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Abstract

This thesis introduces concepts and applications of Bayesian inference for finan-

cial time series. Bayesian inference is a method of statistical inference using Bayes’

theorem to update prior beliefs as additional informations are observed. This al-

lows us to use our prior beliefs of parameters and the Markov chain Monte Carlo

method(MCMC) makes the analysis is relatively fast and simple.

In this thesis we introduce the time series Bayesian inference and the MCMC

method, illustrate an example of estimating unknown parameters in threshold au-

toregressive(TAR) models with stochastic volatility(SV). Moreover, we apply TAR

with SV model to a real data set and conduct a hypothesis test for model selection

via using Bayes factor.

Key words : Bayesian time series, Mixed Prior, Markov chain Monte Carlo, Thresh-

old autoregressive, Stochastic volatility, Bayes factor.

Student number : 2012-20230
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Chapter 1

Introduction

Advances of computational methodology have increased ability to solve complicated

problem. They also extend the applicability of many existing statistical methods.

Especially in the area of econometrics with many complex models, advantages of

computational method have great importance.

Therefore, in this thesis we introduce one of the outstanding developments in

computational methodology, Markov chain Monte Carlo(MCMC) method that are

widely applicable in financial time series. First, in Chapter 2 we discuss Bayesian

inference including general procedure and model comparison method via using Bayes

factor. Bayesian inference provides us to insert prior beliefs of parameters before

observing data. Second, in Chapter 3 we discuss algorithms of MCMC, which gives

us the simple and fast way to calculate posterior density in Bayesian inference.

Then, in Chapter 4 we focus on the financial time series problem. In particular, we
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carry out simulation and empirical studies based on former discussions.

For application, first we demonstrate simulation study of threshold autoregressive

model(TAR) with stochastic volatility(SV). TAR model is one of tools to capture

the nonlinearity of the financial time series. As well as mean structure, SV model is

considered because modeling volatility has many applications in financial time series

such as option trading or risk management. Also these two models are combined

so this could be a good example of advantages of Bayesian inference via MCMC

method in complicated financial time series problem. Second, we apply TAR with

SV to a real data set and carry out a hypothesis testing via using Bayes factor for

model selection problem.
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Chapter 2

Bayesian Inference

Bayesian inference is a method of statistical inference by using Bayes’ theorem to

update prior beliefs when additional informations are observed. Bayesian inference

is psychologically appealing because it allows us to insert our prior beliefs about

parameters before data are observed.

Although it has a weakness of having subjective notion of probability, Bayesian

approach has wide usage in many fields of statistics. In most cases solutions of two

approaches are similar, even some cases Bayesian solutions might be advantageous.

2.1 General procedure

Bayesian inference is generally carried out in the following steps.

1. Choose the probability of parameter – prior distribution – before observing
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data. Prior distribution reflects beliefs about parameter θ.

2. Choose model f(x|θ) reflects beliefs about x given θ.

3. After seeing data X1, · · · , Xn, use Bayes’ theorem to calculate the posterior

distribution f(θ|X1, · · · , Xn).

For the time series analysis, steps are similar.

Suppose we observe time series data y = (y1, · · · , yn) from {yt; t ≥ 0}, collection

of random variables over time. If we believe that yt has a some density function

p(·|θ), our observation can be written as p(y|θ). When we see this as the func-

tion of θ, we call it the likelihood function. Unlike Frequentist approaches that are

mostly based on this likelihood function, Bayesian introduce pre-assumed beliefs

called ’prior’, π(θ)

By Bayes’ theorem,

p(θ|y) =
p(y|θ)π(θ)∫

Θ
p(y|θ)π(θ)dθ

p(θ|y) ∝ p(y|θ)π(θ)

p(·|θ) and π(·) denote likelihood and prior density function, respectively. Also

we call p(θ|y) as posterior density. Bayesian inferences are based on this posterior

distribution.

From the choice of prior distribution, it is classified into conjugate and noncon-

jugate analysis.
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Conjugate Bayesian analysis

For convenience, the prior distribution often assumed to be conjugate, which is

from same distribution family with corresponding posterior distribution. Advan-

tages are its reasonable features and the simple calculation that may result in closed

analytical form.

Nonconjugate Bayesian analysis

However, in many situations, there is no closed analytical form of posterior dis-

tribution against our desire.

It is hard to calculate integration in the denominator of posterior density func-

tion. It may need numerical approximation, or other methods.

Since the Markov chain Monte Carlo(MCMC) method introduced, it become

possible to inference when we have no closed form of posterior distribution by ob-

taining sample draws from it. Next chapter, we see the algorithms of the MCMC

method.

2.2 Bayes factor

For the model comparison or hypothesis testing, Bayesian approach uses Bayes

factor(BF), the Bayesian version of the classical likelihood ratio test(LRT).
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Consider two models or hypotheses H1 and H2 for given data y, Bayes factor is

defined as,

BF =
p(y|H1)

p(y|H2)
=

∫
p(θ1|H1)p(y|θ1, H1)dθ1∫
p(θ2|H2)p(y|θ2, H2)dθ2

(2.1)

where θi s stand for parameters in Hi s.

Note Bayes’ theorem says p(Hj|y) ∝ p(y|Hj)p(Hj). Therefore we can see that

posterior odds ratio ∝ BF × prior odds ratio. The BF can be translated as ratio of

the posterior odds to its prior odds.

Interpretation follows that BF > 1 means H1 is more supported by the data

than H2.

Kass and Raftery [1995] pointed out that the BF is very general and does not

require alternative models to be nested. Also from the definition, the BF embraces

prior beliefs for evaluation so that it provides a way of incorporating external infor-

mation about a hypothesis.

The calculation of the BF contains integrations, numerical methods are needed.

Next chapter, we introduce one powerful method Markov chain Monte Carlo(MCMC)

method.
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Chapter 3

Markov chain Monte Carlo

Method

Consider the problem of evaluating expectation like

Eπ[T (X)] =

∫
T (x)π(x)dx.

In Bayesian inference, we are interested in posterior mean E(θ|y) or posterior

variance V ar(θ|y). Therefore, above problem is very important but it can be difficult

to calculate.

One solution is to draw independent samples (X(1), X(2), · · · , X(N)) from π(x),

then we can approximate

Eπ[T (X)] ≈ 1

N

N∑
t=1

T (X(t))
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According to the Law of large numbers, above approximation is adoptable. This

method is Monte Carlo integration.

Furthermore, it is known that above approximation is still possible if we sample

using a Markov chain. This is the main idea of MCMC method and there are two

major approaches, Metropolis-Hasting algorithm and Gibbs sampler.

3.1 Metropolis-Hasting(MH) algorithm

In order to sample from the posterior distribution, we can do the following steps.

