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Abstract

This thesis introduces concepts and applications of Bayesian inference for finan-
cial time series. Bayesian inference is a method of statistical inference using Bayes’
theorem to update prior beliefs as additional informations are observed. This al-
lows us to use our prior beliefs of parameters and the Markov chain Monte Carlo
method(MCMC) makes the analysis is relatively fast and simple.

In this thesis we introduce the time series Bayesian inference and the MCMC
method, illustrate an example of estimating unknown parameters in threshold au-
toregressive(TAR) models with stochastic volatility(SV). Moreover, we apply TAR
with SV model to a real data set and conduct a hypothesis test for model selection

via using Bayes factor.

Key words : Bayesian time series, Mixed Prior, Markov chain Monte Carlo, Thresh-

old autoregressive, Stochastic volatility, Bayes factor.
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Chapter 1

Introduction

Advances of computational methodology have increased ability to solve complicated
problem. They also extend the applicability of many existing statistical methods.
Especially in the area of econometrics with many complex models, advantages of
computational method have great importance.

Therefore, in this thesis we introduce one of the outstanding developments in
computational methodology, Markov chain Monte Carlo(MCMC) method that are
widely applicable in financial time series. First, in Chapter 2 we discuss Bayesian
inference including general procedure and model comparison method via using Bayes
factor. Bayesian inference provides us to insert prior beliefs of parameters before
observing data. Second, in Chapter 3 we discuss algorithms of MCMC, which gives
us the simple and fast way to calculate posterior density in Bayesian inference.

Then, in Chapter 4 we focus on the financial time series problem. In particular, we



carry out simulation and empirical studies based on former discussions.

For application, first we demonstrate simulation study of threshold autoregressive
model(TAR) with stochastic volatility(SV). TAR model is one of tools to capture
the nonlinearity of the financial time series. As well as mean structure, SV model is
considered because modeling volatility has many applications in financial time series
such as option trading or risk management. Also these two models are combined
so this could be a good example of advantages of Bayesian inference via MCMC
method in complicated financial time series problem. Second, we apply TAR with
SV to a real data set and carry out a hypothesis testing via using Bayes factor for

model selection problem.



Chapter 2

Bayesian Inference

Bayesian inference is a method of statistical inference by using Bayes’ theorem to
update prior beliefs when additional informations are observed. Bayesian inference
is psychologically appealing because it allows us to insert our prior beliefs about
parameters before data are observed.

Although it has a weakness of having subjective notion of probability, Bayesian
approach has wide usage in many fields of statistics. In most cases solutions of two

approaches are similar, even some cases Bayesian solutions might be advantageous.

2.1 General procedure
Bayesian inference is generally carried out in the following steps.

1. Choose the probability of parameter — prior distribution — before observing



data. Prior distribution reflects beliefs about parameter 6.
2. Choose model f(xz]0) reflects beliefs about x given 6.
3. After seeing data Xi,---, X, use Bayes’ theorem to calculate the posterior

distribution f(6| Xy, -, X,).

For the time series analysis, steps are similar.

Suppose we observe time series data y = (y1,- -, y,) from {y;;t > 0}, collection
of random variables over time. If we believe that y; has a some density function
p(+]0), our observation can be written as p(y|f#). When we see this as the func-
tion of 6, we call it the likelihood function. Unlike Frequentist approaches that are
mostly based on this likelihood function, Bayesian introduce pre-assumed beliefs

called "prior’, 7 ()

By Bayes’ theorem,

om0
POl) = e (6)d

p(0ly) o p(yld)=(0)

p(+]0) and m(-) denote likelihood and prior density function, respectively. Also
we call p(f|y) as posterior density. Bayesian inferences are based on this posterior
distribution.

From the choice of prior distribution, it is classified into conjugate and noncon-

jugate analysis.



Conjugate Bayesian analysis

For convenience, the prior distribution often assumed to be conjugate, which is
from same distribution family with corresponding posterior distribution. Advan-
tages are its reasonable features and the simple calculation that may result in closed

analytical form.

Nonconjugate Bayesian analysis

However, in many situations, there is no closed analytical form of posterior dis-
tribution against our desire.

It is hard to calculate integration in the denominator of posterior density func-
tion. It may need numerical approximation, or other methods.

Since the Markov chain Monte Carlo(MCMC) method introduced, it become
possible to inference when we have no closed form of posterior distribution by ob-
taining sample draws from it. Next chapter, we see the algorithms of the MCMC

method.

