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Abstract 

Concept-Aware Ensemble System for 
Pedestrian Detection 

Helin Lin 
DEPARTMENT OF ELECTRICAL AND COMPUTER 

ENGINEERING 
COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 

In ADAS, multiple classifier system on pedestrian detection is occupying 

important position because of its merit that each classifier can be able to create 

synergistic approaches to compensate the other member classifier’s inability. On 

the other hand, according to different poses of pedestrians and variable 

background, once trained pedestrian detector needs to be tuned dynamically 

along the variation of real-world environment, thus the system is requested to 

incrementally accept new information and retain the old one at the same time.  

This thesis presents an incremental learning, environment-adaptive ensemble 

system for pedestrian detection by combining pedestrian detector constituted by 

multiple classifiers with front-end concept recognizer that can turn off inefficient 

member classifiers adaptively. Through adopting incremental learning algorithm, 
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newly added batch dataset is trained by learning algorithm and the newly 

generated classifier is united to the existing ensemble along with the update of 

the voting weight. As the update of voting weight is only taken when the new 

training is carried out and focuses on the performance on current environment, 

temporal trade-off on performance between current and old environment is 

inevitable. This problem is addressed by applying concept recognizer in front of 

the ensemble thus turning off ineffective classifiers and selecting the most 

efficient voting weight vector adaptive to each pedestrian candidate. With the 

intervention of the front-end concept recognizer, the system can retain good 

performance on old environment while does not lose focus on current 

environment. 
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Chapter 1 

Introduction 

Due to increasing popularity of automobiles as well as road accidents, the 

importance of driver assistance systems is daily growing. Car-embedded system 

for pedestrian detection is gradually becoming a mainstream of protection 

systems for improving traffic safety. Following this trend, multiple classifier 

systems [10] for pedestrian detection are getting more and more importance these 

days because of their merit that a classifier can be able to compensate inabilities 

of other member classifiers, thereby achieving a significant synergistic effect. 

Such a pedestrian detection system, once have been trained, needs to accept 

new information along the variation of real-world environment or newly 

acknowledge poses of pedestrians, which requires incremental learning. There are 

some important reasons why the subsequent incremental learning cannot be 
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included in the initial training: 1) there is no representative dataset that can cover 

all the cases for the variation of poses and background from the beginning, 2) the 

training of a big volume of data at once is time-costly, 3) storage space can be 

limited to hold all the data, and 4) accidental loss of data already used for training 

can happen. 

The best scenario is that the system has no need to refer to old data when it 

learns new information while still free from catastrophic forgetting. Such an 

approach was taken by an algorithm called Learn++.NSE [2]. It is also based on 

ensemble of classifiers and its main contribution is that it can closely follow the 

changing environment by incrementally learning new information by only using 

new data but without accessing already used ones. Unlike its original version [11], 

which has the problem of outvoting by the new environment due to the fixed 

voting weights, the new version can put more weight on the new environment by 

dynamically determining time-adjusted voting weights of member classifiers 

according to their performance on latest environments.  

Because of the particularity of pedestrian detection, the system should also 

consider some additional issue called concept drift. In line with the variation of 

pedestrian’s pose (front/rear, right/left) as well as the diversity of background 

(illumination, occlusion), the pedestrian detection problem in general has a very 

high rate of concept drift. Frequent concept drift is best covered by frequent 

retraining and voting weight update according to Learn++.NSE, and the training 

should be done with correctly labeled training data, which is hard to be met in 

real world. I overcome this shortcoming by adding a concept recognizer that 

automatically detects the concept for the input data, turns off inefficient 
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classifiers, and chooses the most suitable voting weight vector adaptively for the 

remaining member classifiers. 

I still apply Learn++.NSE incremental learning algorithm to implement a 

pedestrian detector that can follow the change of environment through retraining. 

However, instead of retraining the system very often, a concept recognizer, which 

is the main contribution of this paper, is introduced in front of the pedestrian 

detector as mentioned above. I call the system a concept-aware ensemble system. 

