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Abstract

Multilevel models are used extensively in social and behavioral science research
because the models are able to accept hierarchical data structures. However,
when multicollinearity among fixed effects of the model exists, multicollinear-
ity may lead to imprecise coefficient estimates. We investigate a new method
of estimating fixed effect coefficients in multilevel model when multicollinear-
ity exists. The proposed method of estimating parameters is based on ridge
regression. We apply this method to student assessment data and compare the
results with an existing method. The proposed method provides coefficient es-
timates which have smaller variance than the existing method. Furthermore,
we present PRESS statistic which is adapted to the proposed method. Re-
sults suggest that the proposed method predicts data better than the existing
method.

Keywords: Multilevel model, Ridge regression, Multicollinearity, EM algorithm

Student Number: 2011-20239
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Chapter 1

Introduction

In social science research, multilevel models are often used as an analysis tool
because multilevel modeling can reflect social science data which have nested
structures. Multilevel structures are popular in social science disciplines. For
example, suppose that we are interested in students’ performances based on
their test scores. The students are nested within schools, and they share the
same factors of their schools such as their teachers’ characteristics or learning
environments. Therefore, we cannot assume that individual student test scores
are observed independently and have a common variance. In this respect, we
should not use ordinary linear regression to analyze data. Multilevel modeling
is a more suitable tool for handling the heterogeneity of data.

However, estimation of fixed effect coefficients in a multilevel model could
be incorrect when multicollinearity exists (Shieh and Fouladi, 2003; Kreft and
de Leeuw, 1998). Standard errors of parameter estimates could be large (Kreft
and de Leeuw, 1998), which can cause imprecise parameter estimation and in-
fluence analysis of the data. In general, centering of variables is recommended
when multicollinearity exists since it can remove unnecessary dependency

among variables (Raudenbush and Byrk, 2002; Kreft and de Leeuw, 1998;



Bickel, 2007). In spite of centering variables, the dependency could remain.
In the case that dependency remains, we need another method of handling
multicollinearity, and it leads us to investigate a new method of estimating
fixed effect coefficients when multicollinearity exists.

This paper is organized as follows. In Chapter 2, we review ridge regres-
sion and multilevel models. Multilevel modeling by ridge regression, which is
for handling multicollinearity, is introduced in Chapter 3. Chapter 4 shows
advantages of the proposed method through the Programme for International

Student Assessment 2003 (PISA 2003) data.
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Chapter 2

Overview

2.1 Multicollinearity

If there is no linear relationship between regressors, we say that the re-
gressors are orthogonal. When regressors are orthogonal, it is relatively easy
to interpret a multiple regression model. However, when one tries to analyze
data, it is very common that regressors are not orthogonal. If the regressors
are nearly linearly related, it can lead to imprecise inference of the regression
model.

Consider the multiple regression model
Y = X6 +e, e~ N(0,0%1),

where Y is an n x 1 vector of responses, X is an n X p matrix of regressor
variables, 5 is a p x 1 vector of unknown coefficients, and e is an n x 1 vector
of random errors. Let the jth column of the X be denoted X; so that X =
[X1, Xa,..., Xp]. The column vectors of the X are said to be linearly dependent

if there exist constants a1, ..., a,, which are not all zero, such that

p
Z anj = 0,
j=1



for a subset of column vectors of X. In this case, the rank of the X7 X matrix
is less than p and thus, (X7 X)~! does not exist. Suppose that a near-linear
relationship among a subset of X columns exists. In such case, we say that
multicollinearity, which causes the matrix X7 X to be ill-conditioned, exists
among the regressors. Estimating parameter vector B using the least squares
method, L9 = (XTX)~'XTY and the corresponding standard error could
be highly unreliable if X7 X is ill-conditioned. Therefore, if multicollinearity
exists, another way of estimating parameters, other than the least squares

criterion, is required.

Detecting multicollinearity

There are several ways to detect multicollinearity (Montgomery et al.,
2006). First, we can detect multicollinearity by examining the off-diagonal
term of X7 X in correlation form. If regressors z; and x; are nearly linearly
related, the absolute value of off-diagonal term |r;;| will be close to unity. How-
ever, this diagnostic method is not appropriate for detecting multicollinearity
in anything more complex than two regressors.

