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Abstract

We propose a new robust test to detect changes in the autocovariance function of a
time series. The test is based on empirical autocovariances of a robust transformation
of the original time series. Because of the transformation, we do not require any finite
moments of the original time series, making the test especially suitable for heavy tailed
time series. We furthermore propose a lag weighting scheme, which puts emphasis on
changes of the autocovariance at smaller lags. Our approach is compared to existing ones
in some simulations.
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1. Introduction

Testing for second order stationarity goes back to Quenouille (1958) and Jenkins (1961). To
the best of our knowledge, the first test where the possible time of change is not known
a priori can be found in Priestley and Rao (1969). Since then a lot of alternatives have
been proposed. In Jin, Wang, and Wang (2015) estimated autocovariances of subsamples are
compared to the estimation based on the whole time series. Several tests have been proposed
for linear models, see Bai (1993), Bai (1994), Andrews (1993), Davis, Huang, and Yao (1995),
and Akashi, Dette, and Liu (2018). CUSUM-type tests to detect changes in one or several
autocovariances have been derived in Berkes, Gombay, and Horváth (2009), Lee, Ha, Na,
and Na (2003), and Dette, Wu, and Zhou (2015). A test based on the auto-copula has been
proposed in Bücher, Fermanian, and Kojadinovic (2019). Tests that check stationarity of the
spectrum are presented in Picard (1985), Giraitis and Leipus (1992), and Rozenholc (2001)
and a wavelet periodogram is used in Nason (2013) and Cardinali and Nason (2018). There
are also proposals that compare local estimates of the spectrum with a global estimation; see
Von Sachs and Neumann (2000), Paparoditis (2009), Paparoditis (2010) Dette, Preuß, and
Vetter (2011), and Preuß, Vetter, and Dette (2013).
Surprisingly little attention has been paid to robustness. We want to fill this gap with a
CUSUM type test based on robustified autocovariances. The testing procedure is described
in Section 2. A simulation study in Section 3 indicates its usefulness.
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2. Testing procedure

Denote by X = X1, . . . , XT a one dimensional time series which is stationary under the null-
hypothesis. We assume in the following that X has a continuous marginal distribution and
is strongly mixing with mixing coefficients (ak)k∈N fulfilling ak = O(k−3−ε) for some ε > 0.
Strong mixing was first introduced in Rosenblatt (1956) and describes how fast the depen-
dence between two observations decreases as the time lag between them increases. See Bradley
(2005) for more details. We only want to emphasize here that a broad class of time series
models is strongly mixing, like linear and GARCH processes with continuously distributed
innovations; see Chanda (1974) and Lindner (2009).
We want to test, whether the autocovariance function of X stays the same, concentrating on
the first p lags. We follow the approach of Dürre and Fried (2019) and use bounded trans-
formations. Before using them, the observations need to be properly standardized. Denote
by µ̂ the sample median and by σ̂ the sample MAD of X, and µ and σ their theoretical
counterparts. Then we define

Ŷt = ψ

(
Xt − µ̂
σ̂

)
and Yt = ψ

(
Xt − µ
σ

)
where ψ(x) =


−k x < −k
x |x| ≤ k
k x > k

denotes the Huber-ψ function. This function was originally introduced for location estimation
in Huber (1964) and basically downweights the influence of observations with large absolute
values by shrinking them to more plausible values; see Figure 1. The tuning-coefficient k
determines the robustness of the test. A larger value of k is favourable under Gaussian time
series, whereas a smaller k is needed if the data is corrupted or heavy tailed. In Huber (1981)
k = 1.5 is recommended as a compromise.
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Figure 1: Huber-ψ function with k = 1.5 (left) and robustly transformed time series (right).

In the following, we derive a CUSUM type test based on the Huber-transformed time series.

Denote S
(l)
k =

∑k
t=1 ŶtŶt+l, then we look at

RT = max
k=1,...,T̃

1

T̃


S
(0)
k −

k
T̃
S
(0)

T̃
...
...

S
(p)
k −

k
T̃
S
(p)

T̃


T 

w0 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 wp



S
(0)
k −

k
T̃
S
(0)

T̃
...
...