ALGORITHM

1. Choose transition(proposal) function q(y|x)

2. Initialize θ0

3. For j from 1 to N

3.1. Generate θ∗ from q(θ|θj−1)

3.2. Calculate the importance ratio,

r =
π(θ∗)/q(θ∗|θj−1)

π(θj−1)/q(θj−1|θ∗)
=

π(θ∗)q(θj−1|θ∗)
π(θj−1)q(θ∗|θj−1)

(3.1)

3.3. Update

θj =

 θ∗ with probability min(r, 1)

θj−1 otherwise

(3.2)
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Intuitively, it seems reasonable since 1) if the jump θj−1 → θ∗ increases the

posterior density (r > 1) then θj = θ∗, or 2) θj remains with probability (1− r) to

avoid being stuck in local modes.

Note that for p(θ|y), normalizing constant is not needed because it is canceled

out when we calculate importance ratio. Therefore MH algorithm gives us a way to

inference when posterior has no closed form.

Choice of Proposal Density

A common choice of proposal density is random walk proposal,

q(x|y) = f(|x− y|)

, then importance ratio r in (3.1) becomes

r =
π(θ∗)

π(θj−1)

since q(x|y) = q(y|x). Possible choices of f include the multivariate normal density

and the multivariate t density.

Another choice is independent proposal,

q(x|y) = f(x)

, f can be the multivariate normal or t density. The more similar f is to π, the

better performance MH has.
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Remark 3.1. Gaussian random walk proposal can cause getting stuck in local

modes, very slow convergence and also low acceptance rates. Lin et al. [1987] pro-

posed employing a mixture of Gaussian proposal to overcome this problem. This

approach makes the tails of proposal distribution thicker, enables good performance.

θ∗|θj−1, k ∼ N(θj−1, kΩ)

k =


1 w.p. 0.85

9 w.p. 0.1

81 w.p. 0.05

3.2 Gibbs sampler

For joint distribution π(θ, ϕ), generating (θ, ϕ) jointly is difficult. In this situation,

following sampling procedure can be applicable.

ALGORITHM

1. Initialize θ0 and ϕ0.

2. For j from 1 to N ,

2.1. Generate θj from π(θ|ϕj−1).

2.2. Generate ϕj from π(ϕ|θj).
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MH within Gibbs sampler

We also can use both algorithms by applying MH algorithm inside the Gibbs

sampler. For many parameters, Gibbs sampler gives a way to divide multidimen-

sional problem into smaller dimensional problems, and MH gives a way to deal with

normalizing constants.

For given (θ1, · · · , θp), the strategy is to divide this vector into blocks. A general

rule for blocking is to maximize within-block correlations and minimize the between-

block correlations. For each block, we apply Gibbs sampler, and MH algorithm

within blocks.

1. Initialize θ0 and ϕ0.

2. For j from 1 to N ,

2.1. Generate θj from π(θ|ϕj−1).

a. Generate θ∗ from proposal q(θ|ϕj−1, θj−1)

b. Calculate importance rate r as in 3.1

c. Set θj = θ∗ with probability min(1, r)

2.2. Generate ϕj from π(ϕ|θj).

a. Generate ϕ∗ from proposal q(ϕ|ϕj−1, θj)

b. Calculate importance rate r as in 3.1

c. Set ϕj = ϕ∗ with probability min(1, r)

Remark 3.2. The first m pre-chosen iterations of the MCMC sampling are

discarded, and referred to as burn-in. This is used to avoid dependence of initial
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value and ensure that samples are indeed close enough to the samples from true

distribution.

Remark 3.3. To check the convergence of MCMC iteration, mathematical ap-

proaches are difficult. Some plots are practically used such as autocorrelation func-

tion(ACF) plot, trace plot, and so on.

• Trace plot: The value of the drawn sample at each iteration versus the iteration

number.

• ACF plot: Correlations between every drawn sample and it kth lag. Since our

drawn samples form Markov chain, the ACF plot is expected decay exponen-

tially as lag increased.
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Chapter 4

Application to

Threshold Autoregressive Model

with Stochastic Volatility

4.1 Introduction

In this chapter, we study examples of Bayesian financial time series analysis based on

the former discussion. First, we solve an example problem of estimating threshold

autoregressive model with stochastic volatility model, and investigate through a

simulation. Then, we apply this model to a real data and carry out a hypothesis

testing via using Bayes factor.

To begin with, we discuss the threshold autoregressive model and stochastic
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volatility model.

Threshold Autoregressive(TAR) model

Nonlinear models can explain various aspects of financial dynamics compared to

linear models. In the class of these models, Threshold Autoregressive model(TAR)

uses piecewise linear models to get a better approximation of the conditional mean

structure, motivated by asymmetry in rising and decline pattern.

The results from Li and Lam [1995] also showed that the conditional mean struc-

ture could depend significantly on the rise and fall of the market in the previous

day.

For time series yt, it is said to follow TAR(g; p1, · · · , pg) with yt−d as a threshold

variable if

yt = ϕ
(k)
0 +

pk∑
i=1

ϕ
(k)
i yt−i + a

(k)
t , rk−1 ≤ yt−d < rk, for k = 1, · · · , g (4.1)

where

g: number of regime,

{a(k)t } : innovation, i.i.d., ∼ N(0, σ2
k)

d: threshold lag, positive integer,

rj: threshold variable, real, −∞ = r0 < r1 < · · · < rg = ∞

TAR model has not been widely used in practice because it is hard to esti-
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mate threshold values. Chen et al. [1995] proposed a procedure for estimating the

threshold values and other parameters objectively via Bayesian inference with Gibbs

sampler.

Stochastic Volatility(SV) model

Volatility is an important factor in financial or economic time series and has

many applications, such as option trading, risk management, and so on.

One of approaches to model volatility is stochastic volatility model(SV) which

introduce an innovation to the conditional variance equation of at.

For at, innovation or shock for time series yt, it is said to follow SV model if

at =
√

htϵt, loght = α0 +

p∑
i=1

αi log ht−i + ηt (4.2)

where

ϵt: i.i.d. ∼ N(0, 1)

ηt : i.i.d. ∼ N(0, σ2)

{ϵt} and {ηt} are independent.

Adding ηt, the innovation, considerably increase the flexibility of the model in

describing the ht compared to other volatility models. However, for each shock at

the model uses two innovations, that makes it difficult to estimate SV model (Tsay

[2010]). The MCMC method can be a solution for this.
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4.2 Model

In this simulation we combine TAR (4.1) and SV (4.2). Consider following model.

yt =

ϕ
(1)
0 + ϕ

(1)
1 yt−1 + at , yt−d ≤ r

ϕ
(2)
0 + ϕ

(2)
1 yt−1 + at , yt−d > r

at =
√
htϵt, ϵt

i.i.d.∼ N(0, 1)

log ht = α0 + α1 log ht−1 + ηt, ηt
i.i.d.∼ N(0, σ2) (4.3)

where

{ϵt} and {ηt} are independent.

d: delay lag

r: threshold value

We are interested in estimating unknown parameter θ = (ϕ,α, σ2, r, d) based on

observation y = (y1, · · · , yn). (where ϕ = (ϕ
(1)
0 , ϕ

(1)
1 , ϕ

(2)
0 , ϕ

(2)
1 ), α = (α0, α1))

In this problem, maximum likelihood method is not applicable because of the

existence of latent variables h = (h1, · · · , hn). By using data augmentation(Tanner

and Wong [1987]) in the Bayesian framework, we can overcome this difficulty.