2.2 Bayes factor

For the model comparison or hypothesis testing, Bayesian approach uses Bayes

factor(BF), the Bayesian version of the classical likelihood ratio test(LRT).



Consider two models or hypotheses H; and H, for given data y, Bayes factor is

defined as,

gp — PWIHL) _ [ p(6H))p(y|6), Hi)do,
p(y|Hz) fp(QQ‘HQ)p(y‘GZa Hy)d0,

(2.1)

where 0; s stand for parameters in H; s.

Note Bayes’ theorem says p(H,|y) o p(y|H;)p(H;). Therefore we can see that
posterior odds ratio o« BE X prior odds ratio. The BF can be translated as ratio of
the posterior odds to its prior odds.

Interpretation follows that BF > 1 means H; is more supported by the data
than H,.

Kass and Raftery [1995] pointed out that the BF is very general and does not
require alternative models to be nested. Also from the definition, the BF embraces
prior beliefs for evaluation so that it provides a way of incorporating external infor-
mation about a hypothesis.

The calculation of the BF contains integrations, numerical methods are needed.
Next chapter, we introduce one powerful method Markov chain Monte Carlo(MCMC)

method.



Chapter 3

Markov chain Monte Carlo

Method

Consider the problem of evaluating expectation like

In Bayesian inference, we are interested in posterior mean F(f|y) or posterior
variance Var(0|y). Therefore, above problem is very important but it can be difficult
to calculate.

One solution is to draw independent samples (XM, X ... X)) from m(z),

then we can approximate

ELT(X)] % 1 3 T(x0)



According to the Law of large numbers, above approximation is adoptable. This

method is Monte Carlo integration.
Furthermore, it is known that above approximation is still possible if we sample
using a Markov chain. This is the main idea of MCMC method and there are two

major approaches, Metropolis-Hasting algorithm and Gibbs sampler.

3.1 Metropolis-Hasting(MH) algorithm

In order to sample from the posterior distribution, we can do the following steps.

ALGORITHM

1. Choose transition(proposal) function ¢(y|z)
2. Initialize 6,
3. For j from 1 to N

3.1. Generate 6* from ¢(0|6,_1)

3.2. Calculate the importance ratio,

m(0%)/q(0"10;-1)  w(0")q(0;-1]6")

= = 3.1
7(0,0)/a05118%) 7051 )a(6°10; ) &1)
3.3. Update
0*  with probability min(r, 1
0; = o) (3.2)
01 otherwise
8



Intuitively, it seems reasonable since 1) if the jump 6;_; — 60" increases the
posterior density (r > 1) then 6; = 6%, or 2) ; remains with probability (1 —r) to
avoid being stuck in local modes.

Note that for p(f|y), normalizing constant is not needed because it is canceled
out when we calculate importance ratio. Therefore MH algorithm gives us a way to

inference when posterior has no closed form.

Choice of Proposal Density

A common choice of proposal density is random walk proposal,

q(zly) = f(lz —yl)

, then importance ratio r in (3.1) becomes

since q(z|y) = q(y|x). Possible choices of f include the multivariate normal density
and the multivariate ¢ density.

Another choice is independent proposal,

q(zly) = f(=)

, f can be the multivariate normal or ¢ density. The more similar f is to m, the

better performance MH has.



Remark 3.1. Gaussian random walk proposal can cause getting stuck in local
modes, very slow convergence and also low acceptance rates. Lin et al. [1987] pro-
posed employing a mizture of Gaussian proposal to overcome this problem. This
approach makes the tails of proposal distribution thicker, enables good performance.

9*’93',1,]{ ~ N(Hj,l,kQ)
(

1 wp 085

k=49 wp 01

81 w.p. 0.05

3.2 Gibbs sampler

For joint distribution 7 (6, ¢), generating (6, ¢) jointly is difficult. In this situation,

following sampling procedure can be applicable.

ALGORITHM

1. Initialize 6y and ¢y.

2. For j from 1 to N,

2.1. Generate 0; from 7(0|¢;_1).
2.2. Generate ¢; from m(¢|6;).

10



MH within Gibbs sampler

We also can use both algorithms by applying MH algorithm inside the Gibbs
sampler. For many parameters, Gibbs sampler gives a way to divide multidimen-
sional problem into smaller dimensional problems, and MH gives a way to deal with
normalizing constants.

For given (61, -- ,6,), the strategy is to divide this vector into blocks. A general
rule for blocking is to maximize within-block correlations and minimize the between-
block correlations. For each block, we apply Gibbs sampler, and MH algorithm

within blocks.