Second, we can use variance inflation factors for detecting multicollinearity.
The diagonal elements C}; of the inverse matrix of X TX in correlation form

are called variance inflation factors (VIFs), which are given by

1

J

where R? is the coefficient of determination obtained when xz; is regressed on
the remaining p — 1 regressors. Typically, if one or more VIFs exceed 10 or
larger, it indicates that multicollinearity among regressors exists and that the
corresponding regression coefficients are poorly estimated.

Third, eigenvalues of X7 X in correlation form, for instance, k1, ..., kp, can

be used to detect multicollinearity. If some regressors are nearly linearly re-



lated, one or more eigenvalues of the matrix X7 X will be small. In this respect,
the condition number of X7 X is frequently used to diagnose multicollinearity,

which is defined by

kmam
| =
kmin

Generally, if [ is 1000 or larger, severe multicollinearity is indicated.

2.2 Ridge regression

Hoerl and Kennard (1970a) proposed a biased estimator called ridge re-
gression as an alternative to the least squares estimator. The ridge estimator
BR is defined by

R = (XTX + AD)XTY.
The BR can be expressed as
GR — b BLSE.
A+1
As shown in Figure 2.1, if A > 0, applying ridge regression has the effect of
shrinking BLSE toward the origin. As A close to 0, we obtain the least squares
estimator, 3% = BLSE and as A goes to infinity, we have B = 0. Although
BR is a biased estimator of 8, Hoerl and Kennard (1970a) proved that there

always exists a A such that

MSE(3%) < MSE("*7).

Choice of ridge parameter \

The elements of BR are determined by the ridge parameter A. We will
briefly review two ways of choosing a ridge parameter. The first way is to use

a ridge trace, which is the plot of the components of BR against A. Hoerl and



BLSE

7

Figure 2.1: The effect of shrinking estimates toward zero

Kennard (1970b) suggested that an appropriate value of A could be determined
by choosing a sufficiently small A at which the ridge estimates BR are stable
in the ridge trace.

Second, Golub, Heath, and Wahba (1979) suggested choosing a ridge pa-

rameter by using a generalized cross-validation (GCV) error, which is given

by ,
_ 1 Yi — Ui
GOV = nz <1—tr(H)/n> ’

i
where H = X(XTX + M)7'XT. We can choose A so that it minimizes the
GCV.

&1

| &1

11’



2.3 Multilevel models

Multilevel models are discussed in various literatures under a variety of
titles such as mized effect models and random effects models (Laird and Ware,
1982), variance component models (Longford, 1993), random coefficient models
(de Leeuw and Kreft, 1986), and hierarchical linear models (Bryk and Rauden-
bush, 2002). Also, multilevel models can be considered a part of generalized
linear models (McCullagh and Nelder, 1989). In this paper, we adopt the term
multilevel model because it reflects data with a nested structure. As indicated
by the word, multilevel, the model requires at least two levels of data struc-
ture.

Following the notation of Bryk and Raudenbush (2002), consider a simple
model of the form,

Yij = Boi + BriXij + e (2.3.1)

Boi = Boo + Bor Wi + woi, Bri = Bio + BuWi + ui. (2.3.2)

We call (2.3.1) the level-1 model, and (2.3.2) the level-2 model. The index
J represents level-1 units, 7 represents level-2 units, X;; represents a level-1

predictor, and W; represents a level-2 predictor. The combined form of the

level-1 model and the level-2 model is

Yii = Boo + BioXij + Bor Wi + 11X Wi + woi + w1 Xij + eij, (2.3.3)

fized ef fects random ef fects

where

E(e;5) =0, Var(ei;) = o2,

uo; 0 uo; T00 T01
E T = , Var T = =D,
U1 0 U1j T10 T11
and

Cov(uoj, €ij) = Cov(uj, ei5) = 0.



As shown in (2.3.3), the model has two subparts: fixed effects and random
effects. The model (2.3.3) has more than one residual to obtain, and thus, we
cannot simply use the ordinary least squares method to obtain the fixed effect
coefficient estimates. In order to obtain estimates of the parameters, there are
several methods in which we can apply. We can use a maximum likelihood
procedure, a restricted maximum likelihood procedure via an EM algorithm
(Laird and Ware, 1982) or iterative generalized least squares (Goldstein, 1986).
Without loss of generality, two-level-multilevel models can be extended to

multilevel models of three or more levels.

2] 8
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Chapter 3

Multilevel Modeling by Ridge

Regression

3.1 Model

We consider a two-level-multilevel model to deal with the problem caused
by multicollinearity among fixed effects. Ridge regression is conducted in the
process of estimating fixed effect coefficients.