4.3 Prior settings and sampling scheme

Applying data augmentation strategy, the parameter space is augmented to (θ,h).

Conditioning on h, likelihood p(y|θ,h) has closed form.
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Note that given (θ,h), the conditional likelihood is expressed as

p(y|θ,h) =
T∏

t=s+1

[
2∑

j=1

1√
2πht

exp

{
−(yt − µt)

2

ht

}
Ijt

]
(4.4)

where

µt = ϕ
(j)
0 + ϕ

(j)
1 yt−1

Ijt = I(rj−1 ≤ yt−d < rj)

If we assume independent priors, posterior density is generally given as multi-

plying (4.4) by prior density.

Specifically, we consider Gibbs sampling as following.

STEP1. Sample h from f(h|y,ϕ,α, σ2, r, d)

STEP2. Sample α from f(α|y,ϕ,h, σ2, r, d)

STEP3. Sample σ2 from f(σ2|y,ϕ,h,α, r, d)

STEP4. Sample ϕ from f(ϕ|y,h,α, σ2, r, d)

STEP5. Sample r from f(r|y,ϕ,h,α, σ2, d)

STEP6. Sample d from f(d|y,ϕ,h,α, σ2, r)

Inside each steps, we also use MH algorithm with mixed Gaussian proposal as

in Remark 3.1.
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STEP1. Volatility Vector h

The volatility vector h is drawn element-wise. Jacquier et al. [1994] use following

derivation of univariate conditional densities.

f(ht|y,ϕ,h−t,α, σ2, r, d)

∝ f(at|ht, yt, yt−1, ϕ)f(ht|ht−1, α, σ
2)f(ht+1|ht, α, σ

2)

∝ N

(
yt − µt√

ht

)
N

(
log ht − νt√

σ2
h

)
(4.5)

where h−t is the vector of h excluded ht, N(·) is the density of standard normal

distribution, and

µt =

ϕ
(1)
0 + ϕ

(1)
1 yt−1 , yt−d ≤ r

ϕ
(2)
0 + ϕ

(2)
1 yt−1 , yt−d > r

νt = α0(1− α1)/(1 + α2
1) + α1(log ht−1 + log ht+1)/(1 + α2

1)

σ2
h = σ2/(1 + α2

1)

,with our model assumption. Since normalizing constant is difficult to calculate, we

use MH algorithm with (4.5).

Remark 4.1. Another approach to sample volatility vector h is to use of the

forward filtering and backward sampling within the Kalman filter framework. (Shep-

hard [1994] and See Tsay [2010])
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STEP2. Volatility Coefficient α

Note that

f(α|y,ϕ,h, σ2, r, d) = f(α|h, σ2) (4.6)

and the right-hand side of the above equation is the form of the AR(1) model since

log ht follows AR(1) given h.

Therefore, we set the conjugate prior distribution of α as multivariate normal

MVN(α0, V0)

, then the posterior distribution becomes

MVN(α∗, V∗)

where

α∗ = V∗(
n∑

t=2

zt log ht/σ
2 + V −1

0 α0),

V −1
∗ =

n∑
t=2

ztz
′
t/σ

2 + V −1
0

zt = (1, log ht−1)
′

STEP3. Volatility Innovation σ2

Note that

f(σ2|y,ϕ,h,α, r, d) = f(σ2|h,α) (4.7)
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and the right-hand side of the above equation is the form of the AR(1) model.

We set the conjugate prior distribution as (mλ)/σ2 ∼ χ2
m, then

mλ+
∑n

t=2 η
2
t

σ2
∼ χ2

m+n−1

STEP4. TAR Coefficient ϕ

We set the prior distribution of (ϕ
(k)
0 , ϕ

(k)
1 ) as

MVN(ϕk0,Wk0)

and posterior distribution can be easily obtained similarly as STEP2.

STEP5. Threshold Variable r

We assume r follows uniform distribution on (l, u). l and u are suitably chosen

as quantiles of the observation y to ensure sufficient sample size for valid inference

(Chen et al. [1995]).

STEP6. Delay lag d

We assume d follows a discrete uniform distribution on {1, 2, · · · , d0}. Then

posterior distribution is multinomial distribution with probability

p(d = i|y,ϕ,h,α, σ2, r) =
f(ϕ,h,α, σ2, d = i, r|y)∑d0
j=1 f(ϕ,h,α, σ2, d = j, r|y)

20



4.4 Simulation study

Until now we see TAR with SV model and Bayesian estimation methodologies. We

now try simulation experiment through an example to investigate the result.

We consider the following model.

yt =

0.02− 0.8yt−1 + at , yt−3 ≤ 0.5

−3 + 0.5yt−1 + at , yt−3 > 0.5

at =
√
htϵt, ϵt

i.i.d.∼ N(0, 1)

log ht = −0.2 + 0.8 log ht−1 + ηt, ηt
i.i.d.∼ N(0, 1) (4.8)

The choice of autoregressive coefficients and stochastic volatility coefficients refer

to the explanations of So et al. [2002] that the autoregressive coefficient is usually

positive when yt ≥ 0 and the converse is true. Also we put the fact that high

persistence in variance was discovered in most of the stochastic volatility literature.

T=500 samples are generated, ’R 3.0.2 for Windows’ is used for simulation (some

codes use Fortran for the speed issue) and Total 3000 iterations are conducted for

sampling, and the first 1000 iterations are ignored as burn-in iterations.

Initial values are set to be (0, 0, 0, 0) for ϕ, (0.1, 0.5) for α, 10 for σ2, median

of sample yt for r, and 5 for d. Latent variable vector h are randomly chosen from

N(0, 1).

Also hyperparameters -parameters in prior distribution- are set to be α0 = (0, 0),

V0 = diag(10, 10), ϕk0 = (0, 0), Wk0 = diag(10, 10), l and u are 0.1, 0.9 quantiles of
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yt , d0 = 10.

Fig.4.1 shows the generated sample yt, ht and 90% CI of sampled ht.

Table 4.1 shows the result statistics of the estimated posterior distribution.

We can see that estimated values are similar to the true values and 95% confi-

dence interval include the true values.

Table 4.1: Simulation results

Parameter ϕ
(1)
0 ϕ

(1)
1 ϕ

(2)
0 ϕ

(2)
1 α0 α1 σ2 r d

True 0.02 -0.8 -3 0.5 -0.2 0.8 1 0.5 3

Mean 0.017 -0.775 -3.030 0.530 -0.172 0.812 1.021 0.456 3

Median -0.022 -0.795 -3.016 0.519 -0.156 0.810 0.989 0.402 3

Std 0.047 0.029 0.051 0.038 0.068 0.038 0.137 0.113 0

95% CI low. -0.040 -0.862 -3.069 0.440 -0.220 0.741 0.655 0.380 3

95% CI upp. 0.066 -0.746 -2.836 0.562 -0.078 0.893 1.261 0.614 3
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Figure 4.1: Generated time series yt & ht, and estimated volatility ht
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4.5 Empirical study

In this section, we see how to apply Bayesian inference to real data analysis. This

section includes estimating parameters and hypothesis testing for model selection.