1. Initialize 6y and ¢y.

2. For j from 1 to N,

2.1. Generate 0; from 7(0|¢;_1).

a. Generate 6* from proposal ¢(8|¢;_1,0;-1)
b. Calculate importance rate r as in 3.1
c. Set 0; = 6* with probability min(1,r)

2.2. Generate ¢, from 7(|0;).

a. Generate ¢* from proposal ¢(¢|¢;_1,6;)
b. Calculate importance rate r as in 3.1
c. Set ¢; = ¢* with probability min(1,r)

Remark 3.2. The first m pre-chosen iterations of the MCMC sampling are

discarded, and referred to as burn-in. This is used to avoid dependence of initial

11



value and ensure that samples are indeed close enough to the samples from true

distribution.

Remark 3.3. To check the convergence of MCMC' iteration, mathematical ap-
proaches are difficult. Some plots are practically used such as autocorrelation func-

tion(ACF) plot, trace plot, and so on.

e Trace plot: The value of the drawn sample at each iteration versus the iteration

number.

o ACF plot: Correlations between every drawn sample and it kth lag. Since our
drawn samples form Markov chain, the ACF plot is expected decay exrponen-

tially as lag increased.

12



Chapter 4

Application to
Threshold Autoregressive Model

with Stochastic Volatility

4.1 Introduction

In this chapter, we study examples of Bayesian financial time series analysis based on
the former discussion. First, we solve an example problem of estimating threshold
autoregressive model with stochastic volatility model, and investigate through a
simulation. Then, we apply this model to a real data and carry out a hypothesis
testing via using Bayes factor.

To begin with, we discuss the threshold autoregressive model and stochastic

13



volatility model.

Threshold Autoregressive(TAR) model

Nonlinear models can explain various aspects of financial dynamics compared to
linear models. In the class of these models, Threshold Autoregressive model(TAR)
uses piecewise linear models to get a better approximation of the conditional mean
structure, motivated by asymmetry in rising and decline pattern.

The results from Li and Lam [1995] also showed that the conditional mean struc-
ture could depend significantly on the rise and fall of the market in the previous
day.

For time series y;, it is said to follow TAR(g; p1,- -+ ,py) With y;_q as a threshold

variable if
k 2 k k
Yt = ¢(() : +Z¢§ )yt—i —|—a£ )> =1 < Yea < T, for k=1,--- g (4.1)
i=1
where

g: number of regime,
{a} : innovation, i.i.d., ~ N(0,02)
d: threshold lag, positive integer,

rj: threshold variable, real, —oo =rg <r; <--- <7, =00

TAR model has not been widely used in practice because it is hard to esti-

14



mate threshold values. Chen et al. [1995] proposed a procedure for estimating the
threshold values and other parameters objectively via Bayesian inference with Gibbs

sampler.

Stochastic Volatility(SV) model
Volatility is an important factor in financial or economic time series and has
many applications, such as option trading, risk management, and so on.
One of approaches to model volatility is stochastic volatility model(SV) which
introduce an innovation to the conditional variance equation of a;.
For a;, innovation or shock for time series y;, it is said to follow SV model if
p
a; = \/h_tet, loghy = ap + Z a;loghy_; + (4.2)
i=1

where

€: ii.d. ~ N(0,1)
ne ¢ idd. ~ N(0,0%)

{&:} and {n;} are independent.

Adding 7, the innovation, considerably increase the flexibility of the model in
describing the h; compared to other volatility models. However, for each shock a,
the model uses two innovations, that makes it difficult to estimate SV model (Tsay

[2010]). The MCMC method can be a solution for this.

15



4.2 Model

In this simulation we combine TAR (4.1) and SV (4.2). Consider following model.

¢0 +¢1 Y1+ ar , Yiq ST
Y =
¢(()2) + ¢(2)Z/t—1 +as , Ypa>T

ar = \/ t€t, € Z’l\Jd N O 1)

loghy = ag+ajloghs_ 1+, g N(0, 02) (4.3)
where

{&:} and {n;} are independent.
d: delay lag

r: threshold value

We are interested in estimating unknown parameter 6 = (¢, o, 0%, r, d) based on

observation y = (y1, -+ ,Yyn). (where ¢ = (¢0 ,(bl ,(bo : 1 ) a = (o, 1))

In this problem, maximum likelihood method is not applicable because of the
existence of latent variables b = (hy,-- - , hy,). By using data augmentation(Tanner

and Wong [1987]) in the Bayesian framework, we can overcome this difficulty.

