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Abstract

Principal component analysis (PCA) is very important to analyze multi-
variate data set. PCA method makes understanding data set easier because
PCA can reduce the dimension of the data set. But the assuming of normal
distributed data, PCA can not apply the non-normal data set like skewed data.
In this paper, we suggest a quantile PCA that can apply the PCA methodol-
ogy to the skewed data set.

Keywords: Multiscale, principal component analysis, extreme value, quantile.
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Chapter 1

Introduction

The Principal component analysis (PCA) is probably the oldest, and best
known of the methods of multivariate analysis. PCA has been made for di-
mension reduction, while principal components (PCs) have most of variation
of original data set. Like many multivariate techniques, PCA was not often
used before because calculating many matrix product are complicated and
time-consuming work. But nowadays thanks to technical development of com-
puter systems, we can simply get the answer of matrix product. So PCA is
now make a good use of analyzing multivariate data set.

The purpose of classical PCA is to find a transformed data set that has no
correlation each other and explain most of the variation of the original data,
also has fewer dimension than original data set. PCA method is explained in
more detail in the next chapter.

In this paper we propose a quantile PCA. The key components of the pro-
posed method are two-fold: First, the original PCA can be expressed as a least
squares framework so it uses quadratic functions as a loss function, and second
we replace quadratic loss function with a convex loss function. We use check

function to get a quantile information, widely used for fine a sample quantile



in the data set. We use 7 = 0.01, 0.5, 0.99 quantiles to calculate the results
of the quantile PCA and compare with the result of ordinary PCA.

However, it can not differentiate the tip point of the check function is a fa-
tal deficiency of ordinary check function. So we also propose a modified check
function. We can easily overcome this defection only changing the neighbor-
hood of tip point of the check function with other differentiated function. In
this paper, we use quadratic function rather than absolute function only the

neighborhood of the tip point.
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Chapter 2

Review of PCA

2.1 Definition of Principal Components

The key point of PCA is to reduce the dimensionality of a data set,
while keeping as much as possible of the variation present in the data set. This
purpose is accomplished by transforming to a new set of variables, the PCs,
which are uncorrelated and ordered so that the first few PCs have most of the
variation in all of the original variables.

Suppose that x is a vector of p random variables, and we are interested that
the variances of the p random variables and the structure of the correlations
between p variables. Although PCA does not ignore correlations, it focused on
variances of data set.

First, we need to find a linear function ajx having maximum variance,

where o is a vector of p constants a1, aq2, ..., aip. So that,

p
a’IX: E Oéljl’j.
j=1

Next, find a linear function ajx, uncorrelated with a}jx having maximum

variance. Similarly, we can find a kth stage a linear function o x that has



maximum variance subject to being uncorrelated with o x, a5x, ..., o _;x.

The kth variable, o x is the kth PC.

2.2 Derivation of Principal Components

To derive the PCs, we will use Lagrange multiplier method. Consider
first o jx; the vector ey maximizes var[ajx] = a3 aq. The maximum will
not be achieved for finite «x; so a normalization constraint is needed. The
constraint used in the derivation is ajaq = 1, that is, the sum of squares of
elements of a1 equals 1.

To maximize oy Xy subject to ajaq = 1, the standard approach is to

use the technique of Lagrange multipliers. Maximize
aiYag — Majag — 1),
where X is a Lagrange multiplier. Differentiation with respect to c; gives
Yo — Aag =0,
or
(2 - Mp)ag =0,

where I is the (p x p) identity matrix. Then, A is an eigenvalue of ¥ and oy
is the corresponding eigenvector. To decide which of the p eigenvectors gives

ajx with maximum variance. Note that the quantity to be maximized is
i Ta; = djha; = \djag = ),

so A must be as large as possible. Thus, a is the eigenvector corresponding
to the largest eigenvalue of X, and var(ay’'x) = a1’Xa; = \p, the largest

eigenvalue.



