D

E
LICH.

!

=

S

ive

5
MZEXE HAIGHA OF

O N

o
[

2|

M

creat
commons

—

[—

t

[¢]

LICt:

O M
st

)

C
MNERLEAlL A

ZHE Metor

—
=
=

R0 5 A

i 0 <4 15
o) B¢ 53 o0
) E[o} o
) = 7
&3 10 ol 00
< il R
jum] J—

ol 0~ =
il 3 o on
) X Rr
Rr S =

%_ =B s
r o m._ -
o o O
_ Rr RO
% R of
o © o il
—_ jum]

1] N ol =
R iS ol =
= T Uo gwo
) RE] S
1 ° s =
o) K —
= TR mrr
&= o

ol Kl <. KM
80 ol JIJ =
Ee) W = )
©

X ESLICH

I 2t

tOd

ot |

[¢]

H

=

[¢

o]
lection

=

=

Disclaimer
O

5

FAI LEEHLH O OF
E2FH 29

¢}
X

=

]

0l N2 0| =3 & 72 (Legal Code)

HEAH0l [E 0l8Ke als 2o ol o



http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

M.S. THESIS

Concept-Aware Ensemble System for
Pedestrian Detection

B Q4L 9% 43 A PE A 2H

BY

Helin Lin

November, 2013

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



< Ell

Concept-Aware Ensemble System for Pedestrian
Detection

.......

Ton
_sg_ ToR
N
= N
. -
o| L ol
T
i 5 ¥ if
i : ol =
F L 0% o ow F X
¥ D oHpoy "o TEw
= « R mﬂ - < @ F ~ ®
T8 u% us w__u S T W W
0 )
;Oai \UAl Jﬁmw_ mo N L.-. ..
Ho O MM o
ol ) Gl
Mﬂ

A i & i
i,._ ol

T
0



Abstract

Concept-Aware Ensemble System for
Pedestrian Detection

Helin Lin

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

In ADAS, multiple classifier system on pedestrian detection is occupying
important position because of its merit that each classifier can be able to create
synergistic approaches to compensate the other member classifier’s inability. On
the other hand, according to different poses of pedestrians and wvariable
background, once trained pedestrian detector needs to be tuned dynamically
along the variation of real-world environment, thus the system is requested to
incrementally accept new information and retain the old one at the same time.

This thesis presents an incremental learning, environment-adaptive ensemble
system for pedestrian detection by combining pedestrian detector constituted by
multiple classifiers with front-end concept recognizer that can turn off inefficient

member classifiers adaptively. Through adopting incremental learning algorithm,



newly added batch dataset is trained by learning algorithm and the newly
generated classifier is united to the existing ensemble along with the update of
the voting weight. As the update of voting weight is only taken when the new
training is carried out and focuses on the performance on current environment,
temporal trade-off on performance between current and old environment is
inevitable. This problem is addressed by applying concept recognizer in front of
the ensemble thus turning off ineffective classifiers and selecting the most
efficient voting weight vector adaptive to each pedestrian candidate. With the
intervention of the front-end concept recognizer, the system can retain good
performance on old environment while does not lose focus on current

environment.

Keywords: Incremental learning, Multiple classifier system, Pedestrian

detection, ADAS

Student Number: 2012-22568



Contents

Abstract
Contents
List of Figures
Chapter 1 Introduction
Chapter 2 Pedestrian Detection Basics
2.1 Detection Flow
2.2 HOG Feature Descriptor
2.3 SVM Learning Algorithm
Chapter 3 Related Work
3.1 Incremental Learning

Chapter 4 Proposed Approach

4.1 Incremental Learning on Pedestrian Detector
4.2 Incremental Learning on Concept Recognizer

4.3 Cooperation between Pedestrian Detector and Concept

Recognizer

Chapter 5 Experimental Results

11

12

14

15

20



5.1 Experimental Setup

5.2 Performance Analysis
Chapter 6 Conclusion and Future Work
Bibliography

Abstract in Korean

20

23

33

35

37



List of Figures

Figure 1. Pedestrian detection flow.
Figure 2. Histogram of Oriented Gradients.

Figure 3. Support Vector Machine.

Figure 4. Concept-aware ensemble system for pedestrian detection

Figure 5. Basic structure of concept recognizer.

Figure 6. Contents of lookup table.

Figure 7. Performance analysis of a classifier on various datasets.

Figure 8. The order of concept drift.

Figure 9. Accuracy on total test.

Figure 10. Performance gap when the last training dataset is CVC-01.

Figure 11. Performance gap when the last training dataset is NICTA.

Figure 12. Average performance on already learned data.
Figure 13. Average performance on unfamiliar data.
Figure 14. Performance variation on Daimler test dataset.
Figure 15. Performance variation on CVC-01 test dataset.

Figure 16. Performance variation on NICTA test dataset.

12
14
15
21
22
25
26

28
29
30
31
32



Chapter 1

Introduction

Due to increasing popularity of automobiles as well as road accidents, the
importance of driver assistance systems is daily growing. Car-embedded system
for pedestrian detection is gradually becoming a mainstream of protection
systems for improving traffic safety. Following this trend, multiple classifier
systems [10] for pedestrian detection are getting more and more importance these
days because of their merit that a classifier can be able to compensate inabilities
of other member classifiers, thereby achieving a significant synergistic effect.