4.3 Prior settings and sampling scheme

Applying data augmentation strategy, the parameter space is augmented to (0, h).

Conditioning on h, likelihood p(y|@, k) has closed form.

16



Note that given (6, h), the conditional likelihood is expressed as

plylo.h) = T [Z ﬁexp{—%}fﬁ] (14)

where

e = ¢§j)+¢§j)yt71

i = I(rjo1 <y—a <1y)

If we assume independent priors, posterior density is generally given as multi-

plying (4.4) by prior density.

Specifically, we consider Gibbs sampling as following.

STEP1. Sample h from f(hly, ¢, a,c? r,d)
STEP2. Sample « from f(aly, ¢, h,o? r, d)
STEP3. Sample o2 from f(c?|y, ¢, h,a,r,d)
STEP4. Sample ¢ from f(o|y, h,a, 02, 7,d)
STEP5. Sample r from f(r|y, ¢, h, o, 0%, d)

STEP6. Sample d from f(d|y, ¢, h, o, 0% 1)

Inside each steps, we also use MH algorithm with mixed Gaussian proposal as

in Remark 3.1.

17



STEP1. Volatility Vector h
The volatility vector h is drawn element-wise. Jacquier et al. [1994] use following

derivation of univariate conditional densities.

f(ht|y’ ¢7 h—ta «, 0-27 r, d)

X f(at|ht7yt7 Yt—1, ¢)f(ht|ht—la Q, U2)f(ht+1|ht, «, 02)
Yt — Mt log hy — 14
o N N| ——— 4.5
( Vhi ) ( o} ) (45)

where h_; is the vector of h excluded hy, N(-) is the density of standard normal

distribution, and

(()1) + ¢§1)yt—1 s Y—a ST

He =
QSE]Q) + ¢§2)yt—1 y Yt—a > T

v = a0l —a)/(L+a2) +ai(loghey +log hust) /(14 a?)

it = o[t ad

,with our model assumption. Since normalizing constant is difficult to calculate, we

use MH algorithm with (4.5).

Remark 4.1. Another approach to sample volatility vector h is to use of the
forward filtering and backward sampling within the Kalman filter framework. (Shep-

hard [1994] and See Tsay [2010])

18



STEP2. Volatility Coefficient «

Note that

flaly. ¢, k.o r,d) = f(alh,o?)

and the right-hand side of the above equation is the form of the AR(1) model since

log hy follows AR(1) given h.

(4.6)

Therefore, we set the conjugate prior distribution of a as multivariate normal

MV N(ay, Vo)
, then the posterior distribution becomes
MV N(a, V)

where

n

a, = V() _alogh/o® + Vi aw),

=2
n
-1 1y 2 -1
Vi = E 2z /0" + Vg
=2

z = (1,loghy_)

STEP3. Volatility Innovation o2

Note that
f(0®ly, é, h,a,1,d) = f(0*h, )

19
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and the right-hand side of the above equation is the form of the AR(1) model.

We set the conjugate prior distribution as (mM)/o? ~ x?2,, then

mA + Z?:Q 771:2

2
o2 ~ Xm-l—n—l

STEP4. TAR Coefficient ¢

We set the prior distribution of ( (()k), ¢§’“’) as
MV N (¢, Who)

and posterior distribution can be easily obtained similarly as STEP2.

STEP5. Threshold Variable r
We assume 7 follows uniform distribution on (I, ). [ and u are suitably chosen

as quantiles of the observation y to ensure sufficient sample size for valid inference

(Chen et al. [1995]).

STEPG6. Delay lag d
We assume d follows a discrete uniform distribution on {1,2,--- ,do}. Then

posterior distribution is multinomial distribution with probability

f(¢7 h7 a? 0-27 d - 7:7 r‘y)
S0 f(p h a0 d=jr]y)

p(d=ily,¢,h,a,0° 1) =

20



4.4 Simulation study

Until now we see TAR with SV model and Bayesian estimation methodologies. We
now try simulation experiment through an example to investigate the result.

We consider the following model.

0.02—-08y;—1+a; , y—3<0.5
Y =

—3+05y;-1+a; , y—3>0.5
ay = 1/ htEt, €t Z’Z\'d N(O, 1)

loghy = —02+08loghi1+n, m < N(0,1) (4.8)

The choice of autoregressive coefficients and stochastic volatility coefficients refer
to the explanations of So et al. [2002] that the autoregressive coefficient is usually
positive when y, > 0 and the converse is true. Also we put the fact that high
persistence in variance was discovered in most of the stochastic volatility literature.