For each i (i =1,...,m), consider the level-1 model
}/i = leﬂz + e,

and the level-2 model
Bi = Wiy + uy,

where Y; is an n; x 1 vector, XZ-1 is a known n; X ¢ matrix, 3; is a ¢ x 1 vector of
level-1 coeflicients, and e; is an n; x 1 vector. Here e; is normally distributed
with a mean of 0 and an n; X n; positive-definite covariance matrix 0'2]”1. (In, is
an identity matrix). The e; depends on the ith dimension n; but is independent

of 7. Also, W; is a ¢ X p matrix, v is a p x 1 vector, and u; is a ¢ X 1 vector.



Here, u; has normal distribution with a mean of 0 and a g x ¢ positive-definite
covariance matrix D. The u;s are also independent of each other and of e;.

The combination of the level-1 model and the level-2 model becomes
Y; = X; Wiy + X}u; + ;. (3.1.1)
If we define new variables by letting
X;=XW;, a=7v, b=w Zi=X},
then the combined model (3.1.1) becomes
Y; = X;a+ Z;b; + e, (3.1.2)

which is the same as a linear mixed effect model (Laird and Ware, 1982). X;«
and Z;b; +e; contain fixed effects and random effects of the model, respectively.

For each i, we have
Var(Y;) = ZiDZ] + oI, = V;. (3.1.3)

We can express all of the data in a matrix form by letting

Y; X1 b1 e1
Y, X5 b €2

Y = , X = , b= , e= ,
Ym Xm bm em

Y = diag(c?1,,,0%I,,,...,0%I, ), D =diag(D,D,...,D),

and

Z =diag(Z1,Za,. .., Zm).

Thus, we write the combined model (3.1.2) for all of the data as follows:

Y = Xa+7Zb +e. (3.1.4)

10 .



3.2 Ridge regression with the generalized
least squares method

Consider a linear regression model
Y =Xa+e, (3.2.1)

with E(e) = 0, Var(e) = 02V, and KTK = KK* = V for some K. If we
define new variables by H = K=Y, B = K~ 'X, and g = K !¢, the model
(3.2.1) follows:

H=DBa+y, (3.2.2)

where Var(g) = E{[g—E(9)][g— E(9)]*} = o*I. The ridge estimator of (3.2.2)
is
o' = [BTB+A7'BTH
= XK HYTK'X + a1 ' Xk HTK Y
= (XTVIX 4 a1t XTv -y, (3.2.3)

3.3 Parameter estimation with ridge regres-
sion using the EM algorithm

In model (3.1.4), if covariance matrices of e and b are known, we can
obtain estimate of o by using ridge regression. By (3.1.3) and (3.2.3),
m )\ -1 m
alt = [ZXzTVVzXz + 0_2ij| ZXiTWiYia
i=1 i=1
where W; = Vi_1 and \ is a ridge parameter. If A\ = 0, &% is the same as
the ordinary fixed effect coefficient estimates, which is applied the generalized

least squares criterion (Laird and Ware, 1982). b; can be estimated by

bi = DZIWi(Y; — X;a),

11 2 ]



which is empirical Bayes. Since both &f and b; are linear functions of Y,

expressions for their standard errors are

m A -1 m m by -1
Var(a) = [Z XTWix; + 0214 > XWX, |:ZXZ'TW1‘X1' + UQIP]
i=1 i=1 i=1

and . .
Var(b)) = DZ} {Wi - W X, ( > x7 WiXi> xT WZ}ZZD.
i=1
When covariance matrices of e and b are unknown, we can estimate pa-
rameters by using the EM algorithm (Laird and Ware, 1982). Consider 6 be

a k—vector of variance and covariance parameters which is found in 021,

(i = 1,...,m) and D. The complete data ML estimators for D and o? are

following
m T
o 2ie1€i e _
— = = 3.1
o ~ N (3.3.1)
where N = >, n;, and
- mobbl o d
D= @ - 72_ (3.3_2)
m m

The E-step gives the updated dy and do:

Ze ei | Yi, 6% (0o1a), Oota | Ze &+ o4qtr ZC’ 1Z1 7))
(3.3.3)

and

Zb b ’ Y;,Oé old old ZE lA) oldzci_la (3.3.4)

where b; = CiZF(Y; — Xié®(0,4)), Ci = ZFZ; + 6%,D,,), and é; = Vi —
X;6%(0,44) — Zib;. Substituting d; and dy into (3.3.1) and (3.3.2) respectively
gives the M-step formulas

Opew — 7{26 € + Uoldtr ZC IZTZ } (335)

12 .



and

. 1 mo m
Diew = %{Z bib! + 624> C') (3.3.6)
=1 =1

To obtain ML estimates, &%, 62, and 152, the EM algorithm begins from
obtaining appropriate starting values. We iterate between (3.3.3) and (3.3.4),
which is for the E-step, and (3.3.5) and (3.3.6), which is for the M-step until

aft 62, and D? converge.