Such a pedestrian detection system, once have been trained, needs to accept
new information along the variation of real-world environment or newly
acknowledge poses of pedestrians, which requires incremental learning. There are

some important reasons why the subsequent incremental learning cannot be



included in the initial training: 1) there is no representative dataset that can cover
all the cases for the variation of poses and background from the beginning, 2) the
training of a big volume of data at once is time-costly, 3) storage space can be
limited to hold all the data, and 4) accidental loss of data already used for training
can happen.

The best scenario is that the system has no need to refer to old data when it
learns new information while still free from catastrophic forgetting. Such an
approach was taken by an algorithm called Learn++.NSE [2]. It is also based on
ensemble of classifiers and its main contribution is that it can closely follow the
changing environment by incrementally learning new information by only using
new data but without accessing already used ones. Unlike its original version [11],
which has the problem of outvoting by the new environment due to the fixed
voting weights, the new version can put more weight on the new environment by
dynamically determining time-adjusted voting weights of member classifiers
according to their performance on latest environments.

Because of the particularity of pedestrian detection, the system should also
consider some additional issue called concept drift. In line with the variation of
pedestrian’s pose (front/rear, right/left) as well as the diversity of background
(illumination, occlusion), the pedestrian detection problem in general has a very
high rate of concept drift. Frequent concept drift is best covered by frequent
retraining and voting weight update according to Learn++.NSE, and the training
should be done with correctly labeled training data, which is hard to be met in
real world. I overcome this shortcoming by adding a concept recognizer that

automatically detects the concept for the input data, turns off inefficient



classifiers, and chooses the most suitable voting weight vector adaptively for the
remaining member classifiers.

I still apply Learn++.NSE incremental learning algorithm to implement a
pedestrian detector that can follow the change of environment through retraining.
However, instead of retraining the system very often, a concept recognizer, which
is the main contribution of this paper, is introduced in front of the pedestrian
detector as mentioned above. I call the system a concept-aware ensemble system.

The remainder of this paper is organized as follows. Chapter 2 is for the basic
knowledge of pedestrian detection. Chapter 3 discusses related work, followed
by Chapter 4 which explains the details of our approach. The experimental
results are provided in Chapter 5, and conclusions with remaining work for

further improvement are given in Chapter 6.



Chapter 2

Pedestrian Detection Basics

3.1 Detection Flow

Pedestrian detection generally covers preprocessing, foreground segmentation,
object classification and tracking as shown in Figure 1. Usually the pedestrian
image is taken by either monocular-based or stereo-based method. Tasks like
camera calibration, fine adjustment as well as exposure time are managed in
preprocessing. Foreground segmentation has significant effect on reducing
calculation time. It is the stage of extracting region of interest (ROI) or
generating candidates for the object classification stage. Without explicit
segmentation, like in exhaustive scanning, many background regions can cost

computation time and it is fatal to this real time system. And any misses of



Foreground Object Verification /
Segmentation 1-’ Classification J-. Refinement -.[ Tricking H Applicabon J
~ i
2= '
4 o o= 4
camera pose regions of interest labeled ROIs verified and refined speed, direction, efc.
(ROIs) ROIs

Figure 1. Pedestrian detection flow!'2],

pedestrians in this stage will never be recovered by the subsequent stages. These
forwarded ROIs are classified into “pedestrian” or “not-pedestrian” at the object
classification stage. The main goal in this stage is to maximize hit rate while
minimize false positive. Variable features like Histogram of Oriented Gradients
(HOG) [5], LBP [13], Haar wavelet as well as shape context descriptor are
extracted and fed to learning algorithms involving Support Vector Machine
(SVM), Multi-layer Perceptron (MLP), AdaBoost and etc. The combination of
HOG-SVM has superior performance on pedestrian detection and is widely used.
As the tracking module, it makes the system to follow detected pedestrian. This
stage can help to predict the direction to which the pedestrian is heading and also,

can assist the foreground segmentation to decide pedestrian candidate.

3.2 HOG Feature Descriptor

Histogram of Oriented Gradients (HOG) are feature descriptors which are
believed the one of the best features for pedestrian detection. The main method

of HOG is that in an image, the appearance and shape of local object can be well




Orientation Voting
_____ ——Overlapping Blocks

Input Image Gradient Image

N\

Figure 2. Histogram of Oriented Gradients!®).

Local Normalization

described by gradient or edge direction. The essence is the statistic information
of gradients and they are usually exist near edge.