T=500 samples are generated, 'R 3.0.2 for Windows’ is used for simulation (some
codes use Fortran for the speed issue) and Total 3000 iterations are conducted for
sampling, and the first 1000 iterations are ignored as burn-in iterations.

Initial values are set to be (0,0,0,0) for ¢, (0.1,0.5) for e, 10 for %, median
of sample y; for r, and 5 for d. Latent variable vector h are randomly chosen from
N(0,1).

Also hyperparameters -parameters in prior distribution- are set to be oy = (0, 0),

Vo = diag(10,10), ¢ro = (0,0), Wyo = diag(10,10), I and u are 0.1, 0.9 quantiles of

21



Yi , do = 10.
Fig.4.1 shows the generated sample y;, h; and 90% CI of sampled h;.
Table 4.1 shows the result statistics of the estimated posterior distribution.
We can see that estimated values are similar to the true values and 95% confi-

dence interval include the true values.

Table 4.1: Simulation results

Parameter ‘ ¢(<)1) ¢§1) qbéQ) ¢(12) ‘ ag aq o2 T d
True 0.02 -0.8 -3 0.5 -0.2 0.8 1 0.5 3
Mean 0.017 -0.775 -3.030 0.530 -0.172 0.812 1.021 0.456 3
Median -0.022 -0.795 -3.016 0.519 -0.156 0.810 0.989 0.402 3
Std 0.047 0.029 0.051 0.038 0.068 0.038 0.137 0.113 0
95% CI low. -0.040 -0.862 -3.069 0.440 -0.220 0.741 0.655 0.380 3

95% CI upp. 0.066 -0.746 -2.836 0.562 -0.078 0.893 1.261 0.614 3

22
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Figure 4.1: Generated time series y; & hy, and estimated volatility hy
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4.5 Empirical study

In this section, we see how to apply Bayesian inference to real data analysis. This
section includes estimating parameters and hypothesis testing for model selection.
Chen et al. [1995] studied U.S. monthly civilian unemployment rates from the
2Q of 1948 to the 1Q of 1991 to estimate TAR(2;4,2) model. We use the same data
but updated with 675 observations from 2Q of 1948 to the 1Q of 2004. This data
is available in BAYSTAR package in R. Figure 4.2 shows the time plot of this data.
Here we conduct analysis on this data set for the proposed model to compare result
with only TAR model. We use the first differenced series r; = y; — y;—1 since the

sample autocorrelation function decays slowly.

10 —

unemployrate

600 700

Figure 4.2: Time series plot of U.S. monthly unemployment rates

24



Estimation
Initial settings are similar to the former simulation study except that we use
AR(4) model for regime 1, and AR(2) model for regime 2. The estimated parameters

are in Table 4.2.

Table 4.2: Parameters estimated in real data analysis

Paramotor oD oD o) oD oD ‘ e o) e ‘ oo o ‘ o2 r d
Mean 0.003  -0.057 0.114  0.020  0.086 | -0.032 0.227  0.255 | -2.601 0.252 | 0.501  0.050
Median -0.003  -0.021  0.130 -0.008 0.134 | -0.066 0.183  0.430 | -2.541  0.243 | 0.502  0.050 | 2
Std 0.010  0.100  0.095  0.057  0.059 | 0.037  0.049 0.191 | 0.182  0.054 | 0.035  0.030
95% CI low. | -0.003  -0.282  0.000  -0.008 0.000 | -0.066  0.183  0.048 | -3.117  0.119 | 0.446 0.003 | 2
95% CI upp. | 0.025  0.000  0.285  0.147  0.134 | 0.009  0.280 0.430 | -2.419 0.310 | 0.567 0.094 | 2

Compared to Chen et al. [1995], estimated coefficients in the mean structure,
threshold variables are similar to them. With this model, we also can model the
volatility of the series. To check the convergence, we practically use trace plot(Figure
(4.3)) and autocorrelation plot(Figure (4.4)). From the figures, we can say that our

MCMC samples are well converged to the samples from true posterior distribution.

Model Comparison

Next, we use Bayes factor to compare model. Assume that M; is our model, Ms
is the TAR(2;4,2) model. If the calculated BF is greater than 1, we can conclude
that our model is more supported by the data y.

In the BF definition (2.1), it is hard to compute integrations. There are many

25
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numerical approximation methods for calculation of BF, here we use MCMC method
with posterior density.

