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Abstract

Principal component analysis (PCA) is very important to analyze multi-

variate data set. PCA method makes understanding data set easier because

PCA can reduce the dimension of the data set. But the assuming of normal

distributed data, PCA can not apply the non-normal data set like skewed data.

In this paper, we suggest a quantile PCA that can apply the PCA methodol-

ogy to the skewed data set.
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Chapter 1

Introduction

The Principal component analysis (PCA) is probably the oldest, and best

known of the methods of multivariate analysis. PCA has been made for di-

mension reduction, while principal components (PCs) have most of variation

of original data set. Like many multivariate techniques, PCA was not often

used before because calculating many matrix product are complicated and

time-consuming work. But nowadays thanks to technical development of com-

puter systems, we can simply get the answer of matrix product. So PCA is

now make a good use of analyzing multivariate data set.

The purpose of classical PCA is to find a transformed data set that has no

correlation each other and explain most of the variation of the original data,

also has fewer dimension than original data set. PCA method is explained in

more detail in the next chapter.

In this paper we propose a quantile PCA. The key components of the pro-

posed method are two-fold: First, the original PCA can be expressed as a least

squares framework so it uses quadratic functions as a loss function, and second

we replace quadratic loss function with a convex loss function. We use check

function to get a quantile information, widely used for fine a sample quantile
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in the data set. We use τ = 0.01, 0.5, 0.99 quantiles to calculate the results

of the quantile PCA and compare with the result of ordinary PCA.

However, it can not differentiate the tip point of the check function is a fa-

tal deficiency of ordinary check function. So we also propose a modified check

function. We can easily overcome this defection only changing the neighbor-

hood of tip point of the check function with other differentiated function. In

this paper, we use quadratic function rather than absolute function only the

neighborhood of the tip point.
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Chapter 2

Review of PCA

2.1 Definition of Principal Components

The key point of PCA is to reduce the dimensionality of a data set,

while keeping as much as possible of the variation present in the data set. This

purpose is accomplished by transforming to a new set of variables, the PCs,

which are uncorrelated and ordered so that the first few PCs have most of the

variation in all of the original variables.

Suppose that x is a vector of p random variables, and we are interested that

the variances of the p random variables and the structure of the correlations

between p variables. Although PCA does not ignore correlations, it focused on

variances of data set.

First, we need to find a linear function α′1x having maximum variance,

where α1 is a vector of p constants α11, α12, . . . , α1p. So that,

α′1x =

p∑
j=1

α1jxj .

Next, find a linear function α′2x, uncorrelated with α′1x having maximum

variance. Similarly, we can find a kth stage a linear function α′kx that has
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maximum variance subject to being uncorrelated with α′1x, α′2x, . . ., α′k−1x.

The kth variable, α′kx is the kth PC.

2.2 Derivation of Principal Components

To derive the PCs, we will use Lagrange multiplier method. Consider

first α′1x; the vector α1 maximizes var[α′1x] = α′1Σα1. The maximum will

not be achieved for finite α1 so a normalization constraint is needed. The

constraint used in the derivation is α′1α1 = 1, that is, the sum of squares of

elements of α1 equals 1.

To maximize α′1Σα1 subject to α′1α1 = 1, the standard approach is to

use the technique of Lagrange multipliers. Maximize

α′1Σα1 − λ(α′1α1 − 1),

where λ is a Lagrange multiplier. Differentiation with respect to α1 gives

Σα1 − λα1 = 0,

or

(Σ − λIp)α1 = 0,

where Ip is the (p× p) identity matrix. Then, λ is an eigenvalue of Σ and α1

is the corresponding eigenvector. To decide which of the p eigenvectors gives

α′1x with maximum variance. Note that the quantity to be maximized is

α′1Σα1 = α′1λα1 = λα′1α1 = λ,

so λ must be as large as possible. Thus, α1 is the eigenvector corresponding

to the largest eigenvalue of Σ, and var(α1
′x) = α1

′Σα1 = λ1, the largest

eigenvalue.
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In general, the kth PC of x is α′kx and var(αk
′x) = αk

′Σαk = λk, where

λk is the kth largest eigenvalue of Σ. Also, αk is the corresponding eigenvetor.

The second PC, α′2x maximizes α′2Σα2 subject to being uncorrelated with

α′1x. By calculating similar way, we can get (Σ − λIp)α2 = 0.

As stated above, it can be shown that for the third, fourth, . . ., pth PCs, the

vectors of coefficients are the eigenvectors of Σ corresponding to λ3, λ4, . . . , λp

and also var[α′kx] = λk for k = 1, 2, . . . , p.
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Chapter 3

Quantile PCA

3.1 Definition of Quantile PCA

The point of quantile PCA is to use a PCA method well even if the

data set are not symmetric. In ordinary PCA, if data set is multivariate nor-

mally distributed, we can germ a new data set with uncorrelated and maximal

variances.