It divides the image into small cells, for example, each cell consists 8x8 pixels.
The shape of the cell can be radial or rectangular. Then the gradient of each pixel
is calculated using horizontal and vertical two masks, [-1, 0, -1]
and [—1,0,—1]7. Thus every pixel has its gradient and direction. It is mainly to
capture the silhouette information, at the same time weaken the interference
from light further. Then every pixel casts a weighted vote for an orientation-
based histogram channel with its gradient value and direction. The voting weight
can be the gradient itself or some return values from various kinds of functions
utilizing this gradient. The channel is composed by nine bins involves from 0~x.
For example, a pixel has direction degree among 60~80, and the gradient is
about 7, then it votes the fourth bin with its original voting weight 7. Now a cell
histogram with 9 bins is created and this is the basic cell descriptor. Several cells,
for example 2x2, are combined to compose a block and one cell can belong to
different blocks. Thus a block descriptor is constituted by connected four cell

histograms. The last step is to connect all the overlapping block descriptors



1 Hl {3
|'
L P j
e ® ,"
Q |'
. . I III
& © 'III
o © /'o
O O O II|
% "

Figure 3. Support Vector Machine.

serially and the HOG feature descriptor for the image is created as high

dimension vector.

3.3 SVM Learning Algorithm

Support Vector Machine is a widely used machine learning algorithm on
pattern recognition or other detection application. The main theory of it can be
summarized as two points: (1) it aims to analyze linearly separable problem. To
those cannot be separated linearly, through using the nonlinear mapping
algorithm, it maps these linearly inseparable low-dimensional space to high-
dimensional feature space. Thus in the higher dimension space, the sample can
be separated linearly by hyper-plane. (2) Based on structural risk minimization

theory, it constructs the optimal partitioning hyper-plane in the feature space and
makes the expected risk in the whole sample space to satisfy an upper bound
restriction.

The SVM learning can be interpreted as convex optimization problem, thus

utilizing already known effective algorithm to find global minimization of target



function. Unlike the other learning algorithms (rule-based classifier and artificial
neural networks) those search hypothesis space based on greedy tactics and so
mostly can only get local optimal. SVM controls its ability through maximizing
the distance between the decision hyper-plane with boundary vector (support
vector). Nevertheless, parameters like kernel function and soft margin have
important effect to the performance. Different kernel functions make SVM
variable. Common kernel functions are as below.

(1) Linear: K(x,y)=x"y

(2) Polynomial: K(x,y)= (x -y + 1)¢

(3) Radian Basis Function: K(x, y) = exp(-yll x — y II?)

(4) Hyperbolic tangent: K(x, y) = tanh(kx-y + ¢)

SVM is supervised learning model thus needs labeled training data. In the
training process, it tries to select the support vectors as well as the hyper-plane
from which, these support vectors have max margins. In Figure 3, the hyper-
plane H, is the optimal one. SVM performs best on binary classification

problem, rather than on multi-class problem.



Chapter 3

Related Work

3.1 Incremental Learning

There have been previous approaches to incremental learning, and
Learnt++.NSE and Learn++.NC [1] are representative ones for multi-classifier
systems. Learn++.NSE is efficient in closely following changing environment

and Learn++.NC is efficient in adding or deleting classes.

Learn++NSE generates a member classifier every time there happens
concept drift and the existing ensemble is no longer suit for the current
environment. New classifier is generated using the training data collected from
recent environment. Every member classifier including the newly generated one

is evaluated on the newly added dataset. For each member classifier, all the error



rates, one for each newly added dataset, are saved. The error rates collected thus
are normalized, weighted, and used to calculate the final voting weight for that
classifier. The weight (penalty) for the normalized error rate is set larger on more
recent environment than on less recent one and each classifier gets its new time-
adjusted voting weight. In such a method, the voting weight vector of the
ensemble is better adapted to more recent environments. Then the final
hypothesis is calculated using max voting. Since the total number of member
classifiers cannot be increased infinitely, some classifiers should be pruned based

either on age or on error.

The main frame of Learn++.NC is similar to Learn++.NSE. If the new dataset
introduces some new classes, the existing classifiers that are trained without such
classes inevitably make wrong decisions. To reduce such “outvoting” negative
impact, Learn++.NC utilizes dynamically weighted consult and vote (DW-CAV)
as its voting method. The special feature of this voting method is that the voting
weight of each member classifier is varied according to the response of each
classifier to the input instance. Thus it can keep balance of voting weight among

classifiers and address outvoting problem.

10



Chapter 4

Proposed Approach

The proposed concept-aware ensemble system for pedestrian detection is a
combination of the concept recognizer and the conventional ensemble pedestrian
detector as shown in Figure 4. For an input instance, the concept recognizer at the
front-end determines the concept and chooses an appropriate set of classifiers and
the corresponding voting weights in the lookup table according to the recognized
concept. The selected set of classifiers and the voting weights make up the
ensemble pedestrian detector at the back-end which makes a final decision on
whether it has detected a pedestrian or not. As mentioned in Chapter 1, I use
Learn++.NSE for the conventional ensemble pedestrian detector at the back-end.
For the concept recognizer at the front-end, I also use incremental learning, but in
that case, I use Learn++.NC. To avoid confusion, I call the classifiers used in the

11



Concept recognizer Lookup table

A set of pedestrian-
classifiers and the
corresponding
voting weights for
each concept

Decide concept
(background, pose,
illumination, etc.)

of the image

Feature
extractor

Input Extract
image features

on/off + weight

Pedestrian-
classifier

Pedestrian-
classifier

Figure 4. Concept-aware ensemble system for pedestrian detection.

concept recognizer as concept-classifiers (CCs) and the ones in the back-end

pedestrian detector as pedestrian-classifiers (PCs).