Chen et al. [1995] studied U.S. monthly civilian unemployment rates from the

2Q of 1948 to the 1Q of 1991 to estimate TAR(2;4,2) model. We use the same data

but updated with 675 observations from 2Q of 1948 to the 1Q of 2004. This data

is available in BAYSTAR package in R. Figure 4.2 shows the time plot of this data.

Here we conduct analysis on this data set for the proposed model to compare result

with only TAR model. We use the first differenced series rt = yt − yt−1 since the

sample autocorrelation function decays slowly.

Time
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Figure 4.2: Time series plot of U.S. monthly unemployment rates
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Estimation

Initial settings are similar to the former simulation study except that we use

AR(4) model for regime 1, and AR(2) model for regime 2. The estimated parameters

are in Table 4.2.

Table 4.2: Parameters estimated in real data analysis

Parameter ϕ
(1)
0 ϕ

(1)
1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(1)
4 ϕ

(2)
0 ϕ

(2)
1 ϕ

(2)
2 α0 α1 σ2 r d

Mean 0.003 -0.057 0.114 0.020 0.086 -0.032 0.227 0.255 -2.601 0.252 0.501 0.050

Median -0.003 -0.021 0.130 -0.008 0.134 -0.066 0.183 0.430 -2.541 0.243 0.502 0.050 2

Std 0.010 0.100 0.095 0.057 0.059 0.037 0.049 0.191 0.182 0.054 0.035 0.030

95% CI low. -0.003 -0.282 0.000 -0.008 0.000 -0.066 0.183 0.048 -3.117 0.119 0.446 0.003 2

95% CI upp. 0.025 0.000 0.285 0.147 0.134 0.009 0.280 0.430 -2.419 0.310 0.567 0.094 2

Compared to Chen et al. [1995], estimated coefficients in the mean structure,

threshold variables are similar to them. With this model, we also can model the

volatility of the series. To check the convergence, we practically use trace plot(Figure

(4.3)) and autocorrelation plot(Figure (4.4)). From the figures, we can say that our

MCMC samples are well converged to the samples from true posterior distribution.

Model Comparison

Next, we use Bayes factor to compare model. Assume that M1 is our model, M2

is the TAR(2; 4, 2) model. If the calculated BF is greater than 1, we can conclude

that our model is more supported by the data y.

In the BF definition (2.1), it is hard to compute integrations. There are many
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numerical approximation methods for calculation of BF, here we use MCMC method

with posterior density.

Note that in the definition of BF (Remark 4.2) ,

p(y|Mj) =

∫
p(y|Θj,Mj)π(Θj|Mj)dΘj

≈

(
1

N −M

N−M∑
i=1

p(y|Θ(i)
j ,Mj)

−1

)−1

(4.9)

where

Θj : the parameters of the Model j

π(Θj|Mj) : the prior density under Mj,

Θ
(i)
j : the sample drawn from ith MCMC iteration.

In this example, logBF = log 1197.362 − log 1000.282 = 0.180 and BF = 1.20.

Thus our model M1 is more supported by the data.

Remark 4.2. (4.9) is derived as below (see Kass and Raftery [1995])

Dropping the notational dependence on Mj, then

p(y|Mj) → p(y) =

∫
p(y|θ)π(θ)dθ

The simplest Monte Carlo integration estimation is

p̂(y|Mj) =
1

m

m∑
i=1

p(y|θ(i))
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where θ(i) is the ith sample from prior distribution π(θ).

To improve estimation, above equation becomes,

p̂(y|Mj) =

∑m
i=1wip(y|θ(i))∑m

i=1 wi

(4.10)

where

wi = π(θ(i))/p(θ(i)|y),

θ(i) is the ith sample from posterior distribution p(θ|y).

Then use the following equation and substitute into the (4.10), these give the

result of (4.9)

p(θ|y) = p(y|θ)π(θ)
p(y)
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Figure 4.3: Trace plot of MCMC iteration in real data analysis
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Figure 4.4: Autocorrelation function(ACF) plot of MCMC iteration in real data analysis
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Chapter 5

Conclusion

We see the concepts and application of Bayesian financial time series via MCMC

method. Unlike Frequentist approach, Bayesian inference is based on posterior dis-

tribution so that prior beliefs before observing data can be included in analysis.

Also by Bayes factor, hypothesis testing can be flexible.

From an application example, we apply MCMC method to estimate threshold

autoregressive model with stochastic volatility. Although TAR and SV model have

very complex structure, by using MCMC we see that parameters can be nicely esti-

mated. Also we studied real data to compare with other literature. After estimating

parameters, we conduct hypothesis testing for model selection via Bayes factor. Here

we see that by using BF, testing problem becomes relatively simple.

In addition to the problem of estimating parameters or model selection in this

thesis, there are many other applications of Bayesian inference with MCMC. Ap-
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plications include other model selection problem such as unit root test, also the

important issue in financial time series. Therefore, the model we saw could be ex-

tended to unit root test, with an another approximate calculation of Bayes factor

and mixed prior distributions proposed by Li and Yu [2010] and Chen et al. [2013].
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국문 초록

본 논문에서는 금융 시계열 데이터의 베이지안 추론 방법에 대해서 소

개하고 활용 예제를 제시한다. 베이지안 접근은 자료의 관측 전 모수에 

대한 사전 확률분포를 이용하여 사후 분포를 계산하여 추론하는 방법으

로서, 자료를 관측하기 전의 믿음을 분석에 활용할 수 있다는 장점이 있

다. 또한 Markov chain Monte Carlo(MCMC) 등의 계산 방법을 통해 복

잡한 모형을 비교적 쉽고 빠르게 분석할 수 있다.

따라서 본 논문에서는 먼저 전반적인 베이지안 추론 방법과 시계열 자

료에 활용하는 방법에 대해서 살펴본 후, 계산을 위한 MCMC 방법에 

대해서 소개한다. 또한 이러한 소개를 바탕으로 Stochastic Volatility를 

갖는 Threshold Autoregressive 모형의 모수를 추정하는 문제를 시뮬레

이션을 통해서 수행해보도록 한다. 이에 더해 위의 모형을 실제 시계열 

자료에 적용해보도록 하고, 모형 선택 가설검정 예제를 Bayes factor를 

이용한 방법을 통해 수행한다.

주요어 : 베이지안 시계열 분석, 혼합 사전 확률, 마르코프 연쇄 몬테칼

로 방법, Threshold autoregressive, Stochastic volatility, Bayes factor.