The remainder of this paper is organized as follows. Chapter 2 is for the basic 

knowledge of pedestrian detection. Chapter 3 discusses related work, followed 

by Chapter 4 which explains the details of our approach. The experimental 

results are provided in Chapter 5, and conclusions with remaining work for 

further improvement are given in Chapter 6.  
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Chapter 2 

Pedestrian Detection Basics 

3.1 Detection Flow 

Pedestrian detection generally covers preprocessing, foreground segmentation, 

object classification and tracking as shown in Figure 1. Usually the pedestrian 

image is taken by either monocular-based or stereo-based method. Tasks like 

camera calibration, fine adjustment as well as exposure time are managed in 

preprocessing. Foreground segmentation has significant effect on reducing 

calculation time. It is the stage of extracting region of interest (ROI) or 

generating candidates for the object classification stage. Without explicit 

segmentation, like in exhaustive scanning, many background regions can cost 

computation time and it is fatal to this real time system. And any misses of 
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pedestrians in this stage will never be recovered by the subsequent stages. These 

forwarded ROIs are classified into “pedestrian” or “not-pedestrian” at the object 

classification stage. The main goal in this stage is to maximize hit rate while 

minimize false positive. Variable features like Histogram of Oriented Gradients 

(HOG) [5], LBP [13], Haar wavelet as well as shape context descriptor are 

extracted and fed to learning algorithms involving Support Vector Machine 

(SVM), Multi-layer Perceptron (MLP), AdaBoost and etc. The combination of 

HOG-SVM has superior performance on pedestrian detection and is widely used. 

As the tracking module, it makes the system to follow detected pedestrian. This 

stage can help to predict the direction to which the pedestrian is heading and also, 

can assist the foreground segmentation to decide pedestrian candidate. 

3.2 HOG Feature Descriptor 

Histogram of Oriented Gradients (HOG) are feature descriptors which are 

believed the one of the best features for pedestrian detection. The main method 

of HOG is that in an image, the appearance and shape of local object can be well 

 

 
Figure 1. ܖ܉ܑܚܜܛ܍܌܍۾ ܖܗܑܜ܋܍ܜ܍܌  .ሾ૚૛ሿܟܗܔ܎
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described by gradient or edge direction. The essence is the statistic information 

of gradients and they are usually exist near edge. 

It divides the image into small cells, for example, each cell consists 8x8 pixels. 

The shape of the cell can be radial or rectangular. Then the gradient of each pixel 

is calculated using horizontal and vertical two masks, [-1, 0, -1] 

and	ሾെ1, 0, െ1ሿ். Thus every pixel has its gradient and direction. It is mainly to 

capture the silhouette information, at the same time weaken the interference 

from light further. Then every pixel casts a weighted vote for an orientation-

based histogram channel with its gradient value and direction. The voting weight 

can be the gradient itself or some return values from various kinds of functions 

utilizing this gradient. The channel is composed by nine bins involves from 0~π. 

For example, a pixel has direction degree among 60~80, and the gradient is 

about 7, then it votes the fourth bin with its original voting weight 7. Now a cell 

histogram with 9 bins is created and this is the basic cell descriptor. Several cells, 

for example 2x2, are combined to compose a block and one cell can belong to 

different blocks. Thus a block descriptor is constituted by connected four cell 

histograms. The last step is to connect all the overlapping block descriptors 

 

 
Figure 2. ۶ܑܕ܉ܚ܏ܗܜܛ ܎ܗ ܌܍ܜܖ܍ܑܚ۽  .ሾ૞ሿܛܜܖ܍ܑ܌܉ܚ۵
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serially and the HOG feature descriptor for the image is created as high 

dimension vector.  

3.3 SVM Learning Algorithm 

Support Vector Machine is a widely used machine learning algorithm on 

pattern recognition or other detection application. The main theory of it can be 

summarized as two points: (1) it aims to analyze linearly separable problem. To 

those cannot be separated linearly, through using the nonlinear mapping 

algorithm, it maps these linearly inseparable low-dimensional space to high-

dimensional feature space. Thus in the higher dimension space, the sample can 

be separated linearly by hyper-plane. (2) Based on structural risk minimization 

theory, it constructs the optimal partitioning hyper-plane in the feature space and 

makes the expected risk in the whole sample space to satisfy an upper bound 

restriction.  