4.1 Incremental Learning on Pedestrian Detector

Many state-of-the-art pedestrian detectors consisting of feature extractors and
classifiers are trained once with a specific pedestrian dataset. This cannot be an
issue when the detector is used by some invariant environment like surveillance
systems. However, in the case of a detection system embedded in a moving car,
the background as well as the poses of pedestrians are always varying, thus easily
resulting in maladjustment. In order to avoid the problem, I implement a tuned
version of Learn++.NSE to make it cooperate with the concept recognizer in the
front-end, while not altering any key aspect of the original version. Following are

the major changes that I make.

12



First, whereas the original algorithm sets the error rate threshold to 1/2, I
suggest a much higher restriction as the error rate threshold since pedestrian
detection is a binary classification problem and thus fifty percent error rate can be
achieved even with a random prediction. If the newly generated classifier has
error rate bigger than this newly suggested error threshold, it is regenerated. For
the existing classifiers whose error rate exceeds the threshold, their voting
weights for the specific dataset are set to zero.

In addition, not all the member classifiers participate in making final decisions;
less efficient classifiers are blocked by the front-end concept recognizer. In the
same perspective, the voting weight update for a member classifier is conducted
only when the classifier is judged to be efficient on the current training dataset
(i.e., the current concept). Also, a classifier can has multiple voting weights if it is
involved in multiple different concepts. Further details are discussed in 4.3.

It is undesirable to have too many different concepts for several reasons. First
of all, it will make the problem too complicated. Most of input instances can be
classified into a limited set of concepts. Increasing the number of concepts does
not guarantee sufficient increase in the accuracy. Thus the change in the concept
of input data tends to have cycle property. To take advantage of this,
Learn++.NSE does not delete old classifiers that do not join the current
hypothesis and resumes them when their evaluation on latest training dataset get
high score. The limitation of this approach is that the old classifiers are resumed
only through a new training. It is never reused otherwise, even if it encounters
with an already learned concept. To automatically recognize previously

encountered concepts and just reuse the corresponding classifiers and training

13



concept-classifierl

concept-classifier2

concept-classifier3

Figure 5. Basic structure of concept recognizer

results (voting weights), the proposed approach introduces the concept recognizer

into the system.

4.2 Incremental Learning on Concept Recognizer

The concept recognizer should also be trained incrementally since all the
training data sets are not available at the same time. Unlike pedestrian detection,
which is just considering binary classification, there can be many different
concepts and thus it is much closer to multi-classification problem. To efficiently
add new concepts as new classes, I utilize Learn++.NC for the construction of the
concept recognizer. Since it is not known a priori how much concepts are there
totally at the beginning, every time a new concept is found, it should be learned
incrementally one by one.

Basically, the concept recognizer is relying on multiple binary CCs. For
example, the first CC is trained to classify conceptl and concept2 as shown in
Figure 5. When the system encounters an unfamiliar one, e.g., concept3, a new
CC is generated. However, since it requires two different concepts to train itself
for binary classification, it takes the most recently created concept from the
existing set of concepts to match with the new concept. Thus concept?2 is selected

in our example and the second CC is trained to classify input instances into

14



conl PC1 (0.72) conl PC1 (0.62) conl PC1 (0.72)
PC3 (0.85)
con2 PC2 (0.93) con2 PC2 (0.93) con2 PC2 (0.93)
con3 PC3 (0.82) con3 PC3 (0.82)
PC1 (0.55)
PC2 (0.57)
(a) (b) ()

Figure 6. Contents of the lookup table after concept generation and independent
voting weight update on the third dataset. (a) Neither of PC1 or PC2 performs well
on the dataset. (b) Just PC2 performs well on the dataset. (c) Both PC1 and PC2
perform well on the dataset. (The number in the parentheses is the voting weight)

concept2 and concept3. Continuing one step further, I obtain the concept
recognizer shown in Figure 5.

So the three supposed CCs in Figure 5 can only classify the input instance as 1)
CCl, CC2, and CC3 respectively take care of conceptl/concept2,
concept2/concept3, and concept3/concept4 pairs. When the input instance
belongs to concept4, for example, the CC1 and CC2 will give an incorrect
decision because the case is out of their coverage. Such a problem is

successfully resolved by the voting method used in DW-CAV.

4.3 Cooperation between Pedestrian Detector and Concept

Recognizer

The intervention of the concept recognizer to the original pedestrian detector
constructed by Learn++.NSE incurs significant changes in the update of voting
weight vector as well as the final hypothesis. The decision on whether to add a
new concept to the concept recognizer is also decided through the evaluation by
the PCs on the current training data.

A dataset is considered to represent an environment or a concept here. The

15



training starts with only one PC, and the input instances are assumed to belong
to conceptl, which is the only existing concept and thus no concept recognizer is
needed. Therefore, there is no difference between the proposed algorithm and
the original Learn++.NSE.