학번 : 2012-20230
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Abstract

This thesis introduces concepts and applications of Bayesian inference for finan-

cial time series. Bayesian inference is a method of statistical inference using Bayes’

theorem to update prior beliefs as additional informations are observed. This al-

lows us to use our prior beliefs of parameters and the Markov chain Monte Carlo

method(MCMC) makes the analysis is relatively fast and simple.

In this thesis we introduce the time series Bayesian inference and the MCMC

method, illustrate an example of estimating unknown parameters in threshold au-

toregressive(TAR) models with stochastic volatility(SV). Moreover, we apply TAR

with SV model to a real data set and conduct a hypothesis test for model selection

via using Bayes factor.

Key words : Bayesian time series, Mixed Prior, Markov chain Monte Carlo, Thresh-

old autoregressive, Stochastic volatility, Bayes factor.

Student number : 2012-20230
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Chapter 1

Introduction

Advances of computational methodology have increased ability to solve complicated

problem. They also extend the applicability of many existing statistical methods.

Especially in the area of econometrics with many complex models, advantages of

computational method have great importance.

Therefore, in this thesis we introduce one of the outstanding developments in

computational methodology, Markov chain Monte Carlo(MCMC) method that are

widely applicable in financial time series. First, in Chapter 2 we discuss Bayesian

inference including general procedure and model comparison method via using Bayes

factor. Bayesian inference provides us to insert prior beliefs of parameters before

observing data. Second, in Chapter 3 we discuss algorithms of MCMC, which gives

us the simple and fast way to calculate posterior density in Bayesian inference.

Then, in Chapter 4 we focus on the financial time series problem. In particular, we
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carry out simulation and empirical studies based on former discussions.

For application, first we demonstrate simulation study of threshold autoregressive

model(TAR) with stochastic volatility(SV). TAR model is one of tools to capture

the nonlinearity of the financial time series. As well as mean structure, SV model is

considered because modeling volatility has many applications in financial time series

such as option trading or risk management. Also these two models are combined

so this could be a good example of advantages of Bayesian inference via MCMC

method in complicated financial time series problem. Second, we apply TAR with

SV to a real data set and carry out a hypothesis testing via using Bayes factor for

model selection problem.
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Chapter 2

Bayesian Inference

Bayesian inference is a method of statistical inference by using Bayes’ theorem to

update prior beliefs when additional informations are observed. Bayesian inference

is psychologically appealing because it allows us to insert our prior beliefs about

parameters before data are observed.

Although it has a weakness of having subjective notion of probability, Bayesian

approach has wide usage in many fields of statistics. In most cases solutions of two

approaches are similar, even some cases Bayesian solutions might be advantageous.

2.1 General procedure

Bayesian inference is generally carried out in the following steps.

1. Choose the probability of parameter – prior distribution – before observing

3



data. Prior distribution reflects beliefs about parameter θ.

2. Choose model f(x|θ) reflects beliefs about x given θ.

3. After seeing data X1, · · · , Xn, use Bayes’ theorem to calculate the posterior

distribution f(θ|X1, · · · , Xn).

For the time series analysis, steps are similar.

Suppose we observe time series data y = (y1, · · · , yn) from {yt; t ≥ 0}, collection

of random variables over time. If we believe that yt has a some density function

p(·|θ), our observation can be written as p(y|θ). When we see this as the func-

tion of θ, we call it the likelihood function. Unlike Frequentist approaches that are

mostly based on this likelihood function, Bayesian introduce pre-assumed beliefs

called ’prior’, π(θ)

By Bayes’ theorem,

p(θ|y) =
p(y|θ)π(θ)∫

Θ
p(y|θ)π(θ)dθ

p(θ|y) ∝ p(y|θ)π(θ)

p(·|θ) and π(·) denote likelihood and prior density function, respectively. Also

we call p(θ|y) as posterior density. Bayesian inferences are based on this posterior

distribution.

From the choice of prior distribution, it is classified into conjugate and noncon-

jugate analysis.
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Conjugate Bayesian analysis

For convenience, the prior distribution often assumed to be conjugate, which is

from same distribution family with corresponding posterior distribution. Advan-

tages are its reasonable features and the simple calculation that may result in closed

analytical form.

Nonconjugate Bayesian analysis

However, in many situations, there is no closed analytical form of posterior dis-

tribution against our desire.

It is hard to calculate integration in the denominator of posterior density func-

tion. It may need numerical approximation, or other methods.

Since the Markov chain Monte Carlo(MCMC) method introduced, it become

possible to inference when we have no closed form of posterior distribution by ob-

taining sample draws from it. Next chapter, we see the algorithms of the MCMC

method.

2.2 Bayes factor

For the model comparison or hypothesis testing, Bayesian approach uses Bayes

factor(BF), the Bayesian version of the classical likelihood ratio test(LRT).
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Consider two models or hypotheses H1 and H2 for given data y, Bayes factor is

defined as,

BF =
p(y|H1)

p(y|H2)
=

∫
p(θ1|H1)p(y|θ1, H1)dθ1∫
p(θ2|H2)p(y|θ2, H2)dθ2

(2.1)

where θi s stand for parameters in Hi s.

Note Bayes’ theorem says p(Hj|y) ∝ p(y|Hj)p(Hj). Therefore we can see that

posterior odds ratio ∝ BF × prior odds ratio. The BF can be translated as ratio of

the posterior odds to its prior odds.

Interpretation follows that BF > 1 means H1 is more supported by the data

than H2.

Kass and Raftery [1995] pointed out that the BF is very general and does not

require alternative models to be nested. Also from the definition, the BF embraces

prior beliefs for evaluation so that it provides a way of incorporating external infor-

mation about a hypothesis.

The calculation of the BF contains integrations, numerical methods are needed.

Next chapter, we introduce one powerful method Markov chain Monte Carlo(MCMC)

method.
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Chapter 3

Markov chain Monte Carlo

Method

Consider the problem of evaluating expectation like

Eπ[T (X)] =

∫
T (x)π(x)dx.

In Bayesian inference, we are interested in posterior mean E(θ|y) or posterior

variance V ar(θ|y). Therefore, above problem is very important but it can be difficult

to calculate.

One solution is to draw independent samples (X(1), X(2), · · · , X(N)) from π(x),

then we can approximate

Eπ[T (X)] ≈ 1

N

N∑
t=1

T (X(t))
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According to the Law of large numbers, above approximation is adoptable. This

method is Monte Carlo integration.

Furthermore, it is known that above approximation is still possible if we sample

using a Markov chain. This is the main idea of MCMC method and there are two

major approaches, Metropolis-Hasting algorithm and Gibbs sampler.

3.1 Metropolis-Hasting(MH) algorithm

In order to sample from the posterior distribution, we can do the following steps.

