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Abstract

Superoxide (O2
-
) is the compound obtained when oxygen is reduced by

one electron. For a molecule with an unpaired electron, O2
-
 is surpris-

ingly inert, its chief reaction being a dismutation in which it reacts with
itself to form H2O2 and oxygen. The involvement of O2

-
 in biological

systems was first revealed by the discovery in 1969 of superoxide
dismutase, an enzyme that catalyzes the dismutation of O2

-
. Since then

it has been found that biological systems produce a bewildering
variety of reactive oxidants, all but a few arising ultimately from O2

-
.

These oxidants include O2
-
 itself, H2O2 and alkyl peroxides, hydroxyl

radical and other reactive oxidizing radicals, oxidized halogens and
halamines, singlet oxygen, and peroxynitrite. These various oxidants
are able to damage molecules in their environment, and are therefore
very dangerous. They are thought to participate in the pathogenesis of
a number of common diseases, including among others malignancy,
by their ability to mutate the genome, and atherosclerosis, by their
capacity for oxidizing lipoproteins. Their properties are put to good
use, however, in host defense, where they serve as microbicidal and
parasiticidal agents, and in biological signalling, where their libera-
tion in small quantities results in redox-mediated changes in the
functions of enzymes and other proteins.

Correspondence
B.M. Babior
The Scripps Research Institute
La Jolla, CA 92037
USA

Presented at the XI Annual Meeting
of the Federação de Sociedades de
Biologia Experimental, Caxambu,
MG, Brasil, August 21-24, 1996.

Research supported in part
by USPHS (Nos. AI-24227 and
AI-28479).

Received August 6, 1996
Accepted November 5, 1996

Key words
• NADPH oxidase
• Superoxide
• Oxidative stress
• Antioxidant
• Regulation
• Host defense

Introduction

The reduction of a molecule of oxygen to
two molecules of water is the major source
of energy in aerobic biological systems. This
reduction requires 4 electrons:

O2 + 4 e- + 4 H+ → 2 H2O

If these electrons are passed to oxygen one at
a time, a series of partially reduced products
is generated (1). The first of these is super-
oxide (O2

-):

O2  + e- → O2
-        Eo = -300 mV

Reduction of O2
- by the second electron yields

hydrogen peroxide:

O2
- + e- + 2 H+ → H2O2

•OH (hydroxyl radical) plus the first mole-
cule of water arise when the third electron is
passed on to H2O2:

H2O2 + e- + H+ → •OH + H2O

And finally, the fourth electron produces the
second molecule of water from the hydroxyl
radical:

•OH  + e- + H+ → H2O

Unlike most molecules with unpaired elec-
trons, O2

- is surprisingly inert. In aqueous
systems, its principal reaction is with itself to
generate a molecule of H2O2 and a molecule
of oxygen in a dismutation reaction (2):

2 O2
- + 2 H+ → H2O2 + O2



142

Braz J Med Biol Res 30(2) 1997

B.M. Babior

It is also a weak base, its conjugate acid
being the much more reactive hydroperoxyl
radical:

O2
- + H+ → HO2

•      pKa = 4.8

It does, however, have certain other chemi-
cal properties that are important in a biologi-
cal context. These include 1) its participa-
tion in the so-called Haber-Weiss reaction to
generate •OH and in a closely related reac-
tion to generate alkoxyl radical (RO•), reac-
tions that are catalyzed by transition metals
such as iron or copper (3-5):

O2
- + Fe3+→ O2 + Fe2+

Fe2+ + H2O2 (or ROOH) →
Fe3+ + OH- + •OH  (or RO•)

2) its ability to obtain Fe2+ needed for the
Haber-Weiss reaction by liberating it from
the iron storage protein ferritin and from
iron-sulfur proteins such as aconitase (6,7);
3) its reaction with •OH  to form singlet
oxygen (8):

O2
- + •OH  → 1O2 + OH-

and 4) its reaction with nitric oxide to form
peroxynitrite, a highly reactive oxidant that
breaks down to produce a nitrating agent
(9,10):