When a second dataset is used for training, then a second PC is created and
trained with the dataset. Also, the first PC is evaluated with the dataset to see if it
performs well enough (hit rate exceeds 90% while false positive is kept below
10%; the threshold values are determined empirically). If the first PC performs
well, then no new concept is created and the two PCs are used to make a final
decision (their decisions are combined with proper weights according to their hit
rates). Otherwise, it is interpreted as a concept drift and a second concept
(concept?) is created and the second PC is included in the PC set of concept2; it
is unknown if the second PC can perform well on conceptl. Since there are two
different concepts now, the concept recognizer can come in handy. The role of
the first CC is to classify input instances into one of the two concepts: conceptl
and concept?2.

Training a CC requires a set of input data labeled conceptl or concept2. Data
for concept? is extracted from the current PC training data. It is composed of the
data on which PC1 has made a wrong decision. To support the training for
conceptl as the anti-pole class of concept2, I save a small part (100 true instances
and 100 false instances) of the previous dataset. This part of data is not retained
permanently, but will be deleted as soon as it is used for the training of the next
CC. Then a part of the current dataset for concept2 is saved by the same reason.

When the third training dataset is fed, a new PC is generated and both of the

existing PCs are evaluated on this dataset. There are many different cases. First,

16



consider having only one existing concept (conceptl) and thus the two existing
PCs have been used for that concept. If the two existing PCs perform well, then
they are combined with the new PC for concept] and no new concept is created.
If only one PC performs well, then the PC is combined with the new PC to
comprise a PC set for a newly created concept. If no existing PC performs well,
then only the new PC is included in the PC set of the newly created concept.
Now, consider having two existing concepts (conceptl and concept2). If only
one existing PC performs well on this new dataset, then the concept of the new
dataset is assumed to be the same as that having the PC in its PC set. Thus no
new concept is created and the PC is combined with the new PC to make a new
PC set for the existing concept (see the example in Figure 6(b)). If both of them
have bad efficiency on this dataset, a new concept is created, which includes
only the new PC in its PC set. Then a new CC that classifies input data into
concept2 and concept3 is added as shown in Figure 6(a). If both of the existing
PCs have good performance, the third concept is created to use all three PCs
with the update of time-adjusted voting weight for the three PCs. In this case,
there are three concepts as shown in Figure 6(c) and both PC1 and PC2 have two
different voting weights, one for each different concept.

The concept drift may either introduce a new concept or cycle back to the
existing one. In both cases, a new CC is generated (even though no new concept
is generated in the case of cycling back, still a new CC is added to strengthen the
classification of the new dataset; if there is no concept drift, even if a new PC is
generated, there will be no generation of a new CC). In the examples of Figure 6,
concept drift occurs from concep2 to concept3 on the third dataset for cases (a)

and (c), and from concept2 back to conceptl for case (b). In all the three cases, a

17



new CC (concept2/concept3 or concept2/conceptl) is generated. The case where
PC3 is assigned to concept2 together with PC2 is considered as no concept drift.
Voting weight for a PC is updated in the same way as the original Learn++.NSE.
However, the update is conducted only when there comes a new PC into the PC
set of a concept.

The accuracy threshold for making decision on whether an existing PC can be
selected for the composition of the current concept should be set higher than the
error rate threshold that decides the voting weight of a PC on the current training
dataset. If the two thresholds are the same, for example, then there will not be
much performance improvement due to the concept recognizer, because each
newly generated classifier will likely be included in the same concept as that of
the existing member PCs. For an extreme example, if both of the two thresholds
are set to 1/2 (when the error rate of a PC is over 1/2, it will be set to 1/2 to make
its voting weight to zero on that concept), the concept recognizer will totally lose
its role, and the system will behave like the one having only one concept.

The distribution calculation* for the instances in a training dataset, which is
used in Learn++.NSE to determine the voting weight of each PC, is also adopted
in the proposed system. Note, however, that it works together with the concept
recognizer. Thus, in contrast to the original system where all the PCs take part in
the calculation for an input image, in the proposed system, each instance is

classified first according to its concept and then only the PCs involved in that

*In Learn++.NSE, every time a new dataset is fed, the distribution of each instance in the
dataset is calculated by the existing ensemble of classifiers. By doing so, an instance on
which the existing ensemble has worse performance can get higher distribution. Then a PC
that does not perform well on instances with high distributions is assigned with a low voting

weight.
18



concept join the calculation.

In summary, all the existing PCs are evaluated on the newly added dataset and
only PCs those perform well on the new dataset are selected to implement a new
concept. If it turns out that all the selected old classifiers are exactly the same as
those in the PC set of an existing concept, the newly generated PC is just added
to that concept instead of generating a new one. A CC is generated only when
there happens concept drift, and the update of voting weight is proceeded
independently in each concept, and thus the instance distribution calculation of
training data on PC generation as well as the final hypothesis is also conducted

with the intervention of concept recognizer.