S
(p)
k −

k
T̃
S
(p)

T̃


where w0, . . . , wp > 0 and T̃ = T − p. Here are some remarks with regard to RT :
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• Technically, RT tests the following hypothesis

H0 :

 Cov(Y1, Y1)
...

Cov(Y1, Yp+1)

 = . . . =

Cov(YT−p, YT−p)
...

Cov(YT−p, YT )

 vs.

H1 : ∃k < T :

Cov(Yk−p, Yk−p)
...

Cov(Yk−p, Yk)

 6=
 Cov(Yk, Yk)

...
Cov(Yk, Yk+p)

 .

This is not equivalent to a test for a stationary autocovariance function up to lag p. For
example, RT will have problems to detect changes in the tail dependence since extreme
values are down weighted by ψ.

• The choice of p is crucial for the power of the test. If there is only a change in the first
lag, a large p only adds noise and can mask the change point. On the other hand, if one
chooses p small, one cannot detect changes in the higher lags. Furthermore, one has to
keep in mind that the estimation of Σ gets very poor if p is large compared to T̃ . As a
rule of thumb, use p < bT̃ /20c.

• In the multivariate context, it is common and beneficial to use the quadratic form

with respect to Σ, the asymptotic long run covariance matrix of S
(0)

T̃
, . . . , S

(p)

T̃
. RT gets

affine invariant in this case. In the time series context, this property is not desirable.
The weights w0, . . . , wp give us more flexibility. Usually one would choose descending
weights to smooth the transition between lags of the autocovariance function where one
can detect a change j = 0, . . . , p to those neglected j > p. If there is only a change in the
first autocovariance and one chooses p large, the change could be masked by the noise
from the other autocovariances. Descending weights somehow counteract this problem.
Without further knowledge, we suggest using wi = 1− i/p for i = 0, . . . , p.
If one uses weights instead of Σ, the asymptotic distribution of RT depends on the actual
dependence structure of X. Therefore, one cannot use tabulated asymptotical critical
values. However, one can approximate the distribution of RT by sampling Gaussian
processes with the estimated covariance structure.

Now we describe how one can approximate the distribution of RT under the null-hypothesis.
Under the above assumptions one can use Theorem 1 of Dürre and Fried (2019). It is not
explicitly stated there but effectively proved in Proposition 1 and 2 that

1√
T̃

[
S
(0)

bT̃ xc −
bT̃ xc
T̃

S
(0)

T̃
, . . . , S

(p)

bT̃ xc −
bT̃ xc
T̃

S
(p)

T̃

]
x∈[0,1]

w→ [BB(x)]x∈[0,1]

where [BB(x)]x∈[0,1] is a Gaussian process with mean function g(x) = 0 and covariance
function γ(x, y) = x(1−y)Σ for 0 ≤ x ≤ y ≤ 1. Here, Σ is the asymptotic long run covariance
matrix defined by

Σ =
∞∑

h=−∞
Cov


 Y1Y1

...
Y1Y1+p

 ,
 Y1+hY1+h

...
Y1+hY1+p+h


 .

Proposition 3 in Dürre and Fried (2019) states that Σ can be consistently estimated by a
kernel estimator. Denote therefore bT̃ ≥ 0 a bandwidth and k : R→ [−1, 1] a kernel function.

Then Σ̂ with the elements

Σ̂[i,j] =
1

T

T̃∑
t=1

T̃∑
s=1

(
ŶsŶs+i −

1

T̃
S
(i)

T̃

)(
ŶtŶt+j −

1

T̃
S
(j)

T̃

)
k

(
|s− t|
bT̃

)
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is the related kernel estimator. Simulations indicate that the flat-top kernel

k(x) =


1 0 ≤ |x| ≤ 0.5

2− 2|x| 0.5 < |x| ≤ 1

0 |x| > 1

proposed in Politis and Romano (1993) works well together with bT = T̃
1
3 under autore-

gressive processes of order 1. One can generate random variables R̃
(i)
T , i = 1, . . . ,m that

have asymptotically the same distribution as RT under the null-hypothesis by the following
algorithm:

• generate (p + 1) · T̃ independent standard normal random variables and store them in
a T̃ × (p+ 1) matrix Z

• reproduce the cross sectional dependence by multiplying Z with L of the Cholesky
decomposition Σ̂ = LLT : set V = Z · L

• calculate the weighted test statistic

R̃T =
1

T
max

k=1,...,T̃

(
k∑
t=1

V[t,] −
k

T̃

T∑
t=1

V[t,]

)
W

(
k∑
t=1

V[t,] −
k

T̃

T∑
t=1

V[t,]

)T
where W = diag(w0, . . . , wp) and V[t,] is the t-th row of V .