O2
- + NO• → OONO- + H+ → ? NO2

+ + OH-

In addition, the H2O2 produced by the
dismutation of O2

- is used by phagocytes to
oxidize halide ions to the level of hypohalous
acids (e.g., HOCl) (11), a group of highly
reactive compounds which in turn react with
amines to produce halamines (e.g., NH2Cl),
some of which are even more reactive than
the hypohalous acids (12,13). In turn, the
hypohalous acids can react with H2O2 to
generate singlet oxygen (14,15). For example,

OBr- + H2O2 → 1O2 + H2O + Br-

All this was of little interest to biologists,
however, until 1969, when McCord and
Fridovich (16) discovered superoxide dis-

mutase. This enzyme destroys O2
- by cata-

lyzing the dismutation reaction described
above. The ubiquitous occurrence of an en-
zyme that catalyzes the destruction of O2

-

implied that O2
- had to be participating in an

important way in the biological economy
(1,17). Certain aspects of the nature of its
participation are reviewed here.

Superoxide the evil

As the precursor of a large number of
highly reactive oxidizing agents, including
oxidizing radicals, singlet oxygen, peroxyni-
trite and oxidized halogens such as HOCl,
O2

- clearly had the potential to inflict consid-
erable damage on biological systems. That
O2

- could realize this potential was shown in
numerous experiments, at first indirectly by
demonstrations, for example, that oxidative
stress induced substantial increases in the
superoxide dismutase concentration of E.
coli (18), and later directly by genetic ex-
periments with bacteria and eukaryotes con-
taining no superoxide dismutase or excess
superoxide dismutase (19-24). Damage to
DNA (25), proteins (26) and lipids (27,28)
have all been documented as consequences
of exposure to O2

- and its descendants. DNA
damage may lead to the production of abnor-
mal bases such as thymine glycol and 8-
hydroxyguanine (25,29-31) or to strand
breakage through a series of reactions initi-
ated by the abstraction of a 4’ hydrogen atom
from a ribose residue (32-35). On proteins,
susceptible residues such as cysteine and
histidine are oxidized (36-38), leading in
some cases to the production of oxo groups
that can be assayed to provide an index of
oxidative damage to proteins (36,39). In ad-
dition, tyrosine residues are nitrated, a con-
sequence of the spontaneous decay of ONOO-

into a nitrating agent of some sort (40,41).
Hypohalous acids will decarboxylate α-amino
acids to aldehydes (11), and will halogenate
tyrosine and heterocycles (e.g., adenosine,
NAD) (42-44). Polyunsaturated fatty acid
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residues on phospholipids and triglycerides
undergo peroxidation to form toxic alkyl
hydroperoxides and aldehydes (45-47) (see
Diagram 1).

Diagram 1

Among these is malondialdehyde, produced
by the oxidation at the two double bonds
flanking the methylene carbons of polyun-
saturated fatty acids:

H H H H H H
-C=C-CH2-C=CH- → O=C-CH2-C=O

Because of its bifunctionality, malondialde-
hyde is an effective cross-linking agent, able
to act on macromolecules such as DNA and
proteins. In addition, malondialdehyde re-
acts with thiobarbituric acid to form a pink
compound whose color has been used as a
measure of lipid peroxidation. Cholesterol is
oxidized at its susceptible 4- and 6-carbons
(see Diagram 2).

Diagram 2

These oxidation reactions are currently
believed to participate in the pathogenesis of
a number of important degenerative diseases,
including atherosclerosis, in which the up-
take of oxidized lipoproteins via the scaven-
ger receptor of macrophages is thought to be
an early step in the formation of the endothe-
lial foam cells and lipid deposits characteris-
tic of that condition (48,49); malignancies,
some of which may arise as a result of onco-
gene mutations caused by oxidative damage
to DNA (50,51); arthritis, due to joint dam-
age inflicted in part by oxidants released at
sites of inflammation (52), and possibly ag-
ing itself (53,54), not a disease but an inevi-
table consequence of living.

Because of the evil nature of these oxi-
dants, many defenses have been erected
against them. These defenses include both
enzymes and low molecular weight com-
pounds.