19



Chapter 5

Experimental Results

5.1 Experimental Setup

To show the effectiveness of the proposed system described above, 1
experimented with various pedestrian datasets. The experiment was performed
under the assumption that different pedestrian datasets represented different
concepts as they were collected by different places with variable methods. This
assumption was proved reasonable by the fact that a classifier trained using
“Daimler” [6] performed much worse on other pedestrian datasets such as
“CVC-017 [7] and “NICTA” [8], and so did the classifiers trained by “CVC-01”
and “NICTA” respectively as shown in Figure 7(a) ~ (c). For this experiment, |

set the order of concept drifts like the one in Figure 8. For this experiment, I

20



=
9
L
®
®
>
>
®
>
]
»

hit rate

A
! 4 A n
& LA

® Ay "

° 4,
05 ®

® A

oAl

oAm

@®Daimler ACVC-01 MBNICTA

0.1 02 0.3
false positive

(a) Performance of the classifier trained with Daimler dataset

o

1 A A0 0A0 @ 04A O A
AAA A A _h e

£ oo . |®

o) Ao [
= » u
]
. ]
®Daimler ACVC-01 mNICTA

0 0.2 04 0.6
false positive

(b) Performance of the classifier trained with CVC-01 dataset

1 ..’. Bgh o B o = A D
‘. A
A
A A
[ ]
< 05 ® A
= on A
A
AA
® Daimler ACVC-01 mNICTA
0
0 0.1 0.2 0.3

false positive

Figure 7. Performance analysis of a classifier on various datasets. (a) Classifier is
trained using Daimler. (b) Classifier is trained using CVC-01. (c) Classifier is

trained using NICTA.

extracted three training sets from each of the original datasets. For example, |

extracted Daimlerl, Daimler2, and Daimler3 from the Daimler dataset. I also

21
s B ki)



{ N
Daimlerl }:b[ cvCl NICTAL

g

{

NICTA2 Daimler2 CvC2

NICTA3 ]::)[ cves
7

Figure 8. The order of concept drift

7

Daimler3

extracted CVCI1, CVC2, and CVC3 from CVC-01, but in this case, some
instances were imported from other CVC series of datasets because of the

shortage of positive images in CVC-01.

For the feature, | selected rectangular Histogram of Oriented Gradients (HOG)
which was considered as the most efficient for pedestrian objects. The size of
HOG was set to window size = 48x96 pixels, block size = 2x2 cells, and cell size
= 8x8 pixels. The sliding step of the block was set to one cell size both in
horizontal and vertical directions. The extracted HOG features were labeled as
“pedestrian” or “not-pedestrian”, and then fed to a linear SVM [3] as a PC to be
trained. For the CC, I utilized the same HOG features considering the calculation
cost, but this time, these HOG features were labeled differently with the
corresponding concepts. The maximum number of PCs was set to nine. All the
parameters used in the original Learnt+.NSE remain in our implementation
except for the error rate threshold, which was changed from 1/2 to 3/4. For the

classifier selection and training, I utilized the OpenCV library.

I tested two different versions of the system: a traditional pedestrian detector
and the proposed combination of pedestrian detector and concept recognizer. The

traditional version was to see if the system could successfully follow the concept

22



drift with retraining at right time. And the result was also used for the comparison
with the other version. The comparison was conducted mainly focusing on three
points: 1) trade-off between the performance for the current environment and that
of old environments, 2) performance on already learned datasets (a part of a
dataset is used for training and the rest is used for testing), and 3) performance on
unfamiliar datasets. The third point was considered by testing the system on
pedestrian datasets of MIT [9] and INRIA [5] after training the system with
pedestrian datasets of Daimler, CVC-01, and NICTA.

5.2 Performance Analysis

As shown in Figure 10 ~ 13, the proposed version with concept recognizer
outperforms the one with pure pedestrian detector in both performance trade-off
(between current and old concepts) and average performance on data from
already learned or unfamiliar datasets. It is clear that there exists a synergy effect
between the front-end (concept recognizer) and back-end (pedestrian detector)
ensembles. The concept recognizer incrementally learns new concepts and keeps
efficient voting weight vector, while the pedestrian detector learns new
information of pedestrians incrementally and closely follows the change at the

same time.

Figure 12 shows the average performance on the nine datasets used for training.
Every time the system was retrained with a new dataset in the order shown in
Figure 8, it was tested for performance on all the already learned datasets. Thus,
Daimlerl, the first dataset, was tested nine times and all the results were averaged

to obtain the data in the figure. On the other hand, cve3 was tested only once.

23



Figure 13 shows the average performance on the never learned data. The
performance improvement in Daimler, CVC-01, and NICTA test datasets is not
strange because of the similarity between the training and test datasets. While the
most encouraging result is that the performance on the unfamiliar datasets like
INRIA and MIT is also improved.

Figure 10 ~ 11 show the performance gap between the two different versions
of systems: without and with concept recognizer. Without the concept recognizer,
it performs well only on the data similar to last trained concept. With the concept
recognizer, the performance is a little decreased on the last trained concept but
the performance on old concepts significantly outperforms. The loss of
performance on data with the same concept is natural since without the
interference of the concept recognizer, the system focuses only on the currently
learned concept.