ALGORITHM

1. Choose transition(proposal) function q(y|x)

2. Initialize θ0

3. For j from 1 to N

3.1. Generate θ∗ from q(θ|θj−1)

3.2. Calculate the importance ratio,

r =
π(θ∗)/q(θ∗|θj−1)

π(θj−1)/q(θj−1|θ∗)
=

π(θ∗)q(θj−1|θ∗)
π(θj−1)q(θ∗|θj−1)

(3.1)

3.3. Update

θj =

 θ∗ with probability min(r, 1)

θj−1 otherwise

(3.2)
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Intuitively, it seems reasonable since 1) if the jump θj−1 → θ∗ increases the

posterior density (r > 1) then θj = θ∗, or 2) θj remains with probability (1− r) to

avoid being stuck in local modes.

Note that for p(θ|y), normalizing constant is not needed because it is canceled

out when we calculate importance ratio. Therefore MH algorithm gives us a way to

inference when posterior has no closed form.

Choice of Proposal Density

A common choice of proposal density is random walk proposal,

q(x|y) = f(|x− y|)

, then importance ratio r in (3.1) becomes

r =
π(θ∗)

π(θj−1)

since q(x|y) = q(y|x). Possible choices of f include the multivariate normal density

and the multivariate t density.

Another choice is independent proposal,

q(x|y) = f(x)

, f can be the multivariate normal or t density. The more similar f is to π, the

better performance MH has.
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Remark 3.1. Gaussian random walk proposal can cause getting stuck in local

modes, very slow convergence and also low acceptance rates. Lin et al. [1987] pro-

posed employing a mixture of Gaussian proposal to overcome this problem. This

approach makes the tails of proposal distribution thicker, enables good performance.

θ∗|θj−1, k ∼ N(θj−1, kΩ)

k =


1 w.p. 0.85

9 w.p. 0.1

81 w.p. 0.05

3.2 Gibbs sampler

For joint distribution π(θ, ϕ), generating (θ, ϕ) jointly is difficult. In this situation,

following sampling procedure can be applicable.

ALGORITHM

1. Initialize θ0 and ϕ0.

2. For j from 1 to N ,

2.1. Generate θj from π(θ|ϕj−1).

2.2. Generate ϕj from π(ϕ|θj).

10



MH within Gibbs sampler

We also can use both algorithms by applying MH algorithm inside the Gibbs

sampler. For many parameters, Gibbs sampler gives a way to divide multidimen-

sional problem into smaller dimensional problems, and MH gives a way to deal with

normalizing constants.

For given (θ1, · · · , θp), the strategy is to divide this vector into blocks. A general

rule for blocking is to maximize within-block correlations and minimize the between-

block correlations. For each block, we apply Gibbs sampler, and MH algorithm

within blocks.

1. Initialize θ0 and ϕ0.

2. For j from 1 to N ,

2.1. Generate θj from π(θ|ϕj−1).

a. Generate θ∗ from proposal q(θ|ϕj−1, θj−1)

b. Calculate importance rate r as in 3.1

c. Set θj = θ∗ with probability min(1, r)

2.2. Generate ϕj from π(ϕ|θj).

a. Generate ϕ∗ from proposal q(ϕ|ϕj−1, θj)

b. Calculate importance rate r as in 3.1

c. Set ϕj = ϕ∗ with probability min(1, r)

Remark 3.2. The first m pre-chosen iterations of the MCMC sampling are

discarded, and referred to as burn-in. This is used to avoid dependence of initial
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value and ensure that samples are indeed close enough to the samples from true

distribution.

Remark 3.3. To check the convergence of MCMC iteration, mathematical ap-

proaches are difficult. Some plots are practically used such as autocorrelation func-

tion(ACF) plot, trace plot, and so on.

• Trace plot: The value of the drawn sample at each iteration versus the iteration

number.

• ACF plot: Correlations between every drawn sample and it kth lag. Since our

drawn samples form Markov chain, the ACF plot is expected decay exponen-

tially as lag increased.
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Chapter 4

Application to

Threshold Autoregressive Model

with Stochastic Volatility

4.1 Introduction

In this chapter, we study examples of Bayesian financial time series analysis based on

the former discussion. First, we solve an example problem of estimating threshold

autoregressive model with stochastic volatility model, and investigate through a

simulation. Then, we apply this model to a real data and carry out a hypothesis

testing via using Bayes factor.

To begin with, we discuss the threshold autoregressive model and stochastic

13



volatility model.

Threshold Autoregressive(TAR) model

Nonlinear models can explain various aspects of financial dynamics compared to

linear models. In the class of these models, Threshold Autoregressive model(TAR)

uses piecewise linear models to get a better approximation of the conditional mean

structure, motivated by asymmetry in rising and decline pattern.

The results from Li and Lam [1995] also showed that the conditional mean struc-

ture could depend significantly on the rise and fall of the market in the previous

day.

For time series yt, it is said to follow TAR(g; p1, · · · , pg) with yt−d as a threshold

variable if

yt = ϕ
(k)
0 +

pk∑
i=1

ϕ
(k)
i yt−i + a

(k)
t , rk−1 ≤ yt−d < rk, for k = 1, · · · , g (4.1)

where

g: number of regime,

{a(k)t } : innovation, i.i.d., ∼ N(0, σ2
k)

d: threshold lag, positive integer,

rj: threshold variable, real, −∞ = r0 < r1 < · · · < rg = ∞

TAR model has not been widely used in practice because it is hard to esti-
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mate threshold values. Chen et al. [1995] proposed a procedure for estimating the

threshold values and other parameters objectively via Bayesian inference with Gibbs

sampler.

Stochastic Volatility(SV) model

Volatility is an important factor in financial or economic time series and has

many applications, such as option trading, risk management, and so on.

One of approaches to model volatility is stochastic volatility model(SV) which

introduce an innovation to the conditional variance equation of at.

For at, innovation or shock for time series yt, it is said to follow SV model if

at =
√

htϵt, loght = α0 +

p∑
i=1

αi log ht−i + ηt (4.2)

where

ϵt: i.i.d. ∼ N(0, 1)

ηt : i.i.d. ∼ N(0, σ2)

{ϵt} and {ηt} are independent.

Adding ηt, the innovation, considerably increase the flexibility of the model in

describing the ht compared to other volatility models. However, for each shock at

the model uses two innovations, that makes it difficult to estimate SV model (Tsay

[2010]). The MCMC method can be a solution for this.
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4.2 Model

In this simulation we combine TAR (4.1) and SV (4.2). Consider following model.

yt =

ϕ
(1)
0 + ϕ

(1)
1 yt−1 + at , yt−d ≤ r

ϕ
(2)
0 + ϕ

(2)
1 yt−1 + at , yt−d > r

at =
√
htϵt, ϵt

i.i.d.∼ N(0, 1)

log ht = α0 + α1 log ht−1 + ηt, ηt
i.i.d.∼ N(0, σ2) (4.3)

where

{ϵt} and {ηt} are independent.

d: delay lag

r: threshold value

We are interested in estimating unknown parameter θ = (ϕ,α, σ2, r, d) based on

observation y = (y1, · · · , yn). (where ϕ = (ϕ
(1)
0 , ϕ

(1)
1 , ϕ

(2)
0 , ϕ

(2)
1 ), α = (α0, α1))

In this problem, maximum likelihood method is not applicable because of the

existence of latent variables h = (h1, · · · , hn). By using data augmentation(Tanner

and Wong [1987]) in the Bayesian framework, we can overcome this difficulty.