Antioxidant enzymes

Four enzymes comprise three enzyme-
based antioxidant systems that deal with oxi-
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tory secretions. The mutant enzymes dismute
superoxide in a normal fashion, but they
have excess peroxidase activity, an activity
present in normal Cu2+/Zn2+ dismutase to
only a very limited extent (58). It is presently
thought that the oxidative damage inflicted
by the increased peroxidase activity of the
mutant dismutase is responsible for the early
death of these neurons.

2. Catalase (59,60). The H2O2 produced
by the dismutation of O2

- or generated by
H2O2-generating oxidases (e.g., D-amino acid
oxidase) is handled by two systems: catalase
and a glutathione-dependent antioxidant sys-
tem that reduces H2O2 to water at the ex-
pense of NADPH. Catalase is a tetrameric
heme enzyme of 240-kDa mass that cata-
lyzes the dismutation of H2O2 to oxygen and
water:

2 H2O2 → O2 + 2 H2O

Catalase is erroneously said to work only
at high concentrations of H2O2, and to serve
principally as a backup for the glutathione-
dependent system to be discussed below, but
the enzyme has a binding site for NADPH,
and when this site is occupied, catalase oper-
ates at H2O2 concentrations in the vicinity of
those at which the glutathione-dependent
systems operate (61). It is therefore likely
that some half the H2O2 produced in the cell
is destroyed by catalase. Catalase deficiency
exists, but is relatively innocuous; the Swiss
type is asymptomatic, while the Japanese
variety is associated only with ulcers of the
oral cavity.

3. The glutathione-dependent antioxidant
system (62-65). The glutathione-dependent
antioxidant system consists of glutathione
plus two enzymes: glutathione peroxidase
and glutathione reductase. As this system
operates, glutathione cycles between its oxi-
dized and reduced forms. The reactions cata-
lyzed by these enzymes are:

2 GSH + H2O2
  −−−−−−−−−−−−−→

GSSG + 2 H2O     
GSH peroxidase

dants formed by the partial reduction of
oxygen:

1. Superoxide dismutase (2,55,56). Super-
oxide dismutase catalyzes the destruction of
O2

- by converting it to oxygen and H2O2:

2 O2
- + 2 H+ → O2 + H2O2

The uncatalyzed reaction is very rapid, pro-
ceeding with a rate constant of ca. 106-107

M-1 sec-1 at the pH values prevailing in tis-
sues. Superoxide dismutase, however, greatly
accelerates the rate of destruction of O2

-, in
part by converting a second order reaction to
a first order reaction. Because of the effect of
superoxide dismutase, steady-state concen-
trations of O2

- in tissues are many orders of
magnitude lower than they would be if the
elimination of O2

- was solely dependent on
its spontaneous dismutation.

Two forms of superoxide dismutase are
present in eukaryotic cells: a form that con-
tains Cu2+ and Zn2+, the former serving as the
redox center and the latter as a structural
element, and a form that contains only one
metal, namely Mn2+, which functions as the
redox center. The Cu2+/Zn2+ form, a 32-kDa
dimer, is found in the cytosol, while the
Mn2+ form, an 80-kDa tetramer, is located in
mitochondria. The Mn2+ form is also found
in bacteria, as is a third form of superoxide
dismutase containing Fe2+ as its redox ele-
ment. The concentrations of the Cu2+/Zn2+

and Fe2+ forms of superoxide dismutase are
unaffected by oxidative stresses, but the Mn2+

form is inducible in both bacteria and eu-
karyotic cells, its activity increasing with
oxidative stress.