In Figure 9, I tested the system on a total test set to see if it conducts
incremental learning well. The total test set was composed of 8,000 positive and
negative images. The proportions of positive and negative images are the same
and same number of images were extracted from each of Daimler, CVC-01,
NICTA, and INRIA. The figure shows that the version with concept recognizer
outperforms in the whole training process and that it successfully does
incremental learning.

Figure 14 ~ 16 show the performance trend in Daimler, CVC-01, and NICTA
test datasets during the nine trainings. In every case, when the system gets
trained with the data from the same pedestrian datasets, it performs better. The
difference is that when there is no concept recognizer, the amplitude of

performance change is much bigger than the one with concept recognizer. This is

24



0.940
0.920
0.900
0.880
> 0.860
0.840
0.820

Accurac

0.800
0.780
0.760
0.740

daimlerl

cvel  nictal

_W/O

cve2 daimler2 nicta2 daimler3 nicta3  cvc3

w/ concept recognizer

Figure 9. Accuracy on total test (positive + negative).

because the proposed system focuses on the current concept while not losing

attention to the previously learned concepts.

25



1

0.6

hit rate

0.4

1

2
2
]
]
4
¢

(=]

0.2 L
0
0

y

0.1

0.1

w/0 concept recognizer

0.2

w/ concept detector

0.2

0.3 0.4
false positive

0.3 0.4
false positive

0.5

0.5

:A‘A‘ Ag Ao A..A..A. ’ AG, S e

£
0.8

0.6

0.6

0.7

A

0.7

Figure 10. Performance gap when the last training dataset is CVC-01.

26

® Daimler
ACVC-01
BNICTA

@ Daimler
ACVC-01
BNICTA



w/o concept detector

1 m = | B ol &
Jooo " ‘
N A
0.8 n®
» A
206 o 4
g ' P A @ Daimler
= » A
ACVC-01
04 |y A
@ A ENICTA
0.2 AA
I A
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
false positive
w/ concept recognizer
1 e o O A AE® A =E B#
o7 A -
°® ]
08 | @ A B
P Am
= [}
= 06 @ .
; omh ® Daimler
= 0.4 @M ACVC-01
@A ENICTA
02 A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
false positive

Figure 11. Performance gap when the last training dataset is NICTA.

27



1.05

0.95

0.9

hit rate

0.85

0.8

0.75

< <
R T
W (O8] W N

<
=
O

false positive
=)
)

e
=

0.05

Figure 12. Average performance on already learned data.

daimler1

daimler1

Average hit rate

cve2  daimler2 nicta2 daimler3 nicta3

cvel

cvel

nictal

w/o

Bw/ concept recognizer

Average false positive

nictal

w/o

cve2  daimler2 nicta2 daimler3 nicta3

Bw/ concept recognizer

28

cvel

cvel

U



0.98
0.96
0.94
0.92

0.9

hit rate

0.88
0.86
0.84
0.82

0.8

0.45
0.40
0.35
0.30
0.25
0.20

false positive

0.15
0.10
0.05
0.00

Daimler test

Daimler test

Average hit rate

CVC-01 test

w/o

Aver

NICTA test INRIA

Bw/ concept recognizer

age false positive

CVC-01 test NICTA test

w/o

Bw/ concept recognizer

Figure 13. Average performance on unfamiliar data.

29

MIT

INRIA



Performance on Daimler testset

1.200

1.000

0.800

0.600

hit rate

0.400

0.200

0.000
daimlerl  cvcl nictal cve2  daimler2 nicta2 daimler3 nicta3 cve3

w/o ==/ concept recognizer

Performance on Daimler testset

0.25

0.20

e
—
93

=4
—_
(=3

false positive

00 ._.\./'/.\-—-—n_.

0.00
daimlerl  cvcl nictal cve2  daimler2 nicta2 daimler3 nicta3 cve3

w/o el y/ concept recognizer

Figure 14. Performance variation on Daimler test dataset.

30



Performance on CVC-01 testset

1.200
1.000
. W

0.600

hit rate

0.400

0.200

0.000
daimlerl  cvcl nictal cve2  daimler2 nicta2 daimler3 nicta3 cve3

w/o ==/ concept recognizer

Performance on CVC-01 testset
0.18
0.16
0.14
0.12

Z 0.10

sitive

2 0.08

false po

0.06
0.04
0.02

0.00
daimlerl  cvcl nictal cve2  daimler2 nicta2 daimler3 nicta3 cve3

w/o el y/ concept recognizer

Figure 15. Performance variation on CVC-01 test dataset.

31



Performance on NICTA testset

1.100

1.000 P S ——— |

0.900

0.800

hit rate

0.700

0.600

0.500
daimler]  cvcl nictal cve2  daimler2 nicta2 daimler3 nicta3 cvel

w/o === y/ concept recognizer

Performance on NICTA testset

false positive
o o o
ES 2N %

S
o

0.0
daimlerl cvel nictal cve2  daimler2 nicta2 daimler3  nicta3 cve3

w/o e/ concept recognizer

Figure 16. Performance variation on NICTA test dataset.

