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Abstract

We study two-source minimum cost spanning tree problem.
Agents need to connect to the sources either directly or
through other agents. For each connection there 1is an
associated cost, and the total cost of connecting all agents must
be shared among them. We introduce a cost allocation rule that
1s defined based on the Boruvka algorithm and show that this
rule coincides with a widely used rule, the Shapley value, in

the irreducible form of the problem.
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1 Introduction

In this paper, we study minimum cost spanning tree problems (mcstp). Consider a
situation where a group of agents located at geographically different places need a
certain service that can only be delivered by a common supplier. They have to be
connected to a set of sources that the supplier provides, either directly or through
other agents, and there exists a corresponding cost for each possible connection (link)
between two nodes (agents or sources).

There are many real life examples of this context such as networks for power
supply cables, water pipes, and internet connection among several cities.

In most of these situations, agents may benefit from cooperating. Thus, the prob-
lem consists of two parts. One is to find a way to minimize the total cost while con-
necting all agents to the source, i.e. to find a minimum cost spanning tree (mcst). The
other is to decide how to allocate the cost of the minimum cost spanning tree found.

There are a few papers in the literature that study the first part. For instance, Boru-
vka (1926), Kruskal (1956), and Prim (1957) showed algorithms for constructing the
mcst in any mecstp. In this paper, we use the Boruvka algorithm.

For the cost allocation aspect, Bird (1976) represented a cooperative game based
on the mestp and came up with a cost allocation rule, called the Bird rule. Granot and
Huberman (1981, 1984) have studied the core and the nucleolus in the cooperative
game of the mcstp. Kar (2002) studied the Shapley value in this context, and Dutta
and Kar (2004) came up with another rule, called the Dutta-Kar rule. Bergantifios
and Vidal-Puga (2007) studied the Kar rule in the irreducible form, which was later
called the Folk solution.

The Bird rule, the Dutta-Kar rule, and the Folk solution are all based on the Prim



algorithm.

Feltkamp et al. (1994) proposed a rule based on the Kruskal algorithm, which is
shown to be the same as the Folk solution (Bergantifios and Lorenzo-Freire, 2008).

Bergantifios and Vidal-Puga (2011) proposed still another rule based on the Boru-
vka algorithm and showed that it coincides with the Folk solution as well.

The literature on mcstp has mainly focused on the case with one source only, and
the papers mentioned above are of no exception. Hence, not much work has been
done nor has many of the rules been defined in the case with two or more sources.

As a first step in the study into the multiple source context in the mcstp, we study
and modify the rule proposed by Bergantifios and Vidal-Puga (2011) for the two-
source case and show that this rule is the same as the Shapley value in the irreducible
form of the two-source minimum spanning tree problem (2s-mcstp).

In section 2, we introduce the two-source minimum cost spanning tree problem.
The Boruvka algorithm is presented in section 3. Section 4 explains the irreducible
form and the rule based on the Boruvka algorithm. In section 5, we show and prove

the main result. And, section 6 concludes.



2 Preliminaries

Let N = {1,2,...} be the set of all possible agents. A subset N = {1,...,n} € N
represents a (typically selected) set of agents, and O = {01, 02} is the set of sources.
Given N and O, let No = N U O denote the set of nodes and also define N,, =
N U{op},0p € O.

Given No, a cost matrix C' = (c;;)s,jeN,, represents the cost of the (direct) link
(i,7) between i and j. For all 4,j € Ny, ci; = ¢ji,cij > 0, and ¢ = 0. That is,
the links are undirected and nonnegative. Let C'VO be the set of all cost matrices over
No.

A two-source minimum cost spanning tree problem, 2s-mcstp, is a pair (No, C')
where N C N is a set of agents, 01 and o5 are the sources, and C' € CNo is the cost
matrix.

Let L ={(4,7)|i,j € No,i # j} denote the set of all possible links.

A network over N is denoted g C L.

A path from i to j in g is a sequence of distinct links {(ix_1,4%)}5_, such that
(ig—1,ix) € gforall k € {1,..., K} with iy = i and ix = j. Two nodes i and j
(i # j) are connected in g if there exists a path from i to j in g.