Mutant forms of the Cu2+/Zn2+ enzyme
appear to explain the familial forms of a fatal
neurological disease known as amyotrophic
lateral sclerosis, or motor neuron disease
(57). In this condition, the motor neurons in
the patient’s cerebral cortex and spinal cord
degenerate over the course of a few years,
leading to weakness and eventually paraly-
sis, with death from pneumonia caused by
the inability of the patient to clear respira-
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GSSG + NADPH + H+  −−−−−−−−−−−−−→
2 GSH + NADP+     

              GSSG reductase

Net:
H2O2 + NADPH + H+ → 2 H2O + NADP+

Like other enzymes that catalyze the
interconversion of sulfhydryl groups and di-
sulfides, the 22-kDa glutathione reductase
uses FAD as its cofactor. Glutathione per-
oxidase, another 22-kDa protein, is unusual,
however, in that the redox element in its
active site is selenocysteine. The selenocys-
teine is introduced into the protein by a
special t-RNA that is initially charged with
serine but undergoes a series of reactions
that convert it to t-RNAselenoCys. Selenocys-
teine is encoded by the triplet UGA, which
ordinarily introduces a stop but in the con-
text of the glutathione peroxidase mRNA is
recognized by the selenocysteine-linked t-
RNA (66). The antioxidant properties of
selenium are explained by its occurrence in
glutathione peroxidase.

Families with inherited deficiencies of
glutathione peroxidase (67,68) and glu-
tathione reductase (69) have been reported.
Affected members manifest a mild to moder-
ately severe hemolytic anemia that is aggra-
vated by infection and by oxidant drugs such
as nitrofurantoin and certain sulfonamides.
Selenium deficiency on a nutritional basis
leads to a cardiomyopathy that may in part
represent oxidative damage due to glutathione
peroxidase deficiency but, in addition, is
likely to reflect injury caused by the defi-
ciency of other selenium-containing enzymes,
because it is not seen in inherited glutathione
peroxidase deficiency (70,71).

Lipid hydroperoxides, which are formed
during the peroxidation of lipids containing
unsaturated fatty acids, are reduced, not by
the usual glutathione peroxidase, but by a
special enzyme designed specifically to
handle peroxidized fatty acids in phospho-
lipids. This enzyme, known as phospholipid
hydroperoxide glutathione peroxidase (72),
is an 18-kDa protein that can reduce both

H2O2 and lipid hydroperoxides to the corre-
sponding hydroxides (water and a lipid hy-
droxide, respectively). In contrast to the phos-
pholipid hydroperoxide glutathione peroxi-
dase, ordinary glutathione peroxidase is un-
able to act on lipid hydroperoxides.

Low molecular weight antioxidants

Many low molecular weight compounds
can act as biological antioxidants, including
among others carotenoids, bilirubin and uric
acid. The most important of these, however,
are two vitamins: ascorbic acid (vitamin C)
(73-76), and α-tocopherol (vitamin E) (77-
80). Ascorbic acid, a very water soluble
compound, reacts with free radicals that arise
in the aqueous compartments of tissues, form-
ing the innocuous ascorbate semiquinone
(81,82) (see Diagram 3).

Diagram 3

The semiquinone is consumed in a
dismutation reaction in which two semi-
quinone molecules react to produce a mole-
cule of ascorbate and a molecule of
dehydroascorbate (see Diagram 4).

Diagram 4
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The dehydroascorbate is then enzymatically
reduced back to ascorbate by dehydroascor-
bate reductase (83).

α-Tocopherol, a highly lipophilic mole-
cule, is the chief antioxidant in biological
membranes. It reacts with free radicals to
form the highly stable tocopherol semi-
quinone (84) (see Diagram 5).

Diagram 5

The semiquinone is then reduced back to the
alcohol by ascorbic acid (85-87).

A small antioxidant with special proper-
ties is taurine (2-aminoethyl sulfonic acid).
This compound reacts with hypohalous ac-
ids and halamines (77-80,88-91), which are
routinely generated by phagocytes for use as
microbicidal killing agents (see below, Su-
peroxide the good) but whose great reactiv-
ity allows them to inflict major damage in
the tissues in which they are released. The
product of the reaction between an oxidized
halogen and taurine, however, is a halamine
with exceptionally low reactivity for this
class of compounds - such low reactivity, in
fact, that it is harmless to tissues (92). An
example is the reaction between taurine and
hypochlorous acid to form taurine chlora-
mine:

=O3S-CH2-CH2-NH2 + HOCl →
=O3S-CH2-CH2-NHCl + H2O

Taurine is therefore able to detoxify these
very reactive and dangerous oxidized halo-
gens by converting them to innocuous com-
pounds.