Note that in the definition of BF (Remark 4.2) |
Pl = [ p(yl6s, M)m(©,0)d8,

(N i i 2_: p(y|®§i),Mj>‘1> (4.9)

=1

Q

where

©; : the parameters of the Model j
7(0;|M;) : the prior density under M,

@gi) . the sample drawn from ith MCMC iteration.

In this example, log BF = log 1197.362 — log 1000.282 = 0.180 and BF' = 1.20.

Thus our model M; is more supported by the data.

Remark 4.2. (4.9) is derived as below (see Kass and Raftery [1995])

Dropping the notational dependence on M;, then

p(yIM;) = ply) = / p(y160)m(9)d6

The simplest Monte Carlo integration estimation is

m

POIM) = — 3 plylo®)

i=1

26



where #) is the ith sample from prior distribution 7(6).

To improve estimation, above equation becomes,

plyiMy) = =P
i=1 "1

(4.10)

where

w; = m(609)/p(6]y),

0@ is the ith sample from posterior distribution p(6]|y).

Then use the following equation and substitute into the (4.10), these give the

result of (4.9)

_ p(ylo)m(0)

p(0ly) )

27
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Chapter 5

Conclusion

We see the concepts and application of Bayesian financial time series via MCMC
method. Unlike Frequentist approach, Bayesian inference is based on posterior dis-
tribution so that prior beliefs before observing data can be included in analysis.
Also by Bayes factor, hypothesis testing can be flexible.

From an application example, we apply MCMC method to estimate threshold
autoregressive model with stochastic volatility. Although TAR and SV model have
very complex structure, by using MCMC we see that parameters can be nicely esti-
mated. Also we studied real data to compare with other literature. After estimating
parameters, we conduct hypothesis testing for model selection via Bayes factor. Here
we see that by using BF, testing problem becomes relatively simple.

In addition to the problem of estimating parameters or model selection in this

thesis, there are many other applications of Bayesian inference with MCMC. Ap-
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plications include other model selection problem such as unit root test, also the
important issue in financial time series. Therefore, the model we saw could be ex-
tended to unit root test, with an another approximate calculation of Bayes factor

and mixed prior distributions proposed by Li and Yu [2010] and Chen et al. [2013].
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Abstract

This thesis introduces concepts and applications of Bayesian inference for finan-
cial time series. Bayesian inference is a method of statistical inference using Bayes’
theorem to update prior beliefs as additional informations are observed. This al-
lows us to use our prior beliefs of parameters and the Markov chain Monte Carlo
method(MCMC) makes the analysis is relatively fast and simple.

In this thesis we introduce the time series Bayesian inference and the MCMC
method, illustrate an example of estimating unknown parameters in threshold au-
toregressive(TAR) models with stochastic volatility(SV). Moreover, we apply TAR
with SV model to a real data set and conduct a hypothesis test for model selection

via using Bayes factor.

Key words : Bayesian time series, Mixed Prior, Markov chain Monte Carlo, Thresh-

old autoregressive, Stochastic volatility, Bayes factor.
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Chapter 1

Introduction

Advances of computational methodology have increased ability to solve complicated
problem. They also extend the applicability of many existing statistical methods.
Especially in the area of econometrics with many complex models, advantages of
computational method have great importance.

Therefore, in this thesis we introduce one of the outstanding developments in
computational methodology, Markov chain Monte Carlo(MCMC) method that are
widely applicable in financial time series. First, in Chapter 2 we discuss Bayesian
inference including general procedure and model comparison method via using Bayes
factor. Bayesian inference provides us to insert prior beliefs of parameters before
observing data. Second, in Chapter 3 we discuss algorithms of MCMC, which gives
us the simple and fast way to calculate posterior density in Bayesian inference.

Then, in Chapter 4 we focus on the financial time series problem. In particular, we



carry out simulation and empirical studies based on former discussions.

For application, first we demonstrate simulation study of threshold autoregressive
model(TAR) with stochastic volatility(SV). TAR model is one of tools to capture
the nonlinearity of the financial time series. As well as mean structure, SV model is
considered because modeling volatility has many applications in financial time series
such as option trading or risk management. Also these two models are combined
so this could be a good example of advantages of Bayesian inference via MCMC
method in complicated financial time series problem. Second, we apply TAR with
SV to a real data set and carry out a hypothesis testing via using Bayes factor for

model selection problem.



Chapter 2

Bayesian Inference

Bayesian inference is a method of statistical inference by using Bayes’ theorem to
update prior beliefs when additional informations are observed. Bayesian inference
is psychologically appealing because it allows us to insert our prior beliefs about
parameters before data are observed.