A subset of nodes D C No is called a component in g if all 7,7 € D are con-
nected in g. Consider isolated nodes as components. Let D(g) be the set of compo-
nents in g, D € D(g).

A network g is connected if all pairs of nodes in Np are connected in g.

A tree t is a connected network with exactly | No| — 1 links, in which there exists
a unique path from i to j, for all 7, j € Np. Denote this path as t;; C ¢.

Let GNo denote the set of all networks over N and GNo the set of all connected



networks over No.

The cost of g € GO in a 2s-mestp (No, C) is

c(g) = ¢(No,C,9) = > .
(i.j)€g
A minimum cost spanning tree, mcst, for (No,C) is atree t € GNo such that
c(t) = min ¢(No,C,g).
geGNo

Denote the cost of the mest t in (Np, C') as m(No, C).

A rule, or cost allocation rule, is a function ¢ where )(Np,C) € R™ for each
2s-mestp (No, C') such that Y~ n ¥;(No, C) = m(No, C).

Given 2s-mestp (No, C), let (S, C') denote the 2s-mestp induced by C and S C
N.

Let o be an ordering over N and Xy the set of all such orderings. Also, let og be
an ordering over S C N and og € Xg.

Given o € Xy, denote P7(i) as the set of agents in IV that stand before i accord-
ing to o,

P7(i) ={j € Nlo(j) < o(i)}-
The Shapley value ¢ for 2s-mcstp (No, C') is defined as

6i(No, €)= — 3 [m((P"(1) U {i})o, O) — m(P°(i)o, C)].

’ TEXN



3 The Boruvka Algorithm

Since we are interested in the Shapley value in the irreducible form game, we need
to find an mest for any given 2s-mestp (No, C'). We introduce the Boruvka algorithm

that is modified for the two-source case from Bergantinos and Vidal-Puga (2011).

The Boruvka algorithm

Let 7 be an ordering over the set of all possible links over Np,

(n+2)(n+1)}‘

wz{(zpj):i,jeNo,méjH{l,z,..., !

Let ¢™Y = ), the initial network. Then, the set of components is D(g™?) =

{{01}7 {02}7 {1}’ {2}’ RS {n}}

Step 1. For each component D € D(g™), where D # {01}, {02}, choose a link
(i,7)™P € D x (No \ D) that is the cheapest to connect D and No \ D. We pick
the one in the front according to the ordering 7 in the case of a tie. This link is added

to the network. Formally,

g™ =g U{(i,5)™" : D € D(¢™"),D # {01}, {02}}.

Then, we have D(g™!) from g™!.

Assume we have reached Step s (s = 1,2, ...) and we have defined g™*~1.

Step s. For each component D € D(g™*~ 1), where D # {01}, {02}, let (i, j)™P €

D x (No \ D) be the cheapest link to connect D and (No \ D). Formally,

gﬂ’,s — gﬂ,sfl U {(i’j)ﬂ’,D -De D(gﬂ,sfl),D 7& {01}, {02}}_



@ 3 @ 3

Step 1

Figure 1: A 2s-mecstp and its mcst following the Boruvka algorithm

When all nodes in Ny are connected, the process ends.

Let 7 be the final step of the process. Then, g™" has no cycle and is an mcst of
(No,C), t".

For two different orderings over links 7 and 7/, it might be that ™ = ¢t . In par-
ticular, it is always the case when the costs of all links are different. When there is no

ambiguity, we leave out 7 from the notation (for example, ¢g° instead of g™*).

Example 1. Consider a 2s-mcstp (Np,C) with N = {1,2, 3,4} as shown in Figure
1.

Set g° = 0. Instep 1, {1} and {2} select (1, 2), {3} selects (2, 3), and {4} selects
(02,4). gt = {(1,2),(2,3), (02,4)}. In step 2, {1,2, 3} selects (01,1) and {02, 4}

selects (09,2). g2 = gt U{(01,1), (02,4)}. The process ends.



Figure 2: An mcst following the Boruvka algorithm and the corresponding irreducible

form

4 The Irreducible Form and the Rule 5™

Now that we have an mcst ¢ from the Boruvka algorithm, we can define the ir-
reducible form of the problem. Given a 2s-mcstp (No,C') and an mest t, define
c* = (ij)i,je No as the irreducible cost matrix associated with C', where ¢;; =
maxkryes,; {Cki} for each pair (i, j). Recall that ¢;; is the unique path from i to j in
t.