The SVM learning can be interpreted as convex optimization problem, thus 

utilizing already known effective algorithm to find global minimization of target 

 
Figure 3. Support Vector Machine. 
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function. Unlike the other learning algorithms (rule-based classifier and artificial 

neural networks) those search hypothesis space based on greedy tactics and so 

mostly can only get local optimal. SVM controls its ability through maximizing 

the distance between the decision hyper-plane with boundary vector (support 

vector). Nevertheless, parameters like kernel function and soft margin have 

important effect to the performance. Different kernel functions make SVM 

variable. Common kernel functions are as below. 

(1) Linear: K(x, y) = x · y 

(2) Polynomial: K(x, y) = ሺݔ	 ∙ ݕ ൅ 1ሻௗ 

(3) Radian Basis Function: K(x, y) = exp(-γ∥ x	 െ 	y ∥ଶሻ 

(4) Hyperbolic tangent: K(x, y) = tanh(κx·y + c) 

SVM is supervised learning model thus needs labeled training data. In the 

training process, it tries to select the support vectors as well as the hyper-plane 

from which, these support vectors have max margins. In Figure 3, the hyper-

plane ܪଶ  is the optimal one. SVM performs best on binary classification 

problem, rather than on multi-class problem.  
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Chapter 3 

Related Work 

3.1 Incremental Learning 

There have been previous approaches to incremental learning, and 

Learn++.NSE and Learn++.NC [1] are representative ones for multi-classifier 

systems. Learn++.NSE is efficient in closely following changing environment 

and Learn++.NC is efficient in adding or deleting classes. 

 Learn++.NSE generates a member classifier every time there happens 

concept drift and the existing ensemble is no longer suit for the current 

environment. New classifier is generated using the training data collected from 

recent environment. Every member classifier including the newly generated one 

is evaluated on the newly added dataset. For each member classifier, all the error 
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rates, one for each newly added dataset, are saved. The error rates collected thus 

are normalized, weighted, and used to calculate the final voting weight for that 

classifier. The weight (penalty) for the normalized error rate is set larger on more 

recent environment than on less recent one and each classifier gets its new time-

adjusted voting weight. In such a method, the voting weight vector of the 

ensemble is better adapted to more recent environments. Then the final 

hypothesis is calculated using max voting. Since the total number of member 

classifiers cannot be increased infinitely, some classifiers should be pruned based 

either on age or on error.  

The main frame of Learn++.NC is similar to Learn++.NSE. If the new dataset 

introduces some new classes, the existing classifiers that are trained without such 

classes inevitably make wrong decisions. To reduce such “outvoting” negative 

impact, Learn++.NC utilizes dynamically weighted consult and vote (DW-CAV) 

as its voting method. The special feature of this voting method is that the voting 

weight of each member classifier is varied according to the response of each 

classifier to the input instance. Thus it can keep balance of voting weight among 

classifiers and address outvoting problem.  
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Chapter 4 

Proposed Approach 

 The proposed concept-aware ensemble system for pedestrian detection is a 

combination of the concept recognizer and the conventional ensemble pedestrian 

detector as shown in Figure 4. For an input instance, the concept recognizer at the 

front-end determines the concept and chooses an appropriate set of classifiers and 

the corresponding voting weights in the lookup table according to the recognized 

concept. The selected set of classifiers and the voting weights make up the 

ensemble pedestrian detector at the back-end which makes a final decision on 

whether it has detected a pedestrian or not. As mentioned in Chapter 1, I use 

Learn++.NSE for the conventional ensemble pedestrian detector at the back-end. 

For the concept recognizer at the front-end, I also use incremental learning, but in 

that case, I use Learn++.NC. To avoid confusion, I call the classifiers used in the 
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concept recognizer as concept-classifiers (CCs) and the ones in the back-end 

pedestrian detector as pedestrian-classifiers (PCs). 