Superoxide the good

O2
- production by phagocytes

The consequences of O2
- production in

tissues are not all bad. In fact, the production
of O2

- can be lifesaving. This was first dem-
onstrated by the surprising finding that O2

- is
produced in large quantities by stimulated
phagocytes (93,94), and that individuals with
chronic granulomatous disease, an inherited
disorder in which phagocytes are unable to
manufacture O2

-, are highly susceptible to
very dangerous bacterial and fungal infec-
tions that formerly killed most of the patients
before they reached their tenth birthday (95),
though recently the advent of newer modes
of treatment has greatly improved their out-
look (96). The O2

- produced by these cells is
made by the leukocyte NADPH oxidase (97),
a membrane-associated enzyme, that cata-
lyzes the one-electron reduction of oxygen at
the expense of NADPH:

2 O2 + NADPH → 2 O2
- + NADP+ + H+

The oxidase is dormant in resting cells, but
develops catalytic activity when the cells
encounter a microorganism or are exposed
to any of several soluble stimuli, including
N-formylated peptides, the complement
polypeptide C5a or leukotriene B4.

The O2
- produced by these cells is only

weakly microbicidal, though it can inacti-
vate bacterial iron-sulfur proteins such as
aconitase. The major microbicidal oxidant
of phagocytes is HOCl, produced by the
H2O2 generated by the dismutation of O2

-

(98-100). HOCl production is catalyzed by
myeloperoxidase, which is abundant in neu-
trophils and monocytes and catalyzes the
two-electron oxidation of the chloride ion by
hydrogen peroxide (12,101):

Cl- + H2O2 → OCl- + H2O

Myeloperoxidase can also oxidize Br-and I-

to the corresponding hypohalous acids (102).
An enzyme in eosinophils, the eosinophil
peroxidase, catalyzes the same reaction, ex-
cept that Cl- is not a substrate; the chief
product of the eosinophil peroxidase reac-
tion is HOBr (102,103). The hypohalous
acid will react with any of the hundreds of
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amines present in the cell to form a vast array
of halamines (12,88,102,104) whose toxici-
ties range from none to extreme, the degree
of toxicity roughly correlating with the lipid
solubility of the halamine.

Recent work with E. coli has revealed a
mechanism by which oxidized halogens can
kill a microorganism. It has been observed
that the lethal action of HOCl against E. coli
takes place on the membrane. This mem-
brane contains a binding site to which the
origin of replication of the E. coli genome
(oriC) has to attach before the DNA can be
copied during bacterial replication. HOCl is
able to inactivate this binding site, and ex-
periments have shown that the fraction of
bacteria killed by HOCl at a given time is
virtually identical to the fraction of binding
sites that have been inactivated (105). These
results imply that the destruction of this bind-
ing site is tantamount to the destruction of
the microorganism itself.

The oxidizing radicals produced from
the O2

- in the Haber-Weiss and related reac-
tions also participate in the oxidative killing
of microorganisms, but principally as a
backup system. This is shown by the obser-
vation that patients with myeloperoxidase
deficiency have little or no problem with
infections (106,107), in contrast to patients
with chronic granulomatous disease, whose
very high susceptibility to such infections
was discussed above. This indicates the oc-
currence in phagocytes of a backup microbi-
cidal system that is dependent on oxygen
and is active in patients whose neutrophils
and monocytes are unable to manufacture
oxidized halogens (i.e., cells deficient in
myeloperoxidase). This system is highly
likely to employ the oxidizing radicals known
to be produced by these phagocytes.