Let (No, C*) be an irreducible form of a 2s-mcstp (No, C'). Note that (No, C*)
is an irreducible form if and only if reducing the cost of a link always reduces the
cost of connecting all agents to the sources.

In Figure 2, the network on the right represents the irreducible form generated
based on the mcst on the left.

For a given a 2s-mcstp (No, C'), we can now compute the Shapley value in the

irreducible form,

H(No,C%) = - 3 Iml((P7(3) U {i})o, C*) — m(P7 (3)o, C°)].

) gEXN



Note that ¢(No, C*) = (13, 13, 25, 22) for the problem in Example 1.

We define the rule 8™ following the process below, which is a modification for
two-source case from Bergantinos and Vidal-Puga (2011).

We first define some notation.

Denote: £;"" as the link in ¢ that agent ¢ is assigned to (pays in part) in Step s; p*™
as the proportion of the cost of the link that each agent has to pay in Step s; ﬁff as the
proportion of the cost of link (4, j) already paid up to Step s; L*™ as the set of non-
completely paid links in Step s, L*™ = {(i,7) € t : p;;" < 1}; f;"" as the cost that
agent i must pay in Step s, f;"" = p>Tepem; L3 = t\L¥™ = {(i,j) € t : pj;" = 1};
and D*7 as the set of components of N associated to L*.

For simplicity, we omit 7 from the notation.

Let ) = @ foralli € N,p’ = 0, p); = 0 forall (4,j) € t, L® = t,
LY = (, D’ = D(0), and f? = 0 for all i € N. Assume we have reached Step

s(s=1,2,...).

Step s. Given a component D € D°, D # {01}, {02}, select a link (i, )" € t asin
the Boruvka algorithm. If (i, j)” has been selected by D in Step s — 1 but has not
been fully paid, then D must select (4, 7)” again in Step s.

Foralld € D € D%, set £ = (4,7)P. That is, each agent pays the cost of the
link that is selected by the component he/she is in. For each link (i,7) € L571, let
Ny = {k € N : £f = (i,5)} be the set of agents that pay the cost of link (3, j).

Then, define

1—p5t
. . 17 (s —1
ps—mm{w :(i,5) € L N 75(2)}.
For each (i,7) € L1, define Dy = ﬁfj_l + ‘Nisj Ip°.

8 1



Notice that p;; < 1 forall (i,5) € L*~! and p;; = 1foratleast one (i,5) € L*71,
which leads to L® € L*~! and L*~' C L?. That is, there are more completely paid
links in the latter step. The process ends when L* = ¢, and from L*~! C L® we know

that the process ends in a finite number of steps, 7. Finally, the process ends when

T s _ n+l
Zs:lp - n

Definition 1. Given a 2s-mcstp (No, C') and an ordering 7 over the set of all possible

links, the rule 57 is defined as

T

BT (No,C)=>_ [}

s=1
foreach: € V.

Example 2. Consider the same problem as in Example 1.

Following the Boruvka algorithm, the mest t = {(01, 1), (1,2),(2,3),(2, 02), (02,4)}
as shown in Figure 3.

Instep 1, {1} and {2} selects (1, 2) and agent 1 and 2 share the cost equally, {3}
selects (2, 3) and agent 3 pays the half of its cost, and {4} selects (02,4) and agent 4
pays the half of its cost. In step 2, {1,2} and {3} selects (2, 3) and agent 1,2, and 3
each pay % of its cost while {4} selects (02,4) and agent 4 pays % of its cost. In step
3, {1,2,3} selects (01,1) and agent 1,2, and 3 each pay % of its cost while {4} still
selects (02,4) and agent 4 pays the remaining % of its cost. In step 4, {1,2,3} and
{4} select (2, 02) and all four agents share its cost evenly by 7.

