.

4. Conclusion and discussion

Estimation of distribution function has found numerous applications in econometrics, clima-
tology, hydraulics, among others. One of the major methods in estimating the distribution
function is the kernel method. In this paper, we have provided an in-depth study of the
boundary problem of distribution kernel estimator when the density function has compact
support. In order to eliminate the problem of the kernel distribution estimator, we have
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Figure 7: Exceedance probability plot from the test sample.The proportions of claims ex-
ceeding z(claim amount)-the solid line, F;,(x)-the short dashed line, F5(x) and its truncated
version-the dot-dash line, F,,(z)-the long dashed line, and Fp(x)-the dotted line.
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proposed a boundary distribution kernel estimator. We have shown that the boundary distri-
bution kernel estimator uses the available information more efficiently for estimating the CDF
at the boundary point © = a+ch (or = b—ch) by using the data in the interval [a, a+h) for
the left boundary region (or (b— h, b| for the right boundary region), compared with [a, x + ch]
(or [b—ch, b]) for the Tenreiro estimator. Numerical comparisons also show that the boundary
distribution kernel estimator, as well as the optimal global bandwidth based on it, in general
has the best performance in the boundary region among all the estimators we have considered
in this paper.
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Appendix

Proof of (14, 15). We will only prove (15). The proof of (14) can be similarly obtained. Since

Xi,...,X, are 1.1.d., at x = b — ch, we have

“HE@ + % /bF(t)k(gc — 1yt — F(a)

h
x—t

ok

)dt — F(z).

Let y = (z —t)/h, and expand F'(xz — hy) around x, we have

b T — 1
:L/ F(t)k(— lt)cltz/_ k(y)F(z — hy)dy

C

1
— [ k@)@ - hyf@) + G @)y + o)

—C

1

=F(z) [ k(y)

—C

L2 )
+2h2fl($)/

Plugging (A2) into (A1), we have

Bias(ﬁ’n(a;)) =K(—c) + F(CU)(/
1
+ 321V [

-1

Note that for xt = b —ch

1
dy — hf(z) /_ yk(y)dy
1
y2k(y)dydy + o(h?).

—C

1 1
3 k(y)dy — 1) — hf(:r)/ yk(y)dy

y*k(y)dy + o(h?).

(A1)

(A2)

(A3)
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Plugging these into (A3), we have

1 1

Bias(Fu(a)) =K(~c) + (| b)dy) = 1) = ehf6-)( | K@) -1
1
+ 5 00)( [ ki) - 1)
1
— B(f(b-) — chfD (b)) / yk(y)d(y)
2 1
5 f00-) [ Pkea)
1

1
== hf-)le( | k(y)dy—1) +/_ yk(y)dy]

1 1 1

k(y)dy — 1) + 26/ yk(y)dy + / y’k(y)dy] + o(h?).

—C —C

h’2 1 2
+ sV

—C

This completes the proof of (15). O

Proof of Theorem 1. We will only prove (i), (ii) and (28). (27) and (29) are direct results of
(14) and (15). (30) can be proved along the same lines as those used in proving (28)

Note that for z = a, T~ 0. The construction of K.(t) (see discussion circa (18)) shows

that Ko(t) = 0 for t < 0. Hence, Fp(a ZK l = 0. F(b) = 1 can be similarly

proved.

To show F'g (z) is non-decreasing; it is enough to show that it is non-decreasing in the boundary
regions. We will only prove this for the left boundary region.

For any a < 1 < x2 < a + h, note that

Fites) = Fofen) = 3 Kl — LSS K (P

iil N =1 N (A4)
1 To — X T
= Kc - Kc ’

where ¢; = (z; — X;)/h,i = 1,2. (A4) shows that it is enough to show

Z Koyl ”32 Z Ko (2

Without loss of generality, it is enough to show

)>0fori=1,2,...,n.

Xro — Xi xr1 — Xz‘
KCQ( h )_Kcl( h )ZO
Note that
xTro — Xz r1 — Xl
KCQ( h/ ) - KCI( h )
z3—X; z1—X;
B R
= / kay—x; (y)dy — / ki —x; (y)dy
-1 h —1 h
z2—X; z1—X; z1—X; (A5)
h R R
= / . kay-x; (y)dy + / keyx, (y)dy — / ke -x; (y)dy
% h -1 R 1 =
z1—X;

> [ (b ) = e )
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since kay-x; (y) > 0. The last inequality in (A5) show that the proof is complete if we can
h
show that kup-x; (y) — kay—x; (y) for —1 < y < “%X", i.e., if we can show that k.(y) is
h h
non-decreasing as a function of ¢, for each—1 < y < ¢. From (18), we see that we only need
C

to show ck(y)// (c — s)k(s)ds is non-decreasing as a function of ¢, for —1 < y < ¢, which

-1
directly follows from the fact that

C

jc[ck(y)//cl(c — 8)k(s)ds] = —/ sk(s)ds > 0.

-1

To show (28), first we realize that

h
JI—XZ'

Var(Fp(z)) = %Var <KC(”” - Xi))

S
n

Similar to the proof of the bias term, we can show that

c c

x—X; keW)Kely)dy} +o(h)  (AG)

ERXES =2{F@) [ kw)Kd)dy - 1i(w) [

1 _

and

Cc

1 yke(y)dy 4 o(h) (AT)

BR(C) = F@) [ kdy - b [

1 _

Plugging the facts F(x) = F(a+)+ chf(a+)+o(h), f(x) = f(a+)+o(1) and F(a+) = 0 into
(A6) and (A7), we have

and

Hence,

Var (K(C52) ) =2nf(at) [ = ki Reo)dy + ol

This completes the proof of (28). O
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