4.3 Prior settings and sampling scheme

Applying data augmentation strategy, the parameter space is augmented to (θ,h).

Conditioning on h, likelihood p(y|θ,h) has closed form.
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Note that given (θ,h), the conditional likelihood is expressed as

p(y|θ,h) =
T∏

t=s+1

[
2∑

j=1

1√
2πht

exp

{
−(yt − µt)

2

ht

}
Ijt

]
(4.4)

where

µt = ϕ
(j)
0 + ϕ

(j)
1 yt−1

Ijt = I(rj−1 ≤ yt−d < rj)

If we assume independent priors, posterior density is generally given as multi-

plying (4.4) by prior density.

Specifically, we consider Gibbs sampling as following.

STEP1. Sample h from f(h|y,ϕ,α, σ2, r, d)

STEP2. Sample α from f(α|y,ϕ,h, σ2, r, d)

STEP3. Sample σ2 from f(σ2|y,ϕ,h,α, r, d)

STEP4. Sample ϕ from f(ϕ|y,h,α, σ2, r, d)

STEP5. Sample r from f(r|y,ϕ,h,α, σ2, d)

STEP6. Sample d from f(d|y,ϕ,h,α, σ2, r)

Inside each steps, we also use MH algorithm with mixed Gaussian proposal as

in Remark 3.1.
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STEP1. Volatility Vector h

The volatility vector h is drawn element-wise. Jacquier et al. [1994] use following

derivation of univariate conditional densities.

f(ht|y,ϕ,h−t,α, σ2, r, d)

∝ f(at|ht, yt, yt−1, ϕ)f(ht|ht−1, α, σ
2)f(ht+1|ht, α, σ

2)

∝ N

(
yt − µt√

ht

)
N

(
log ht − νt√

σ2
h

)
(4.5)

where h−t is the vector of h excluded ht, N(·) is the density of standard normal

distribution, and

µt =

ϕ
(1)
0 + ϕ

(1)
1 yt−1 , yt−d ≤ r

ϕ
(2)
0 + ϕ

(2)
1 yt−1 , yt−d > r

νt = α0(1− α1)/(1 + α2
1) + α1(log ht−1 + log ht+1)/(1 + α2

1)

σ2
h = σ2/(1 + α2

1)

,with our model assumption. Since normalizing constant is difficult to calculate, we

use MH algorithm with (4.5).

Remark 4.1. Another approach to sample volatility vector h is to use of the

forward filtering and backward sampling within the Kalman filter framework. (Shep-

hard [1994] and See Tsay [2010])
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STEP2. Volatility Coefficient α

Note that

f(α|y,ϕ,h, σ2, r, d) = f(α|h, σ2) (4.6)

and the right-hand side of the above equation is the form of the AR(1) model since

log ht follows AR(1) given h.

Therefore, we set the conjugate prior distribution of α as multivariate normal

MVN(α0, V0)

, then the posterior distribution becomes

MVN(α∗, V∗)

where

α∗ = V∗(
n∑

t=2

zt log ht/σ
2 + V −1

0 α0),

V −1
∗ =

n∑
t=2

ztz
′
t/σ

2 + V −1
0

zt = (1, log ht−1)
′

STEP3. Volatility Innovation σ2

Note that

f(σ2|y,ϕ,h,α, r, d) = f(σ2|h,α) (4.7)
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and the right-hand side of the above equation is the form of the AR(1) model.

We set the conjugate prior distribution as (mλ)/σ2 ∼ χ2
m, then

mλ+
∑n

t=2 η
2
t

σ2
∼ χ2

m+n−1

STEP4. TAR Coefficient ϕ

We set the prior distribution of (ϕ
(k)
0 , ϕ

(k)
1 ) as

MVN(ϕk0,Wk0)

and posterior distribution can be easily obtained similarly as STEP2.

STEP5. Threshold Variable r

We assume r follows uniform distribution on (l, u). l and u are suitably chosen

as quantiles of the observation y to ensure sufficient sample size for valid inference

(Chen et al. [1995]).

STEP6. Delay lag d

We assume d follows a discrete uniform distribution on {1, 2, · · · , d0}. Then

posterior distribution is multinomial distribution with probability

p(d = i|y,ϕ,h,α, σ2, r) =
f(ϕ,h,α, σ2, d = i, r|y)∑d0
j=1 f(ϕ,h,α, σ2, d = j, r|y)
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4.4 Simulation study

Until now we see TAR with SV model and Bayesian estimation methodologies. We

now try simulation experiment through an example to investigate the result.

We consider the following model.

yt =

0.02− 0.8yt−1 + at , yt−3 ≤ 0.5

−3 + 0.5yt−1 + at , yt−3 > 0.5

at =
√
htϵt, ϵt

i.i.d.∼ N(0, 1)

log ht = −0.2 + 0.8 log ht−1 + ηt, ηt
i.i.d.∼ N(0, 1) (4.8)

The choice of autoregressive coefficients and stochastic volatility coefficients refer

to the explanations of So et al. [2002] that the autoregressive coefficient is usually

positive when yt ≥ 0 and the converse is true. Also we put the fact that high

persistence in variance was discovered in most of the stochastic volatility literature.

T=500 samples are generated, ’R 3.0.2 for Windows’ is used for simulation (some

codes use Fortran for the speed issue) and Total 3000 iterations are conducted for

sampling, and the first 1000 iterations are ignored as burn-in iterations.

Initial values are set to be (0, 0, 0, 0) for ϕ, (0.1, 0.5) for α, 10 for σ2, median

of sample yt for r, and 5 for d. Latent variable vector h are randomly chosen from

N(0, 1).

Also hyperparameters -parameters in prior distribution- are set to be α0 = (0, 0),

V0 = diag(10, 10), ϕk0 = (0, 0), Wk0 = diag(10, 10), l and u are 0.1, 0.9 quantiles of

21



yt , d0 = 10.

Fig.4.1 shows the generated sample yt, ht and 90% CI of sampled ht.

Table 4.1 shows the result statistics of the estimated posterior distribution.

We can see that estimated values are similar to the true values and 95% confi-

dence interval include the true values.

Table 4.1: Simulation results

Parameter ϕ
(1)
0 ϕ

(1)
1 ϕ

(2)
0 ϕ

(2)
1 α0 α1 σ2 r d

True 0.02 -0.8 -3 0.5 -0.2 0.8 1 0.5 3

Mean 0.017 -0.775 -3.030 0.530 -0.172 0.812 1.021 0.456 3

Median -0.022 -0.795 -3.016 0.519 -0.156 0.810 0.989 0.402 3

Std 0.047 0.029 0.051 0.038 0.068 0.038 0.137 0.113 0

95% CI low. -0.040 -0.862 -3.069 0.440 -0.220 0.741 0.655 0.380 3

95% CI upp. 0.066 -0.746 -2.836 0.562 -0.078 0.893 1.261 0.614 3
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Figure 4.1: Generated time series yt & ht, and estimated volatility ht
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4.5 Empirical study

In this section, we see how to apply Bayesian inference to real data analysis. This

section includes estimating parameters and hypothesis testing for model selection.