This process is presented in Table 1. We can see that the final allocation is the
same as the Shapley value of the irreducible form obtained above. Notice in the first

row of the table the agents are partitioned into two groups, namely a group with agent



Figure 3: An mcst following the Boruvka algorithm

{1 > 3} {4} e | Ip
51 (1/2)¥2=1 (1/2)%2=1 (1/2)*3=3/2 (L/2)F=1]2 1/2 1/2
s2 | er3=12  (/B*3=12 | /63=12 | asmerT=16 | 16 | 23
53 (1/3)*4=4/3 (1/3)*4=4/3 (1/3)*4=4/3 (1/3)*7=1/3 1/3 1

S4 | (1/45=54  (1/4)*5=5/4  (1/4)*5=5/4 | (1/4)*5=5/4 | 1/4 | 5/4
49/12 + 49/12. + 55/12. + 33/40 =271,

Table 1: The process of computing the rule 57

1, 2, and 3 and another group with agent 4. These two groups are never connected
until they are connected by the last link, for which all agents pays the same amount
at the final step. In this case the link is {2, 05} with the cost 5.

In other words, these two groups of agents never share the cost of any links until
the very last step of the process. This idea is a key to the proof of our main result that

we now present.

10 T e



5 Main Result

The main result shows that the Shapley value in the irreducible form of a 2s-mcstp is

the same as the rule 7.

Theorem 1. Given a 2s-mcstp (No, C') and an ordering 7 over the set of all possible
links,

B™(No,C) = ¢(No,C").
Proof of Theorem 1

First, we define the problem with one source only.

A one-source minimum cost spanning tree problem, Is-mcstp, is a pair (N,, C')
where N C N is a set of agents, o is the source, and C is the cost matrix (N, =
N U {o}).

Assume that we have an mcst t following the Boruvka algorithm. Let M be the
link with the highest cost along the path between 07 and o5 in t. Removing M breaks
t into two trees containing one source each.

Without loss of generality, denote ¢! as the tree containing o1 and ¢? the one with
02. Also, Denote S! as the set of agents in ¢! and S? as the set of agents in 2.

Then, we prove the following two lemmas:

Lemma 1. Forall: € N,

CM

BT (No,C) = BI(St ,C) + ik (1)

where h indicates the index for the tree that ¢ belongs to.

11 3



Lemma 2. Forall: € N,

$i(No, C*) = ¢i(Sh . C*) + ﬁ )

where h indicates the index for the tree that ¢ belongs to.

Bergantinos and Vidal-Puga (2011) showed that 5™ = ¢ for each 7 in any Is-
mestp (N,, C). Thus,

BI(Sh . C) = ¢i(Sh ,C*). 3)

op?

Putting Equation (1), (2), and (3) together yields,

BF(No,C) = BT (Sh . C) + ﬁ — ¢i(Sh,C") + ﬁ — ¢;(No,C*).  (4)

Without loss of generality, we only analyze S'.

Proof of Lemma 1 B[ (No,C) = B7(S2,,C) + %

We prove this by showing that all agents are assigned to link M in the Step 7
following the Boruvka algorithm, which also guarantees the cost within ¢! is paid
only by agents in S*. Then, by definition of the rule 3™, Lemma 1 holds.

When the process ends, 22:1 p° = "TH If link M is, in fact, the link being
selected in Step 7 by all agent, then all links ¢! must have been paid already in Step
T—1.

Denote S* as the set of agents directly connected to o; in ¢!. For each i € ST let
F' be the set of agents that need agent 4 in order to be (indirectly) connected to o7 in
t!, including i himself/herself. Then, {F' ’}Z c g forms a partition of S L

Define tp: = {(i,7) : (i,5) € t';i,j € F* U {o1}}. Clearly, tp: is an mest in
(Fi,,C). Also, U(tpi);cqn = thand Y, e m(Fy, C) = m(S,

01? 01?

o).

12 1



We need to show that: (i) no agent in any F” is assigned to a link (k,l) € F* x

S\ F' before Step 7, Y7 p* = I?ZI = 1. That is, no agent crosses over to another
"branch" that he/she does not belong to.

In order to show this, we use induction. If | F"*| = 1, then condition (i) is satisfied
by definition. Assume that we have verified that condition (i) holds for less than |F?|
agents.

Denote M as the link with the highest cost in ¢ . Removing it from ¢ -; yields a
tree containing o < |F*| agents (c is a positive integer) and o and another tree with
|F¥| — a agents. By induction hypothesis, condition (i) is satisfied in the first tree.