4.1 Incremental Learning on Pedestrian Detector 

 Many state-of-the-art pedestrian detectors consisting of feature extractors and 

classifiers are trained once with a specific pedestrian dataset. This cannot be an 

issue when the detector is used by some invariant environment like surveillance 

systems. However, in the case of a detection system embedded in a moving car, 

the background as well as the poses of pedestrians are always varying, thus easily 

resulting in maladjustment. In order to avoid the problem, I implement a tuned 

version of Learn++.NSE to make it cooperate with the concept recognizer in the 

front-end, while not altering any key aspect of the original version. Following are 

the major changes that I make. 

Input 
image

A set of pedestrian‐
classifiers and the 
corresponding 

voting weights for 
each concept

Decide concept 
(background, pose, 
illumination, etc.) 

of the image
Extract
features

Feature
extractor

Concept recognizer Lookup table

Pedestrian‐
classifier

Pedestrian‐
classifier

.

.

.

.

.

.

.

.

.

on/off + weight

 
Figure 4. Concept-aware ensemble system for pedestrian detection. 
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First, whereas the original algorithm sets the error rate threshold to 1/2, I 

suggest a much higher restriction as the error rate threshold since pedestrian 

detection is a binary classification problem and thus fifty percent error rate can be 

achieved even with a random prediction. If the newly generated classifier has 

error rate bigger than this newly suggested error threshold, it is regenerated. For 

the existing classifiers whose error rate exceeds the threshold, their voting 

weights for the specific dataset are set to zero. 

In addition, not all the member classifiers participate in making final decisions; 

less efficient classifiers are blocked by the front-end concept recognizer. In the 

same perspective, the voting weight update for a member classifier is conducted 

only when the classifier is judged to be efficient on the current training dataset 

(i.e., the current concept). Also, a classifier can has multiple voting weights if it is 

involved in multiple different concepts. Further details are discussed in 4.3. 

It is undesirable to have too many different concepts for several reasons. First 

of all, it will make the problem too complicated. Most of input instances can be 

classified into a limited set of concepts. Increasing the number of concepts does 

not guarantee sufficient increase in the accuracy. Thus the change in the concept 

of input data tends to have cycle property. To take advantage of this, 

Learn++.NSE does not delete old classifiers that do not join the current 

hypothesis and resumes them when their evaluation on latest training dataset get 

high score. The limitation of this approach is that the old classifiers are resumed 

only through a new training. It is never reused otherwise, even if it encounters 

with an already learned concept. To automatically recognize previously 

encountered concepts and just reuse the corresponding classifiers and training 
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results (voting weights), the proposed approach introduces the concept recognizer 

into the system. 

4.2 Incremental Learning on Concept Recognizer 

The concept recognizer should also be trained incrementally since all the 

training data sets are not available at the same time. Unlike pedestrian detection, 

which is just considering binary classification, there can be many different 

concepts and thus it is much closer to multi-classification problem. To efficiently 

add new concepts as new classes, I utilize Learn++.NC for the construction of the 

concept recognizer. Since it is not known a priori how much concepts are there 

totally at the beginning, every time a new concept is found, it should be learned 

incrementally one by one. 

Basically, the concept recognizer is relying on multiple binary CCs. For 

example, the first CC is trained to classify concept1 and concept2 as shown in 

Figure 5. When the system encounters an unfamiliar one, e.g., concept3, a new 

CC is generated. However, since it requires two different concepts to train itself 

for binary classification, it takes the most recently created concept from the 

existing set of concepts to match with the new concept. Thus concept2 is selected 

in our example and the second CC is trained to classify input instances into 

 
Figure 5. Basic structure of concept recognizer 

concept-classifier1

con2 or con3
concept-classifier2

concept-classifier3
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concept2 and concept3. Continuing one step further, I obtain the concept 

recognizer shown in Figure 5.  

So the three supposed CCs in Figure 5 can only classify the input instance as 1) 

CC1, CC2, and CC3 respectively take care of concept1/concept2, 

concept2/concept3, and concept3/concept4 pairs. When the input instance 

belongs to concept4, for example, the CC1 and CC2 will give an incorrect 

decision because the case is out of their coverage. Such a problem is 

successfully resolved by the voting method used in DW-CAV. 