Chen et al. [1995] studied U.S. monthly civilian unemployment rates from the

2Q of 1948 to the 1Q of 1991 to estimate TAR(2;4,2) model. We use the same data

but updated with 675 observations from 2Q of 1948 to the 1Q of 2004. This data

is available in BAYSTAR package in R. Figure 4.2 shows the time plot of this data.

Here we conduct analysis on this data set for the proposed model to compare result

with only TAR model. We use the first differenced series rt = yt − yt−1 since the

sample autocorrelation function decays slowly.

Time
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Figure 4.2: Time series plot of U.S. monthly unemployment rates
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Estimation

Initial settings are similar to the former simulation study except that we use

AR(4) model for regime 1, and AR(2) model for regime 2. The estimated parameters

are in Table 4.2.

Table 4.2: Parameters estimated in real data analysis

Parameter ϕ
(1)
0 ϕ

(1)
1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(1)
4 ϕ

(2)
0 ϕ

(2)
1 ϕ

(2)
2 α0 α1 σ2 r d

Mean 0.003 -0.057 0.114 0.020 0.086 -0.032 0.227 0.255 -2.601 0.252 0.501 0.050

Median -0.003 -0.021 0.130 -0.008 0.134 -0.066 0.183 0.430 -2.541 0.243 0.502 0.050 2

Std 0.010 0.100 0.095 0.057 0.059 0.037 0.049 0.191 0.182 0.054 0.035 0.030

95% CI low. -0.003 -0.282 0.000 -0.008 0.000 -0.066 0.183 0.048 -3.117 0.119 0.446 0.003 2

95% CI upp. 0.025 0.000 0.285 0.147 0.134 0.009 0.280 0.430 -2.419 0.310 0.567 0.094 2

Compared to Chen et al. [1995], estimated coefficients in the mean structure,

threshold variables are similar to them. With this model, we also can model the

volatility of the series. To check the convergence, we practically use trace plot(Figure

(4.3)) and autocorrelation plot(Figure (4.4)). From the figures, we can say that our

MCMC samples are well converged to the samples from true posterior distribution.

Model Comparison

Next, we use Bayes factor to compare model. Assume that M1 is our model, M2

is the TAR(2; 4, 2) model. If the calculated BF is greater than 1, we can conclude

that our model is more supported by the data y.

In the BF definition (2.1), it is hard to compute integrations. There are many

25



numerical approximation methods for calculation of BF, here we use MCMC method

with posterior density.

Note that in the definition of BF (Remark 4.2) ,

p(y|Mj) =

∫
p(y|Θj,Mj)π(Θj|Mj)dΘj

≈

(
1

N −M

N−M∑
i=1

p(y|Θ(i)
j ,Mj)

−1

)−1

(4.9)

where

Θj : the parameters of the Model j

π(Θj|Mj) : the prior density under Mj,

Θ
(i)
j : the sample drawn from ith MCMC iteration.

In this example, logBF = log 1197.362 − log 1000.282 = 0.180 and BF = 1.20.

Thus our model M1 is more supported by the data.

Remark 4.2. (4.9) is derived as below (see Kass and Raftery [1995])

Dropping the notational dependence on Mj, then

p(y|Mj) → p(y) =

∫
p(y|θ)π(θ)dθ

The simplest Monte Carlo integration estimation is

p̂(y|Mj) =
1

m

m∑
i=1

p(y|θ(i))
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where θ(i) is the ith sample from prior distribution π(θ).

To improve estimation, above equation becomes,

p̂(y|Mj) =

∑m
i=1wip(y|θ(i))∑m

i=1 wi

(4.10)

where

wi = π(θ(i))/p(θ(i)|y),

θ(i) is the ith sample from posterior distribution p(θ|y).

Then use the following equation and substitute into the (4.10), these give the

result of (4.9)

p(θ|y) = p(y|θ)π(θ)
p(y)
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Figure 4.3: Trace plot of MCMC iteration in real data analysis
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Figure 4.4: Autocorrelation function(ACF) plot of MCMC iteration in real data analysis
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Chapter 5

Conclusion

We see the concepts and application of Bayesian financial time series via MCMC

method. Unlike Frequentist approach, Bayesian inference is based on posterior dis-

tribution so that prior beliefs before observing data can be included in analysis.

Also by Bayes factor, hypothesis testing can be flexible.

From an application example, we apply MCMC method to estimate threshold

autoregressive model with stochastic volatility. Although TAR and SV model have

very complex structure, by using MCMC we see that parameters can be nicely esti-

mated. Also we studied real data to compare with other literature. After estimating

parameters, we conduct hypothesis testing for model selection via Bayes factor. Here

we see that by using BF, testing problem becomes relatively simple.

In addition to the problem of estimating parameters or model selection in this

thesis, there are many other applications of Bayesian inference with MCMC. Ap-
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plications include other model selection problem such as unit root test, also the

important issue in financial time series. Therefore, the model we saw could be ex-

tended to unit root test, with an another approximate calculation of Bayes factor

and mixed prior distributions proposed by Li and Yu [2010] and Chen et al. [2013].
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국문 초록

본 논문에서는 금융 시계열 데이터의 베이지안 추론 방법에 대해서 소

개하고 활용 예제를 제시한다. 베이지안 접근은 자료의 관측 전 모수에 

대한 사전 확률분포를 이용하여 사후 분포를 계산하여 추론하는 방법으

로서, 자료를 관측하기 전의 믿음을 분석에 활용할 수 있다는 장점이 있

다. 또한 Markov chain Monte Carlo(MCMC) 등의 계산 방법을 통해 복

잡한 모형을 비교적 쉽고 빠르게 분석할 수 있다.

따라서 본 논문에서는 먼저 전반적인 베이지안 추론 방법과 시계열 자

료에 활용하는 방법에 대해서 살펴본 후, 계산을 위한 MCMC 방법에 

대해서 소개한다. 또한 이러한 소개를 바탕으로 Stochastic Volatility를 

갖는 Threshold Autoregressive 모형의 모수를 추정하는 문제를 시뮬레

이션을 통해서 수행해보도록 한다. 이에 더해 위의 모형을 실제 시계열 

자료에 적용해보도록 하고, 모형 선택 가설검정 예제를 Bayes factor를 

이용한 방법을 통해 수행한다.

주요어 : 베이지안 시계열 분석, 혼합 사전 확률, 마르코프 연쇄 몬테칼

로 방법, Threshold autoregressive, Stochastic volatility, Bayes factor.

학번 : 2012-20230
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