The agents in the second tree pays for the links within it up to some Step r, where

r=71—2with Y72 p* = % Then they pay for My with p™~! = |Fﬁ_a,

making > 1" 1 p® = 1. Thus, condition (i) is satisfied for |F?| agents, and Equation

(1) holds.

Proof of Lemma 2 ¢;(No, C*) = ¢;(S} 0 CF) + ﬁ

By definition, we know that

6(No,C") = = ™ [m((P7(0) U {i})o, ") — m(P°(i)o, C")

T oeXN
Setting mc™® = m((P? (i) U {i})o, C*) m(P?(i)o,C*),
¢»i(No,C*) = Z me®

' oEXN

Also, we already know under the irreducible cost matrix,

ci; = maw (g pyer,; {on - (5)

Since the 2s-mcstp requires agents to be connected to both sources, for any given

ordering over agents, the first agent in the order connects to both sources and pays the

13



corresponding costs. Starting from the second agent in the order, they can connect to
either one of their predecessors or the (closest) source that minimizes their marginal
costs.

Formally, given an ordering 0 € Xy, agent i € S! who is not the first agent in

o chooses anode j € P?(j) U O, j # i that minimizes c¢;, which i pays under o.

17°
By (5), it must be that j € (P?(j) N S1) U {0;}. Denote this cost as ¢; 5+ Thus, for
i€ Shi#o(l),

7 *
mc? = ¢, (6)

If i € S'is the first agent in o, he/she not only pays c; , but also the cost of
connecting to os. Because of (5), ¢ does not connect directly to o2 but through o1, so

the cost is ¢} . . Again by (5), ¢}

102" = ¢}, since we know M is the link with the

0102

highest cost along the path between o and oz in t. Thus, fori € S, i = o(1),

mch? = CZU + ¢y (7

Now, let o € ¥ be the ordering over N that starts with agent 7. Then, we have
mee" = CiotCu (8)

Recall that

¢i(No,C*) = Z me>

. O'EEN
Using (6) and (8), we have

00,0 = S e kS
O'EEN O'iEEN
It is clear that the number of o in ¥ is the same for all i € N. Then,

n!
(No, C* § -
¢(OC) ‘ zo‘+ 7’LCM

. UEEN

14 .



¢(NO,C’*— F Y Gt —Cir 9)

' oEXN
Now, for the Is-mcstp (SL ,C),
1 * 1 051 . . * asl . *
0(85,,C) =7 D [Ml(PT () U{i})or, C*) = m(P7 (i)o,, C")]
T 0g1€851
We follow the same logic and get
¢<S§1, * _ Z mc® 051
0516251
* 1 >k
P(S:,C*) = Iy D o (10)
) g1 6251

Given an ordering o g1 € X1, there exist J5; * orderings in ¥ such that removing
N\ S from those orderings yields o g:. In other words, for each ordering og1 € g1,
there are ”T', orderings in X that give the same marginal cost to the agents in S*.

S-1

Thus, from (9) we obtain

N 1 nl! . 1,
Qbi(NO,C ) = ﬁ . E z Ci’0.51 + ECM.

’ 0'516231
¢i(No, C") = — Y o+ —Ci- (11)
0g1€Xq1
Combining (10) and (11) yields (2). [l

15 1



Figure 4: An mcst with three sources
6 Concluding Remarks

As mentioned in the introduction, this paper is merely a small step to analyzing the
2s-mestp. Defining other rules such as the Bird rule and the Dutta-Kar rule for 2s-
mcstp and analyzing them may be of interest. Extending the study to three or more
sources can be another area for future research. We conclude the paper with a counter

example that Theorem 1 does not hold in general for mestp with multiple sources.

Example 3 In Figure 4, we have an mcst of an mcstp with three sources and three

agents. Given a < b, we can see that Theorem 1 does not hold as shown below.

1 1 1 1 2
(N, =(1+ = -b,1+ = —-b,1+ =b).
ﬁ(OvC) (+2a+6’ +2a+6a +3)

1
a+b),1+ -

¢(NO,O*):(1+%(a+b),1+3 X

3( a+Db)).

16
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