Then, if data set is not symmetric-distributed, we can now use quantile

PCA.

This method is simply changing its loss function, quadratic loss function

to quantile check function. To complement the non-differentiate point of the

check function, we now adapt a square function of the neighborhood into the

non-differentiate point of the check function. We now call this function as a

modified check function.
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Definition 3.1.1. (Modified Check Function) Modified check function is

defined as :

ρk,c(u) =


(τk − 1)(u+ 0.5c) for u < c

0.5(1 − τk)u2/c for − c ≤ u < 0

0.5τku
2/c for 0 ≤ u < c

τk(u− 0.5c) for −c ≤ u

for some τk. In this paper, we use three quantiles : 0.01, 0.5, 0.99. This is a

modified check function so that it is differentiable at zero. As c goes to zero,

the function ρk,c converges to ρk. Same as Lim and Oh (2012), we set c = 10−6.

We think that if τ = 0.01, the result of quantile PCA represents a low 1%

pattern of the entire data set. Similarly, if τ = 0.99, the result of quantile PCA

represents a high 99% pattern of the entire data set.

3.2 Example of Quantile PCA

In this section, the proposed quantile PCA and other ordinary PCA

methods are applied to the maximum daily precipitation data in August from

the CPC merged analysis of precipitation (CMAP). This data set is analyzed

by the Climate Research Unit, UK during year 1997–2008. We average daily

values to get yearly data, so the number of observation is 12. These are the

maximum precipitation on 360 × 180 grids that cover the entire globe with a

1◦ interval. We now focus on the East Asia region that covers 30–50◦N and

120–140◦E (number of variables is 441).
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Figure 3.2.1: (a) Four leading PCs obtained from the ordinary PCA for max-

imum daily precipitation in August. (b) Four leading PCs from 50% quantile

PCA for the same data. (c) Four leading PCs from 1% quantile PCA for the

same data. (d) Four leading PCs from 99% quantile PCA for the same data.
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We obtain four leading PCs from the conventional PCA, 1% quantile PCA,

50% quantile PCA, and 99% quantile PCA, which are displayed in Figure 3.2.1.

To evaluate the performance of the methods, we reconstruct data with one

to four PCs and see how well they approximate the real data in the sense of

root mean square error (RMSE);

RMSE(y, ŷ) =

√√√√ 12∑
i=1

441∑
j=1

(X(i,j) − X̂(i,j))2,

where X(i,j) and X̂(i,j) denote observed maximum daily precipitation and re-

constructed data at j grid point on i year, respectively. This is shown in Figure

3.2.2.
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Figure 3.2.2: RMSE values between real maximum precipitation data and the

reconstructions by one to four PCs obtained from the ordinary PCA (black),

50% quantile PCA (red), 1% quantile PCA (green) and 99% quantile PCA

(blue).
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Chapter 4

Conclusions

In this paper, we have proposed a quantile PCA method that works well

even though the data distribution is skewed. THen, the distribution assump-

tion of data for PCA is extended from Normality to a more general distribu-

tion. In real data example, we can find a extreme quantile PCs and RMSE

for these four quantile PCA. We found it useful to check the extreme quantile

of the sample data set using quantile PCA that replaces the quadratic loss

function.

11



References

P. Bickel, P. diggle, S. Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, and S.

Zeger. (2011). Principal Component Analysis, Springer.

Y. Lim, H. Oh. (2012). A Data-Adaptive Principal Component Analysis, Tech-

nical Report, Department of Statistics, Seoul National University.

12



국문초록

주성분분석은다변량자료를분석하는데에있어서굉장히유용한방법이

다.주성분분석은자료값들의차원을줄여자료를이해하기더욱쉽게만들어

준다.하지만이러한주성분분석은자료가다변량정규분포를따른다는것을

가정하고 있기 때문에, 이러한 가정이 만족되지 않으면 주성분 분석을 할 수

없게된다.이논문에서우리는분위수주성분분석을제안하고있다.이분위

수 주성분 분석은 기종의 주성분 분석을 적용할 수 없는, 다변량 정규분포를

만족하지 않는 자료값들에 대해서도 주성분 분석을 행할 수 있게 만들어 준

다. 대칭으로 이루어져 있지 않고 한 쪽으로 치우친 다변량 분포에서 추출된

자료값들을 이 분위수 주성분 분석으로 효과적으로 분석할 수 있음을 알 수

있다.

주 요 어 : 다중척도, 주성분 분석, 극값 자료, 분위수

학 번 : 2011-20242
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