Although it has a weakness of having subjective notion of probability, Bayesian
approach has wide usage in many fields of statistics. In most cases solutions of two

approaches are similar, even some cases Bayesian solutions might be advantageous.

2.1 General procedure
Bayesian inference is generally carried out in the following steps.

1. Choose the probability of parameter — prior distribution — before observing



data. Prior distribution reflects beliefs about parameter 6.
2. Choose model f(xz]0) reflects beliefs about x given 6.
3. After seeing data Xi,---, X, use Bayes’ theorem to calculate the posterior

distribution f(6| Xy, -, X,).

For the time series analysis, steps are similar.

Suppose we observe time series data y = (y1,- -, y,) from {y;;t > 0}, collection
of random variables over time. If we believe that y; has a some density function
p(+]0), our observation can be written as p(y|f#). When we see this as the func-
tion of 6, we call it the likelihood function. Unlike Frequentist approaches that are
mostly based on this likelihood function, Bayesian introduce pre-assumed beliefs

called "prior’, 7 ()

By Bayes’ theorem,

om0
POl) = e (6)d

p(0ly) o p(yld)=(0)

p(+]0) and m(-) denote likelihood and prior density function, respectively. Also
we call p(f|y) as posterior density. Bayesian inferences are based on this posterior
distribution.

From the choice of prior distribution, it is classified into conjugate and noncon-

jugate analysis.



Conjugate Bayesian analysis

For convenience, the prior distribution often assumed to be conjugate, which is
from same distribution family with corresponding posterior distribution. Advan-
tages are its reasonable features and the simple calculation that may result in closed

analytical form.

Nonconjugate Bayesian analysis

However, in many situations, there is no closed analytical form of posterior dis-
tribution against our desire.

It is hard to calculate integration in the denominator of posterior density func-
tion. It may need numerical approximation, or other methods.

Since the Markov chain Monte Carlo(MCMC) method introduced, it become
possible to inference when we have no closed form of posterior distribution by ob-
taining sample draws from it. Next chapter, we see the algorithms of the MCMC

method.

2.2 Bayes factor

For the model comparison or hypothesis testing, Bayesian approach uses Bayes

factor(BF), the Bayesian version of the classical likelihood ratio test(LRT).



Consider two models or hypotheses H; and H, for given data y, Bayes factor is

defined as,

gp — PWIHL) _ [ p(6H))p(y|6), Hi)do,
p(y|Hz) fp(QQ‘HQ)p(y‘GZa Hy)d0,

(2.1)

where 0; s stand for parameters in H; s.

Note Bayes’ theorem says p(H,|y) o p(y|H;)p(H;). Therefore we can see that
posterior odds ratio o« BE X prior odds ratio. The BF can be translated as ratio of
the posterior odds to its prior odds.

Interpretation follows that BF > 1 means H; is more supported by the data
than H,.

Kass and Raftery [1995] pointed out that the BF is very general and does not
require alternative models to be nested. Also from the definition, the BF embraces
prior beliefs for evaluation so that it provides a way of incorporating external infor-
mation about a hypothesis.

The calculation of the BF contains integrations, numerical methods are needed.
Next chapter, we introduce one powerful method Markov chain Monte Carlo(MCMC)

method.



Chapter 3

Markov chain Monte Carlo

Method

Consider the problem of evaluating expectation like

In Bayesian inference, we are interested in posterior mean F(f|y) or posterior
variance Var(0|y). Therefore, above problem is very important but it can be difficult
to calculate.

One solution is to draw independent samples (XM, X ... X)) from m(z),

then we can approximate

ELT(X)] % 1 3 T(x0)



According to the Law of large numbers, above approximation is adoptable. This

method is Monte Carlo integration.
Furthermore, it is known that above approximation is still possible if we sample
using a Markov chain. This is the main idea of MCMC method and there are two

major approaches, Metropolis-Hasting algorithm and Gibbs sampler.

3.1 Metropolis-Hasting(MH) algorithm

In order to sample from the posterior distribution, we can do the following steps.

ALGORITHM

1. Choose transition(proposal) function ¢(y|z)
2. Initialize 6,
3. For j from 1 to N

3.1. Generate 6* from ¢(0|6,_1)

3.2. Calculate the importance ratio,

m(0%)/q(0"10;-1)  w(0")q(0;-1]6")

= = 3.1
7(0,0)/a05118%) 7051 )a(6°10; ) &1)
3.3. Update
0*  with probability min(r, 1
0; = o) (3.2)
01 otherwise
8



Intuitively, it seems reasonable since 1) if the jump 6;_; — 60" increases the
posterior density (r > 1) then 6; = 6%, or 2) ; remains with probability (1 —r) to
avoid being stuck in local modes.