4.3 Cooperation between Pedestrian Detector and Concept 

Recognizer 

 The intervention of the concept recognizer to the original pedestrian detector 

constructed by Learn++.NSE incurs significant changes in the update of voting 

weight vector as well as the final hypothesis. The decision on whether to add a 

new concept to the concept recognizer is also decided through the evaluation by 

the PCs on the current training data. 

A dataset is considered to represent an environment or a concept here. The 

con1 PC1 (0.72) con1 PC1 (0.62) con1 PC1 (0.72) 
   PC3 (0.85)   

con2 PC2 (0.93) con2 PC2 (0.93) con2 PC2 (0.93) 

con3 PC3 (0.82)   con3 PC3 (0.82) 
PC1 (0.55) 
PC2 (0.57) 

 (a)        (b)  (c) 
Figure 6. Contents of the lookup table after concept generation and independent 
voting weight update on the third dataset. (a) Neither of PC1 or PC2 performs well 
on the dataset. (b) Just PC2 performs well on the dataset. (c) Both PC1 and PC2 
perform well on the dataset. (The number in the parentheses is the voting weight) 
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training starts with only one PC, and the input instances are assumed to belong 

to concept1, which is the only existing concept and thus no concept recognizer is 

needed. Therefore, there is no difference between the proposed algorithm and 

the original Learn++.NSE. 

When a second dataset is used for training, then a second PC is created and 

trained with the dataset. Also, the first PC is evaluated with the dataset to see if it 

performs well enough (hit rate exceeds 90% while false positive is kept below 

10%; the threshold values are determined empirically). If the first PC performs 

well, then no new concept is created and the two PCs are used to make a final 

decision (their decisions are combined with proper weights according to their hit 

rates). Otherwise, it is interpreted as a concept drift and a second concept 

(concept2) is created and the second PC is included in the PC set of concept2; it 

is unknown if the second PC can perform well on concept1. Since there are two 

different concepts now, the concept recognizer can come in handy. The role of 

the first CC is to classify input instances into one of the two concepts: concept1 

and concept2.  

Training a CC requires a set of input data labeled concept1 or concept2. Data 

for concept2 is extracted from the current PC training data. It is composed of the 

data on which PC1 has made a wrong decision. To support the training for 

concept1 as the anti-pole class of concept2, I save a small part (100 true instances 

and 100 false instances) of the previous dataset. This part of data is not retained 

permanently, but will be deleted as soon as it is used for the training of the next 

CC. Then a part of the current dataset for concept2 is saved by the same reason.   

When the third training dataset is fed, a new PC is generated and both of the 

existing PCs are evaluated on this dataset. There are many different cases. First, 
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consider having only one existing concept (concept1) and thus the two existing 

PCs have been used for that concept. If the two existing PCs perform well, then 

they are combined with the new PC for concept1 and no new concept is created. 

If only one PC performs well, then the PC is combined with the new PC to 

comprise a PC set for a newly created concept. If no existing PC performs well, 

then only the new PC is included in the PC set of the newly created concept. 

Now, consider having two existing concepts (concept1 and concept2). If only 

one existing PC performs well on this new dataset, then the concept of the new 

dataset is assumed to be the same as that having the PC in its PC set. Thus no 

new concept is created and the PC is combined with the new PC to make a new 

PC set for the existing concept (see the example in Figure 6(b)). If both of them 

have bad efficiency on this dataset, a new concept is created, which includes 

only the new PC in its PC set. Then a new CC that classifies input data into 

concept2 and concept3 is added as shown in Figure 6(a). If both of the existing 

PCs have good performance, the third concept is created to use all three PCs 

with the update of time-adjusted voting weight for the three PCs. In this case, 

there are three concepts as shown in Figure 6(c) and both PC1 and PC2 have two 

different voting weights, one for each different concept. 