32



Chapter 6

Conclusion and Future Work

In this paper, I proposed an incremental learning and selective ensemble
system for pedestrian detection. This system consists of two separate modules:
front-end concept recognizer and back-end pedestrian detector. In the proposed
approach, I adopt Learn++.NSE algorithm, which is efficient in non-stationary
environment, to make the pedestrian detector to do incremental learning as well
as follow the change of the environment. And I also adopt Learn++.NC, which is
superior in adding new classes to make the concept recognizer to effectively learn
new concepts. The limitation of the pedestrian detector based on pure
Learn++.NSE is that it cannot adapt to several environments simultaneously.

Through complementing the weakness by adding a concept recognizer to detect

33



the concept before the pedestrian detection, the system retains not only good
performance on old environments, but also the focus on the current one.
Although the system can incrementally learn new information, the training
still needs manual intervention because it requires correctly labeled training
datasets. Utilizing unsupervised learning for the bagging of these images can be
a solution, but it also needs to be complemented by the method for learning with
uncertainly labeled data. In addition, to train the concept recognizer, it needs
data from at least two different concepts. In our work, I assume the environment
does not change so suddenly thus there are still some data that represent the
former concept and these data are labeled with our intervention. In the future
work, if the system can be made to automatically divide training data into

different concepts, it will make the system totally free from manual intervention.

34



Bibliography

[1]

(2]

[3]

[6]

M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combining
ensemble of classifiers with dyamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 152-168, Jan. 2009.

R. Elwell, and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no.
10, pp. 1517-1531, Oct.2011.

V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J.Computer and System
Sciences, vol. 55, no. 1, pp. 119-139, 1997.

N. Dalal and B. Triggs, “Histogram of oriented gradients for human
detection,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 886-893, 2005.

S. Munder and D. M. Gavrila, "An experimental study on

pedestrian classification," PAMI, pages 1863-1868, 2006.

35



[7]

(8]

[12]

[13]

D. Geronimo, A. Sappa, A. Lopez, and D. Ponsa, "Adaptive image
sampling and windows classification for on-board pedestrian
detection," Proc. Inter. Conf. on Computer Vision Systems, 2005.

G. Overett, L. Petersson, N. Brewer, L. Andersson, and N. Pettersson,
"A new pedestrian dataset for supervised learning," Proc. IEEE
Intelligent Vehicles Symposium, 2008.

C. Papageorgiou and T. Poggio, "A trainable system for object
detection," Proc. 1JCV, 38(1):15-33, 2000.

L. Oliveira, U. Nunes and P. Peixoto, “On exploration of classifier
ensemble synergism in pedestrian detection,” IEEE Trans. Intelligent
Transportation Systems, vol. 11, no. 1, 2010.

R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE
Trans. Syst., Man Cybern. Part C: Appl. Rev., vol. 31, no. 4, pp. 497-
508, Nov. 2001.

D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of
Pedestrian Detection for Advanced Driver Assistance Systems,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 7, 2010.
T. Ahonen, A. Hadid, and M. Pietikinen. Face recognition with local
binary patterns. In ECCV, pages 469-481, 2004.

36



Mr
K

rin

Iol

Al e
B3R A7)

o

=
;Onﬁ

B
B

HAAAA 4 WHste] m A5

T—

-

ojiy

A%

=
=

7]

o] RoA = oy o ER/E

—~
o

el

2 I+

o

=
=

Tl

A 87 o

7}E = dlo] ¥

=
T

ato] Af=

& ©

q Q.
717k 38 vt o) Fof 4w

E g0

A

ol of| A 9]

Fusj

Fo mea)

15

g %7

H5A171

73

B

!

oH

37



8 2012-22568

38



	Chapter 1 Introduction 
	Chapter 2 Pedestrian Detection Basics 
	2.1 Detection Flow 
	2.2 HOG Feature Descriptor 
	2.3 SVM Learning Algorithm    

	Chapter 3 Related Work             
	3.1 Incremental Learning       

	Chapter 4 Proposed Approach 
	4.1 Incremental Learning on Pedestrian Detector 
	4.2 Incremental Learning on Concept Recognizer 
	4.3 Cooperation between Pedestrian Detector and Concept Recognizer 

	Chapter 5 Experimental Results 
	5.1 Experimental Setup 
	5.2 Performance Analysis 

	Chapter 6 Conclusion and Future Work 
	Bibliography 
	Abstract in Korean 


<startpage>9
Chapter 1 Introduction  1
Chapter 2 Pedestrian Detection Basics  4
 2.1 Detection Flow  4
 2.2 HOG Feature Descriptor  5
 2.3 SVM Learning Algorithm     7
Chapter 3 Related Work              9
 3.1 Incremental Learning        9
Chapter 4 Proposed Approach  11
 4.1 Incremental Learning on Pedestrian Detector  12
 4.2 Incremental Learning on Concept Recognizer  14
 4.3 Cooperation between Pedestrian Detector and Concept Recognizer  15
Chapter 5 Experimental Results  20
 5.1 Experimental Setup  20
 5.2 Performance Analysis  23
Chapter 6 Conclusion and Future Work  33
Bibliography  35
Abstract in Korean  37
</body>