3.4 The PRESS statistic

Ridge regression is usually more effective for predicting future observations
than the least squares method when multicollinearity exists (Montgomery et
al., 2006). To measure how the model predicts new data well, we use the

PRESS statistic of the ith group, which is

g

PRESS; =) [ui; — Uy
j=1
Mg e 2
_ Y ’ (3.4.1)
= <1 - hjj)

where y;; is the jth response of the ith group (the ijth response), Y(iz) 1s the
fitted value of the ijth response based on all observations except the ijth one,
and hj; is the jth diagonal element of the matrix H; = X;[> 10, XI W, X; +
ALY XEW, as Y = XaR = Y.

13 + ]



Chapter 4

Application to the Korea
PISA 2003 Data

In this section, we apply our method to the Korea PISA 2003 data. The PISA
2003 was organized by the OECD; 41 countries participated in its assessment.

In Korea, 149 schools were engaged in the program.

4.1 Data analysis

To identify relationships between self-related cognitions in mathematics
and students’ math scores, we choose the regressors, that indicate interest
in and enjoyment of mathematics (INTM AT), instrumental motivation in
mathematics (INSTMOT), mathematics self-concept (SCM AT'), mathemat-
ics self-efficacy (M ATHEFF), and artificial regressors—N EW 1 and N EW2.
We define NEW1 by z1 + INSTMOT, where x; is a random sample of
N(0,0.3%2) and NEW?2 by x5 + INSTMOT + SCM AT, where x5 is a ran-
dom sample of N(0,0.032). We generated artificial regressors so that we could

obtain large VIF's, which indicate the presence of multicollinearity. Regressors

14 .



were standardized before analysis because centering removes nonessential ill-
conditioning. Missing data for the six regressors and the dependent variable
were deleted so that we could use a complete data set. We conducted two
level multilevel modeling since students are nested within schools. The level-1

model is as follows:
PVIMATH;; = Boi + Bl NTMAT;; + Poi INSTMOT;; + 33, SCM AT,
+B1MATHEFFi; + B5; NEW 135 + Bei N EW 245 + €45,
where PV1M AT H;; is a plausible value of mathematics score for a student j
in school ¢, and e;; is a residual that follows normal distribution with a mean
of 0 and a variance of o2. The level-2 model becomes
Boi =0 +ui » Pri=m

Boi =12, B3i =73

Bai =4 5 Bsi =5

Bei = e,

where u; is a random variable that is normally distributed with a mean of 0

and a variance of 7gy. The combined model is specified as

+’}’4MATHEFFZ‘J' + s NEW 15 +v%6NEW2;; + u;
+6ij. (4.1.1)

The model (4.1.1) has seven fixed effects along with two random effects. The

two random effects are independent of each other.

4.2 Results

As shown in Table 4.1, some pairwise correlations are very large. This

means that near-linear dependencies of the regressors exist. Furthermore, as

15 .



listed in Table 4.2, VIFs of INSTMOT, SCM AT, and N EW?2 are far larger
than 10. This implies that severe multicollinearity exists (Montgomery et al.,
2006), and therefore, using the generalized least squares method would not

provide precise parameter estimates.

Table 4.1: Correlation coefficient for the Korea PISA 2003 data

Variable INTMAT INSTMOT SCMAT MATHEFF NEW1 NEW2

INTMAT 1 0.651 0.750 0.512 0.622 0.799
INSTMOT 1 0.524 0.445 0.956 0.883
SCMAT 1 0.606 0.500 0.863
MATHEFF 1 0.422 0.598
NEW1 1 0.843
NEW2 1

Table 4.2: Variance inflation factors of the fixed effects

Variable INTMAT INSTMOT SCMAT MATHEFF NEW1 NEW2
VIF 2.890 1029.082 883.707 1.642 11.523  2889.486

We calculated parameter estimates of the model (4.1.1) by using the or-
dinary fixed effect coefficient estimation for a multilevel model (hereafter, the
existing method), which is the same as the proposed method of A = 0 (Table
4.3). It shows that INSTMOT, SCMAT, and NEW?2’s variances of fixed
effect coefficient estimates are very large. This is not surprising because these
variables are highly correlated by the definition of the variable N EW?2. Be-
cause of these large variances, fixed effect coefficients could be very sensitive

to data in the particular sample collected.