The concept drift may either introduce a new concept or cycle back to the 

existing one. In both cases, a new CC is generated (even though no new concept 

is generated in the case of cycling back, still a new CC is added to strengthen the 

classification of the new dataset; if there is no concept drift, even if a new PC is 

generated, there will be no generation of a new CC). In the examples of Figure 6, 

concept drift occurs from concep2 to concept3 on the third dataset for cases (a) 

and (c), and from concept2 back to concept1 for case (b). In all the three cases, a 
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new CC (concept2/concept3 or concept2/concept1) is generated. The case where 

PC3 is assigned to concept2 together with PC2 is considered as no concept drift. 

Voting weight for a PC is updated in the same way as the original Learn++.NSE. 

However, the update is conducted only when there comes a new PC into the PC 

set of a concept. 

The accuracy threshold for making decision on whether an existing PC can be 

selected for the composition of the current concept should be set higher than the 

error rate threshold that decides the voting weight of a PC on the current training 

dataset. If the two thresholds are the same, for example, then there will not be 

much performance improvement due to the concept recognizer, because each 

newly generated classifier will likely be included in the same concept as that of 

the existing member PCs. For an extreme example, if both of the two thresholds 

are set to 1/2 (when the error rate of a PC is over 1/2, it will be set to 1/2 to make 

its voting weight to zero on that concept), the concept recognizer will totally lose 

its role, and the system will behave like the one having only one concept.  

The distribution calculation* for the instances in a training dataset, which is 

used in Learn++.NSE to determine the voting weight of each PC, is also adopted 

in the proposed system. Note, however, that it works together with the concept 

recognizer. Thus, in contrast to the original system where all the PCs take part in 

the calculation for an input image, in the proposed system, each instance is 

classified first according to its concept and then only the PCs involved in that 

----------------------------------------------------------------------------------------------------------------
*In Learn++.NSE, every time a new dataset is fed, the distribution of each instance in the
dataset is calculated by the existing ensemble of classifiers. By doing so, an instance on
which the existing ensemble has worse performance can get higher distribution. Then a PC
that does not perform well on instances with high distributions is assigned with a low voting
weight.  
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concept join the calculation. 

In summary, all the existing PCs are evaluated on the newly added dataset and 

only PCs those perform well on the new dataset are selected to implement a new 

concept. If it turns out that all the selected old classifiers are exactly the same as 

those in the PC set of an existing concept, the newly generated PC is just added 

to that concept instead of generating a new one. A CC is generated only when 

there happens concept drift, and the update of voting weight is proceeded 

independently in each concept, and thus the instance distribution calculation of 

training data on PC generation as well as the final hypothesis is also conducted 

with the intervention of concept recognizer. 
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Chapter 5 

Experimental Results 

5.1 Experimental Setup 

To show the effectiveness of the proposed system described above, I 

experimented with various pedestrian datasets. The experiment was performed 

under the assumption that different pedestrian datasets represented different 

concepts as they were collected by different places with variable methods. This 

assumption was proved reasonable by the fact that a classifier trained using 

“Daimler” [6] performed much worse on other pedestrian datasets such as 

“CVC-01” [7] and “NICTA” [8], and so did the classifiers trained by “CVC-01” 

and “NICTA” respectively as shown in Figure 7(a) ~ (c). For this experiment, I 

set the order of concept drifts like the one in Figure 8. For this experiment, I 
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extracted three training sets from each of the original datasets. For example, I 

extracted Daimler1, Daimler2, and Daimler3 from the Daimler dataset. I also 

 
(a) Performance of the classifier trained with Daimler dataset 

 
(b) Performance of the classifier trained with CVC-01 dataset 

 
Figure 7. Performance analysis of a classifier on various datasets. (a) Classifier is
trained using Daimler. (b) Classifier is trained using CVC-01. (c) Classifier is
trained using NICTA. 
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extracted CVC1, CVC2, and CVC3 from CVC-01, but in this case, some 

instances were imported from other CVC series of datasets because of the 

shortage of positive images in CVC-01. 