By this algorithm, one can generate random variables to calculate approximate p-values very
fast. We recommend using a modified Cholesky decomposition to safeguard against numeric
instabilities which could arise especially if T is small compared to p. We use the algorithm
proposed in Schnabel and Eskow (1999) in our simulations.

3. Simulations

We assess our approach in a simulation study. We compare our method with tests for second
order stationarity which are available in R (R Core Team 2019). Two wavelet based tests
proposed in Nason (2013) and Cho (2016) are implemented in the packages locits (Nason
2016) respectively unsystation (Cho 2018). A revised version of the ANOVA test originally
proposed in Priestley and Rao (1969) is implemented in the package factal (Constantine and
Percival 2017). We abbreviate these tests by Wav, Rpar and Anova. These methods can cope
with multiple break points, so we expect them to have inferior power in the one change-point
setting. A copula based method (Bücher et al. 2019) is implemented in the package npcp

(Kojadinovic 2019). This test can detect quite general changes in the dependence structure
up to lag p but no changes in the marginal variance. We choose p ∈ {3, 5} and abbreviate the
tests as Copula3 and Copula5. Furthermore, we compare with tests that can detect changes
in autoregressive processes: a likelihood based (Davis et al. 1995) and a quantile based (Qu
2008). Both methods require the order p of the AR process. We choose p ∈ {1, 3, 5} and
denote the likelihood based tests by AR1, AR3, AR5 and the quantile based tests by Quan1,
Quan3, Quan5. A test for a change in the spectrum (Picard 1985) is abbreviated as spec.
Our proposed methods depend on the maximal considered lag p ∈ {3, 5} and the robustness
parameter k ∈ {1.5, 1000}. The former choice of k is robust and the test is abbreviated as
HCov. The later choice is non-robust and similar to a covariance based test proposed in
Berkes et al. (2009). The test is denoted by Cov. Furthermore, we compare different weights:
linear decreasing weights wi = 1 − i/p, i = 0, . . . , p are indicated by d, constants weights
wi = 1, i = 0, . . . , p by e and weights generated by the estimated asymptotic long run covari-
ance matrix Σ̂ by s. In this notation Cov5d denotes the non robust test with k = 1000, p = 5
and decreasing weights.
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Table 1: Empirical size in percent under AR(1) models with different ρ, normal and t3
distributed innovations and various time series lengths T at a nominal level of 0.05.