16 + ]



Table 4.3: Parameter estimates of the model (4.1.1) with A=0

Fixed effect Coefficient Standard error Variance
intercept 539.393 3.664 13.425
INTMAT 0.170 1.472 2.167

INSTMOT 42.691 27.687 766.581
SCMAT 56.165 25.665 658.697

MATHEFF 25.260 1.175 1.381

NEW1 5.278 2.941 8.648
NEW?2 -76.109 46.408 2153.658
Random effect Variance
level-1 variance (62) 3927.044
level-2 variance (7pp) 1860.794

Before applying the proposed method, it is necessary to choose the ridge
parameter. We considered the modified model of (4.1.1), from which u; was
excluded, to make a simple variance structure of the model. The ridge trace
is shown in Figure 4.1, where it is apparent that the coefficient estimates of
the model are stabilized near A = 0.4 ~ 0.45. We choose the ridge parameter
A = 0.406 to minimizes the GCV of the model.

We then implemented the proposed method to estimate the fixed effect
coefficients of the model (4.1.1). We used the starting value from Laird et
al. (1987). Estimated parameters converged within 30 iterations. As shown in
Table 4.4, the parameter estimates, which had large variances in Table 4.3,
become smaller. Variances of the corresponding parameter estimates also de-
creased. To be specific, the variances of coefficient estimates of INSTMOT,
SCMAT, and N EW?2 were reduced by about 46%, 46.5%, and 46.6%, respec-

17 + ]



tively. This indicates that the proposed method provides more stable fixed
effect coeflicient estimates in comparison to the existing method. On the other
hand, when A = 0.406, variance estimates of the random effects are slightly

more increased than those of A = 0.

o | e el
O P T TSP SCMAT
.................. WATHEFF
INSTMOT
NEW1
h O — mmmmmmemmmmmmmmmmmmemmmmmm-o-o-------
E INTMAT
Q
Qo
£
@
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o NEW2
O _-
i -
P INTMAT
- oo INSTMOT
e I SCMAT
P ———— MATHEFF
8 | -~ NEW1
R NEW2
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
A

Figure 4.1: Ridge trace for the Korea PISA 2003 data using six regressors
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Table 4.4: Parameter estimates of the model (4.1.1) with A=0.406

Fixed effect Coeflicient Standard error Variance
intercept 538.642 3.660 13.395
INTMAT 0.187 1.472 2.166

INSTMOT 29.889 20.290 411.673
SCMAT 44.259 18.768 352.230

MATHEFF 25.274 1.175 1.380

NEW1 5.285 2.936 8.621
NEW?2 -54.561 33.907 1149.679
Random effect Variance
level-1 variance(62) 3927.181
level-2 variance (7o) 1861.784

To measure how the proposed method predicts new data well, we calcu-
lated the PRESS statistic, which is defined in (3.4.1), for each school i (i =
1,...,149) and for each case A = 0 and A = 0.406, respectively. We also
numerated which case had smaller PRESS statistic. Consequently, for all 149
schools, the PRESS statistic of A = 0.406 had a smaller value than the PRESS
statistic of A = 0. This means that when multicollinearity exists, the proposed

method has a better capacity for prediction than the existing method.
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Chapter 5

Conclusion

The main goal of our study is to investigate the fixed effect coefficient estima-
tion in multilevel model when multicollinearity exists. Our method consists of
ridge regression to obtain better fixed effect coefficient estimates, rather than
the existing method. We have implemented our method through a simple mul-
tilevel model for the Korea PISA 2003 data. As a result, the proposed method
has provided coefficient estimates with considerably decreased standard error
in comparison to the existing method, even though variances of the random
effects increased slightly. Furthermore, we have presented how the proposed
method better predicts new data. We have applied PRESS statistic, which we
have modified appropriately for our method. We have found that for all of
the schools in the Korea PISA 2003 data, the proposed method had smaller
PRESS statistic in comparison to the existing method. These findings suggest
that our method provides stabilized coefficient estimates and better predicts

data when multicollinearity exists.
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