For the feature, I selected rectangular Histogram of Oriented Gradients (HOG) 

which was considered as the most efficient for pedestrian objects. The size of 

HOG was set to window size = 48x96 pixels, block size = 2x2 cells, and cell size 

= 8x8 pixels. The sliding step of the block was set to one cell size both in 

horizontal and vertical directions. The extracted HOG features were labeled as 

“pedestrian” or “not-pedestrian”, and then fed to a linear SVM [3] as a PC to be 

trained. For the CC, I utilized the same HOG features considering the calculation 

cost, but this time, these HOG features were labeled differently with the 

corresponding concepts. The maximum number of PCs was set to nine. All the 

parameters used in the original Learn++.NSE remain in our implementation 

except for the error rate threshold, which was changed from 1/2 to 3/4. For the 

classifier selection and training, I utilized the OpenCV library. 

I tested two different versions of the system: a traditional pedestrian detector 

and the proposed combination of pedestrian detector and concept recognizer. The 

traditional version was to see if the system could successfully follow the concept 

 
Figure 8. The order of concept drift 

Daimler1 CVC1 NICTA1

CVC2Daimler2NICTA2

Daimler3 NICTA3 CVC3
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drift with retraining at right time. And the result was also used for the comparison 

with the other version. The comparison was conducted mainly focusing on three 

points: 1) trade-off between the performance for the current environment and that 

of old environments, 2) performance on already learned datasets (a part of a 

dataset is used for training and the rest is used for testing), and 3) performance on 

unfamiliar datasets. The third point was considered by testing the system on 

pedestrian datasets of MIT [9] and INRIA [5] after training the system with 

pedestrian datasets of Daimler, CVC-01, and NICTA. 

5.2 Performance Analysis 

 As shown in Figure 10 ~ 13, the proposed version with concept recognizer 

outperforms the one with pure pedestrian detector in both performance trade-off 

(between current and old concepts) and average performance on data from 

already learned or unfamiliar datasets. It is clear that there exists a synergy effect 

between the front-end (concept recognizer) and back-end (pedestrian detector) 

ensembles. The concept recognizer incrementally learns new concepts and keeps 

efficient voting weight vector, while the pedestrian detector learns new 

information of pedestrians incrementally and closely follows the change at the 

same time.  

Figure 12 shows the average performance on the nine datasets used for training. 

Every time the system was retrained with a new dataset in the order shown in 

Figure 8, it was tested for performance on all the already learned datasets. Thus, 

Daimler1, the first dataset, was tested nine times and all the results were averaged 

to obtain the data in the figure. On the other hand, cvc3 was tested only once. 
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Figure 13 shows the average performance on the never learned data. The 

performance improvement in Daimler, CVC-01, and NICTA test datasets is not 

strange because of the similarity between the training and test datasets. While the 

most encouraging result is that the performance on the unfamiliar datasets like 

INRIA and MIT is also improved.  

Figure 10 ~ 11 show the performance gap between the two different versions 

of systems: without and with concept recognizer. Without the concept recognizer, 

it performs well only on the data similar to last trained concept. With the concept 

recognizer, the performance is a little decreased on the last trained concept but 

the performance on old concepts significantly outperforms. The loss of 

performance on data with the same concept is natural since without the 

interference of the concept recognizer, the system focuses only on the currently 

learned concept.  

In Figure 9, I tested the system on a total test set to see if it conducts 

incremental learning well. The total test set was composed of 8,000 positive and 

negative images. The proportions of positive and negative images are the same 

and same number of images were extracted from each of Daimler, CVC-01, 

NICTA, and INRIA. The figure shows that the version with concept recognizer 

outperforms in the whole training process and that it successfully does 

incremental learning. 

Figure 14 ~ 16 show the performance trend in Daimler, CVC-01, and NICTA 

test datasets during the nine trainings. In every case, when the system gets 

trained with the data from the same pedestrian datasets, it performs better. The 

difference is that when there is no concept recognizer, the amplitude of 

performance change is much bigger than the one with concept recognizer. This is 
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because the proposed system focuses on the current concept while not losing 

attention to the previously learned concepts.  