N(0,1) t3
ρ 0 0.8 0 0.8
T 128 256 512 128 256 512 128 256 512 128 256 512

Cov3d 2.5 3.1 3.6 3.9 4.1 4.4 1.7 1.8 2.1 3.5 3.6 3.5
Cov5d 1.7 2.4 3.1 5.1 5.6 5.7 1.3 1.7 2.0 4.6 4.7 4.7
Cov3e 2.1 2.5 3.3 2.7 3.0 3.5 1.6 1.7 2.1 2.2 2.5 2.5
Cov5e 1.5 1.8 2.7 2.6 3.3 3.5 1.3 1.6 1.9 2.1 2.4 2.6
Cov3s 5.7 2.8 2.4 29.1 21.0 11.3 16.9 11.7 7.2 35.9 31.8 25.1
Cov5s 13.1 3.4 2.1 35.7 36.1 23.1 21.8 15.3 10.5 37.0 42.2 38.4
HCov3d 1.6 1.8 2.5 4.1 4.4 4.5 1.6 2.2 2.4 5.1 4.8 5.5
HCov5d 0.8 1.3 1.9 4.5 5.0 4.9 0.8 1.5 1.9 5.6 5.4 5.9
HCov3e 2.0 2.5 3.2 3.7 4.2 4.5 1.9 2.9 3.5 4.2 4.3 5.0
HCov5e 1.4 2.0 2.9 3.2 4.3 4.5 1.3 2.0 2.9 3.7 4.3 4.8
HCov3s 4.3 2.2 2.4 21.3 10.1 5.1 4.2 2.0 2.6 29.0 14.9 7.0
HCov5s 9.8 2.3 2.1 32.4 26.6 10.8 9.8 2.4 2.2 36.5 34.1 14.3
Wav 0.8 3.6 3.7 1.3 4.0 4.0 7.7 29.1 33.1 5.3 22.6 27.2
Rpar 5.3 6.5 6.4 4.7 5.4 6.3 46.0 62.1 76.4 44.4 61.0 76.9
Anova 68.4 6.1 6.6 51.9 13.8 11.3 52.5 3.4 3.6 53.4 11.6 6.8
Copula3 4.0 5.1 7.0 1.8 2.1 3.3 3.5 5.2 6.8 1.6 1.9 2.5
Copula5 0.6 1.4 3.4 1.0 1.5 2.6 0.4 1.3 3.3 0.9 1.4 2.1
AR1 3.5 3.7 4.0 9.6 8.3 7.7 10.9 11.4 11.5 21.7 20.7 21.1
AR3 8.2 7.9 7.9 14.8 12.9 11.1 20.1 19.5 20.0 29.1 28.1 27.0
AR5 38.8 32.1 30.3 50.0 41.3 35.6 45.9 42.3 39.7 55.9 49.7 47.0
Quan1 3.4 4.0 4.4 2.4 3.3 3.8 3.2 3.5 4.2 2.5 3.2 4.1
Quan3 2.7 3.4 4.2 2.3 3.0 3.5 2.3 3.1 3.6 2.2 2.7 3.8
Quan5 2.5 3.3 4.2 2.5 3.3 3.9 2.0 2.8 3.5 2.6 3.0 3.8
Spec 4.8 4.6 5.5 6.0 10.3 15.9 56.4 69.5 80.0 21.1 35.4 49.2

We evaluate the behaviour under the null hypotheses. We look at AR(1) models: Xt =
ρXt−1 + εt for t = 1, . . . , T with ρ ∈ {0, 0.8}, different distributions for (εt)t=1,...,T , namely
the standard normal and a t-distribution with 3 degrees of freedom, and different T ∈
{128, 256, 512}. Results based on 10000 repetitions are summarized in Table 1. Only Cov,
HCov with decreasing and equal weights, Copula, and Quan give reliable results in all
cases. Wav and Rpar are strongly oversized under t3 innovations, spec is additionally anti-
conservative for large ρ. Anova needs very large sample sizes. Furthermore one can observe
that Cov and HCov are conservative for small T in case of equal or decreasing weights. The
weights based on Σ̂ lead to strongly anti-conservative tests if T is small and ρ is large.
To asses power under H1, we first look at autoregressive models of order one:

Xt =

{
εt, t = 1, . . . , 128

ρXt−1 + εt, t = 129, . . . , 256
for ρ ∈ {0, 0.05, . . . , 0.55, 0.6}

and εt ∼ N(0, 1) for t ∈ Z. The autocovariance function changes from ρ(k) = 0 to ρ(k) =
ρk/(1− ρ2) for k ∈ N. Results based on 10000 repetitions can be seen in Figure 2. In the first
line on the left, we see different versions of our proposed method. The tests with decreasing
weights clearly outperform the others. Surprisingly, the robust tests have higher power than
the non robust ones. Furthermore, we notice that the test considering 5 lags does not lose
much against the one that only considers 3 lags. On the right, we see different versions of
AR, Copula, and Quan and notice that Copula3 clearly outperforms Copula5. Furthermore,
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Quan1 has considerably larger power than Quan3 and Quan5 whereas AR3 and especially
AR5 have large size distortions under H0. We choose the versions that behave best and
compare them in the second row of Figure 2. There we see that Copula3 has the largest
power for small ρ and AR1 for larger ρ. The former is quite remarkable since copula based
tests have power against arbitrary changes of the dependence structure. Our test HCov3d
lags some power compared to Copula3 and Quan1 which are also robust to some degree.
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Figure 2: Simulated power under a change from independent random variables εt ∼
N(0, 1), t = 1, . . . , 128 to an AR(1) model: Xt = ρXt−1 + εt with εt ∼ N(0, 1) for
t = 129, . . . , 256. In the first line on the left are different versions of HCov and Cov, on
the right are different versions of AR, Copula, and Quan and in the second line the best
versions are compared.