In general, the kth PC of x is o x and var(ow'x) = ai/Zag = A, where
i is the kth largest eigenvalue of 2. Also, ay is the corresponding eigenvetor.

The second PC, ab,x maximizes ay X g subject to being uncorrelated with
o x. By calculating similar way, we can get (X — Ap)ag = 0.

As stated above, it can be shown that for the third, fourth, ..., pth PCs, the
vectors of coefficients are the eigenvectors of 3 corresponding to A3, A4,..., Ay

and also var(agx] = A\ for k=1, 2,..., p.
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Chapter 3

Quantile PCA

3.1 Definition of Quantile PCA

The point of quantile PCA is to use a PCA method well even if the
data set are not symmetric. In ordinary PCA, if data set is multivariate nor-
mally distributed, we can germ a new data set with uncorrelated and maximal
variances.

Then, if data set is not symmetric-distributed, we can now use quantile
PCA.

This method is simply changing its loss function, quadratic loss function
to quantile check function. To complement the non-differentiate point of the
check function, we now adapt a square function of the neighborhood into the
non-differentiate point of the check function. We now call this function as a

modified check function.



Definition 3.1.1. (Modified Check Function) Modified check function is
defined as :

(s, = )(u+0.5¢) for u < ¢

0.5(1 — 7)u?/c for—c < u < 0
pk,c(u) =

0.57,u?/c for 0 < w c

Ti(u — 0.5¢) for —c < u

for some 7. In this paper, we use three quantiles : 0.01, 0.5, 0.99. This is a
modified check function so that it is differentiable at zero. As ¢ goes to zero,
the function py, . converges to pi. Same as Lim and Oh (2012), we set ¢ = 1075.

We think that if 7 = 0.01, the result of quantile PCA represents a low 1%
pattern of the entire data set. Similarly, if 7 = 0.99, the result of quantile PCA
represents a high 99% pattern of the entire data set.

3.2 Example of Quantile PCA

In this section, the proposed quantile PCA and other ordinary PCA
methods are applied to the maximum daily precipitation data in August from
the CPC merged analysis of precipitation (CMAP). This data set is analyzed
by the Climate Research Unit, UK during year 1997-2008. We average daily
values to get yearly data, so the number of observation is 12. These are the
maximum precipitation on 360 x 180 grids that cover the entire globe with a
1° interval. We now focus on the East Asia region that covers 30-50°N and

120-140°E (number of variables is 441).
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Figure 3.2.1: (a) Four leading PCs obtained from the ordinary PCA for max-

imum daily precipitation in August. (b) Four leading PCs from 50% quantile

PCA for the same data. (c) Four leading PCs from 1% quantile PCA for the

same data. (d) Four leading PCs from 99% quantile PCA for the same data.
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We obtain four leading PCs from the conventional PCA, 1% quantile PCA,
50% quantile PCA, and 99% quantile PCA, which are displayed in Figure 3.2.1.
To evaluate the performance of the methods, we reconstruct data with one
to four PCs and see how well they approximate the real data in the sense of

root mean square error (RMSE);

12 441
RMSE(y,y) = Z Z(X(m) — X))
i=1 j=1
where X; jy and X(i,j) denote observed maximum daily precipitation and re-
constructed data at j grid point on i year, respectively. This is shown in Figure

3.2.2.
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Figure 3.2.2: RMSE values between real maximum precipitation data and the
reconstructions by one to four PCs obtained from the ordinary PCA (black),
50% quantile PCA (red), 1% quantile PCA (green) and 99% quantile PCA
(blue).
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Chapter 4

Conclusions

In this paper, we have proposed a quantile PCA method that works well
even though the data distribution is skewed. THen, the distribution assump-
tion of data for PCA is extended from Normality to a more general distribu-
tion. In real data example, we can find a extreme quantile PCs and RMSE
for these four quantile PCA. We found it useful to check the extreme quantile
of the sample data set using quantile PCA that replaces the quadratic loss

function.
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