 

 
Figure 9. Accuracy on total test (positive + negative). 
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Figure 10. Performance gap when the last training dataset is CVC-01. 
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Figure 11.  Performance gap when the last training dataset is NICTA.
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Figure 12. Average performance on already learned data.
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Figure 13. Average performance on unfamiliar data.
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Figure 14. Performance variation on Daimler test dataset.
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Figure 15. Performance variation on CVC-01 test dataset.
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Figure 16. Performance variation on NICTA test dataset. 
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Chapter 6 

Conclusion and Future Work 

In this paper, I proposed an incremental learning and selective ensemble 

system for pedestrian detection. This system consists of two separate modules: 

front-end concept recognizer and back-end pedestrian detector. In the proposed 

approach, I adopt Learn++.NSE algorithm, which is efficient in non-stationary 

environment, to make the pedestrian detector to do incremental learning as well 

as follow the change of the environment. And I also adopt Learn++.NC, which is 

superior in adding new classes to make the concept recognizer to effectively learn 

new concepts. The limitation of the pedestrian detector based on pure 

Learn++.NSE is that it cannot adapt to several environments simultaneously. 

Through complementing the weakness by adding a concept recognizer to detect 
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the concept before the pedestrian detection, the system retains not only good 

performance on old environments, but also the focus on the current one. 

Although the system can incrementally learn new information, the training 

still needs manual intervention because it requires correctly labeled training 

datasets. Utilizing unsupervised learning for the bagging of these images can be 

a solution, but it also needs to be complemented by the method for learning with 

uncertainly labeled data. In addition, to train the concept recognizer, it needs 

data from at least two different concepts. In our work, I assume the environment 

does not change so suddenly thus there are still some data that represent the 

former concept and these data are labeled with our intervention. In the future 

work, if the system can be made to automatically divide training data into 

different concepts, it will make the system totally free from manual intervention.  
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한글 초록 

 
고급운전자보조시스템에서 여러 개의 분류기로 구성된 앙상블 시스템

은 각각의 분류기가 다른 분류기의 부족 점을 보완해주는 그 시너지 

효과로 인하여 각광을 받고 있다. 다른 한 방면으로는 보행자의 다양

한 포즈와 변화가 많은 배경 때문에 한번 학습을 통한 보행자 탐지기

는 현실세계 환경 변화에 따라 지속적인 조율을 필요로 한다. 때문에 

이러한 보행자 인식 시스템은 기존에 학습한 지식을 잃지 않는 정황 

하에 새로운 지식을 추가적으로 습득할 수 있는 능력을 요구한다.  

이 논문에서는 여러 개의 분류기로 구성된 보행자 탐지기와 시스

템의 앞 단에 위치한, 환경의 변화에 따라 비효율적인 분류기를 자동

으로 끄는 역할을 하는 환경 탐지기를 결합하여 증진적으로 학습하고 

환경의 변화에 더욱 동적으로 적응하는 보행자 인식 시스템을 제시하

였다. 검증 된 증진학습 알고리즘을 적용하여 새로 추가되는 데이터를 

분류 알고리즘으로 학습시키고 새롭게 생성된 분류기는 기존의 앙상

블에 결합되며 각 분류기는 기존까지의 성능에 근거하여 현재의 환경

에 가장 적합한 투표 권한을 가지게 된다. 이러한 투표권한 갱신은 매 

번 새로운 학습으로 분류기가 생성될 때마다 이루어지며 현재 환경에

서의 성능에 최적화 되도록 갱신되기 때문에 현재환경과 과거환경 사

이에서의 성능 트레이드 오프는 불가피하다. 이러한 문제는 시스템의 

앞 단에 환경 탐지기를 추가하여 보행자 후보마다 적합한 분류기를 
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선별하고 탐지된 환경에 적합한 투표권한을 부여함으로써 시스템의 

기동력을 높임으로써 해결하였다. 이러한 앞 단의 환경 탐지기의 개입

으로 인하여 시스템은 현재 환경에 집중하면서도 과거 환경에 대한 

좋은 성능을 잃지 않게 되었다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

주요어: 증진적 학습, 앙상블 분류기 시스템, 보행자 인식, 고급운전자

보조시스템. 
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