A possible antioxidant activity of O2
- itself

There appears to be an optimum for the
intracellular concentration of superoxide dis-
mutase. Too much superoxide dismutase can

be just as harmful as too little (108-111).
This finding has given rise to the speculation
that a little intracellular O2

- is necessary for
the welfare of the cell. O2

- is chemically able
to reduce potentially dangerous semiquinones
that might arise in the course of a cell’s
metabolic activities (112,113):

O2
- + Q• »  O2 + QH2

and interference with the detoxification of
such semiquinones due to a reduction in the
steady-state O2

- concentration within the cell
has been proposed as the basis for the harm-
ful effects of too much superoxide dismu-
tase. On the other hand, the Cu2+/Zn2+ dis-
mutase is also a peroxidase, so the possibil-
ity remains that the harm caused by excess
superoxide dismutase could be a result of
peroxidation (114).

Regulation by O2
- and H2O2

It has become increasingly apparent over
the last few years that O2

- and H2O2 are
signalling molecules, changing the behavior
of proteins as diverse as transcription factors
and membrane receptors by virtue of their
ability to undergo redox reactions with the
proteins with which they interact, convert-
ing -SH groups to disulfide bonds, for ex-
ample, and changing the oxidation states of
enzyme-associated transition metals. As sig-
nalling molecules, O2

- and H2O2 are manu-
factured by several types of cells, including
fibroblasts, endothelial and vascular smooth
muscle cells, neurons, ova, spermatozoa and
cells of the carotid body. All these cell types
appear to use an NAD(P)H oxidase similar
to the classical leukocyte NADPH oxidase
to produce these oxidants. The stimuli that
elicit oxidant production, however, and the
purposes for which the oxidants are em-
ployed, vary from cell to cell.

1. Fibroblasts. Fibroblasts manufacture
small but significant amounts of O2

- in re-
sponse to inflammatory mediators such as
N-formylated peptides and interleukin-1
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(115-117). The O2
- produced by these cells

has been postulated to function as a signal-
ling molecule. Optical spectroscopy has
shown that fibroblast membranes contain a
heme protein that is different from the
flavocytochrome subunit of the leukocyte
NADPH oxidase but has properties very
similar to those of the leukocyte protein
(115,118). This heme protein has been sug-
gested as the source of the O2

- made by these
cells.

2 . Endothelial and vascular smooth
muscle cells. These cells use an NAD(P)H
oxidase to produce O2

- in response to angio-
tensin II, a peptide hormone that increases
blood pressure (119,120). This increase in
blood pressure appears to be due to the
consumption by O2

- of the NO• that is gener-
ated on a continuing basis by the endothelial
cells. The resulting fall in NO• concentration
raises blood pressure by attenuating or elimi-
nating the vasodilatory effect of NO• that
normally prevails in the vascular tree.

3. Neurons. A recent study has shown
that neuronal cells in culture produce oxi-
dants when exposed to amyloid ß-peptide,
found in amyloid deposits seen in the brains
of patients with Alzheimer’s disease, or re-
lated peptides from other amyloid diseases.
The possibility that this O2

- is produced by an
NADPH oxidase is suggested by the obser-
vation that flavoprotein inhibitors known to
act on the leukocyte NADPH oxidase also
inhibit oxidant production in this system
(121). The production of oxidants may be
part of a defense used by the neuron against
the peptide, with these oxidants perhaps re-
acting with the peptide to render it suscep-
tible to proteolytic cleavage.

4. Ova. At the moment of fertilization, a
membrane NADPH oxidase in sea urchin
ova is activated to produce large amounts of
H2O2 (122). This oxidant cross-links the
proteins of the fertilization membrane by
forming dityrosyl bridges (see Diagram 6),
making the membrane impermeable to sper-
matozoa and thereby preventing polyspermy.

Diagram 6

5. Spermatozoa. O2
- appears to be neces-

sary for the normal function of spermatozoa.
When stimulated by a calcium ionophore,
normal spermatozoa generate a 3- to 5-min
burst of O2

- (123). The O2
- produced in this

reaction is involved in capacitation of the
spermatozoa, because the acrosomal response
to a number of stimuli is suppressed by
superoxide dismutase (124). On the other
hand, spermatozoa that produce O2

- without
stimulation are functionally abnormal, per-
haps because of a generalized disruption in
their signalling machinery.