Now we evaluate the behaviour under heavy tails. We look at

Xt =

{
εt, t = 1, . . . , 128

0.35Xt−1 + εt, t = 129, . . . , 256

where the innovations εt are t-distributed with different degrees of freedom df ∈ {1, . . . , 10}.
Results are based on 10000 repetitions. In the first line of Figure 3 on the left, one can see that
HCov3d has the largest power. Usually HCov gains power under more heavy tailed innovations
which corresponds to small df , and Cov loses power. The exemption is Covs, which is anti-
conservative under heavy tails. In Figure 3 on the right, we see that Copula3 considerably
outperforms Copula5, whereas Quan1 has larger power than Quan3 and Quan5. We decided
against adding the results of AR3 and AR5 since they are strongly anti-conservative under
heavy tails. We compare the best tests at the bottom of Figure 3 and notice that Quan1 has
the largest power apart from df = 1. In this case HCov3d is most powerful.
Finally we want to evaluate the influence of the time-lag where the autocovariance function
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Figure 3: Simulated power under a change from independent random variables εt ∼ tdf , t =
1, . . . , 128 to an AR(1) model: Xt = 0.35Xt−1 + εt with εt ∼ tdf for t = 129, . . . , 256. In the
first line on the left are different versions of HCov and Cov, on the right are different versions
of AR, Copula, and Quan and in the second line the best versions are compared.

changes and look at

Xt =

{
εt t = 1, . . . , 128

εt + 0.8εt−r t = 129, . . . , 256

where εt ∼ N(0, 1). The autocovariance function changes from γ(k) = I{k=0} to γ(k) =
1.8I{k=0} + 0.8I{k=r,r 6=0} for k ∈ N0 and r = 0, . . . , 10. Note that r = 0 corresponds to a
change of the marginal variance. Results based on 10000 repetitions can be seen in Figure 4.
In the first line on the left, we see different versions of HCov and Cov. It is not clear which
one behaves best overall. All tests have the largest power if there is only a shift in the variance
(r = 0). Furthermore, they have power > 0.05 for all r since there is always a change in the
marginal variance. The power of tests with decreasing weights decrease as expected, whereas
the power of the tests with equal weights increase slightly from k = 1 to k = p. Usually Cov
has larger power than HCov for k = 0 and k = p+ 1, . . . , 10.
On the right, we compare different versions of Copula, AR, and Quan. Copula3 has uniformly
larger power than Copula5, AR3 outperforms AR1, and Quan5 dominates Quan3 and Quan1.
At the bottom of Figure 4, we compare the best tests and notice that spec behaves best
overall. Anova, Copula, Quan, and AR have problems to detect changes in the marginal
variance (r = 0) and Quan, Anova, Copula, and Wav have problems if r is large.
We conclude that no test dominates the others in all considered situations. Our proposalHCov
behaves well in all of them. It is the only test which can cope with heavy tailed distributions
and can detect changes in the marginal variance simultaneously. We notice that decreasing
weights yield good results, especially under autoregressive processes. The choice of p influences
the power of the test. It seems that choosing p too large is better than choosing it too small.
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Figure 4: Simulated power under a change from independent random variables εt ∼
N(0, 1), t = 1, . . . , 128 to a moving average model: Xt = εt + 0.8εt−r with εt ∼ N(0, 1)
for t = 129, . . . , 256. In the first line on the left are different versions of HCov and Cov,
on the right are different versions of AR, Copula and Quan and in the second line the best
versions are compared.

In all simulations, a misspecification of p is not as fatal as a misspecification of similar tuning
parameters of the competing methods AR, Quan, and Copula.
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