6. The carotid body. The carotid body is
a small organ located at the bifurcation of the
common carotid artery that measures the
oxygen tension of the blood (125). This or-
gan manufactures H2O2 on a continuing ba-
sis, and immunological analysis has shown
that its cells contain all 4 of the specific
subunits of the leukocyte NADPH oxidase,
or proteins very closely related to those sub-
units (126,127). It has been postulated that a
carotid body NADPH oxidase very similar
or identical to the leukocyte NADPH oxi-
dase is a key component of the oxygen-
measuring apparatus of the carotid body.

As to the effects of these oxidants on
cellular function, there is a truly astounding
number of proteins whose operation appears
to depend on the redox state of the cell.
Examples include the general transcription
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factors NF-kappa B (128-130) and AP-1 (jun/
fos) (131), as well as several transcription
factors that induce the synthesis of proteins
that protect against oxidative stress (e.g.,
soxR (132,133), soxS (134), oxyR (135)).
Membrane receptors and transporters, in-
cluding, for example, the insulin receptor
and receptors for certain neurotransmitters
(136-138), are regulated by the redox state of
the cell. A very large number of enzymes are
also regulated by the cell’s redox state. A
partial list of proteins whose function is
regulated by oxidation-reduction is presented
in Table 1. These oxidants generally act by
effecting alterations in iron-sulfur clusters
(7,139-141) or by inducing the formation or
rupture of disulfide bonds (142-145) on
whose status the function of the protein de-
pends. It can be postulated that at least for
proteins regulated by sulfhydryl-disulfide
equilibria, the effects of the oxidants are
mediated through alterations in the ratio of
oxidized to reduced glutathione, though this
hypothesis is very difficult to prove experi-
mentally, at least in intact cells.

Conclusion

The discovery of superoxide dismutase
by McCord and Fridovich (16) has revolu-
tionized the way biologists think about oxy-
gen. They have come to recognize oxygen as
a dangerous gift: indispensable for energy
production at the level needed for living at
any but the most sluggish pace, but the cause
of damage that accumulates slowly over a
lifetime, damage that is at least in part re-
sponsible for most of the chronic illnesses
that develop with age. The challenge for the
future is to develop ways to attenuate the
damage inflicted by oxygen, O2

- and their
many descendants when they assume their
evil forms.

Table 1 - Some proteins whose function is regulated by the redox state of the cell.

References are given within parentheses.

Enzymes
Collagenase (146,147)
p21Ras guanine nucleotide-binding protein (148)
Protein tyrosine phosphatase (149)
p56Lck protein tyrosine kinase (150)
Glycogen phosphorylase phosphatase (151)
Glycogen synthase (151)
Phosphofructokinase (151)
Fructose-1,6-bisphosphatase (151)
Hexokinase (151)
Pyruvate kinase (151,152)
Glucose-6-phosphate dehydrogenase (151)
3-Hydroxy-3-methylglutaryl CoA reductase (151)
Serotonin N-acetyltransferase (151)
Guanylate cyclase (151)
Medium-chain fatty acyl CoA dehydrogenase (153)
Xanthine dehydrogenase (154)
Chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase (155)
Chloroplast NADP-linked malate dehydrogenase (155)
Chloroplast sedoheptulose bisphosphatase (155)
Fructose bisphosphatase (155)
NADP-malic enzyme (156)
3α-Hydroxysteroid dehydrogenase (157)
DsbA protein disulfide isomerase from E. coli (158)
Creatine kinase (152)
Sarcoplasmic reticulum Ca2+-ATPase (152)

Transcription factors
NF-kappa B (128-130)
AP-1 (jun/fos) (131)
SoxR (132,133)
SoxS (134)
OxyR (135)
Hypoxia-inducible factor 1 (159)
Thyroid transcription factor I (160)
Glucocorticoid receptor (161)
Sp1 (161,162)

Receptors
NMDA receptor (163)
Insulin receptor
NMDA receptor (164,165)
Ryanodine receptor (166)
HoxB5 (167)
c-Myb (167,168)
v-Rel (167)
p53 (169)
Isl-1 (170)

Others
Erythropoietin RNA-binding protein (171)
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