Note that for p(f|y), normalizing constant is not needed because it is canceled
out when we calculate importance ratio. Therefore MH algorithm gives us a way to

inference when posterior has no closed form.

Choice of Proposal Density

A common choice of proposal density is random walk proposal,

q(zly) = f(lz —yl)

, then importance ratio r in (3.1) becomes

since q(z|y) = q(y|x). Possible choices of f include the multivariate normal density
and the multivariate ¢ density.

Another choice is independent proposal,

q(zly) = f(=)

, f can be the multivariate normal or ¢ density. The more similar f is to m, the

better performance MH has.



Remark 3.1. Gaussian random walk proposal can cause getting stuck in local
modes, very slow convergence and also low acceptance rates. Lin et al. [1987] pro-
posed employing a mizture of Gaussian proposal to overcome this problem. This
approach makes the tails of proposal distribution thicker, enables good performance.

9*’93',1,]{ ~ N(Hj,l,kQ)
(

1 wp 085

k=49 wp 01

81 w.p. 0.05

3.2 Gibbs sampler

For joint distribution 7 (6, ¢), generating (6, ¢) jointly is difficult. In this situation,

following sampling procedure can be applicable.

ALGORITHM

1. Initialize 6y and ¢y.

2. For j from 1 to N,

2.1. Generate 0; from 7(0|¢;_1).
2.2. Generate ¢; from m(¢|6;).

10



MH within Gibbs sampler

We also can use both algorithms by applying MH algorithm inside the Gibbs
sampler. For many parameters, Gibbs sampler gives a way to divide multidimen-
sional problem into smaller dimensional problems, and MH gives a way to deal with
normalizing constants.

For given (61, -- ,6,), the strategy is to divide this vector into blocks. A general
rule for blocking is to maximize within-block correlations and minimize the between-
block correlations. For each block, we apply Gibbs sampler, and MH algorithm

within blocks.

1. Initialize 6y and ¢y.

2. For j from 1 to N,

2.1. Generate 0; from 7(0|¢;_1).

a. Generate 6* from proposal ¢(8|¢;_1,0;-1)
b. Calculate importance rate r as in 3.1
c. Set 0; = 6* with probability min(1,r)

2.2. Generate ¢, from 7(|0;).

a. Generate ¢* from proposal ¢(¢|¢;_1,6;)
b. Calculate importance rate r as in 3.1
c. Set ¢; = ¢* with probability min(1,r)

Remark 3.2. The first m pre-chosen iterations of the MCMC sampling are

discarded, and referred to as burn-in. This is used to avoid dependence of initial

11



value and ensure that samples are indeed close enough to the samples from true

distribution.

Remark 3.3. To check the convergence of MCMC' iteration, mathematical ap-
proaches are difficult. Some plots are practically used such as autocorrelation func-

tion(ACF) plot, trace plot, and so on.

e Trace plot: The value of the drawn sample at each iteration versus the iteration

number.

o ACF plot: Correlations between every drawn sample and it kth lag. Since our
drawn samples form Markov chain, the ACF plot is expected decay exrponen-

tially as lag increased.

12



Chapter 4

Application to
Threshold Autoregressive Model

with Stochastic Volatility

4.1 Introduction

In this chapter, we study examples of Bayesian financial time series analysis based on
the former discussion. First, we solve an example problem of estimating threshold
autoregressive model with stochastic volatility model, and investigate through a
simulation. Then, we apply this model to a real data and carry out a hypothesis
testing via using Bayes factor.

To begin with, we discuss the threshold autoregressive model and stochastic

13



volatility model.

Threshold Autoregressive(TAR) model

Nonlinear models can explain various aspects of financial dynamics compared to
linear models. In the class of these models, Threshold Autoregressive model(TAR)
uses piecewise linear models to get a better approximation of the conditional mean
structure, motivated by asymmetry in rising and decline pattern.

The results from Li and Lam [1995] also showed that the conditional mean struc-
ture could depend significantly on the rise and fall of the market in the previous
day.

For time series y;, it is said to follow TAR(g; p1,- -+ ,py) With y;_q as a threshold

variable if
k 2 k k
Yt = ¢(() : +Z¢§ )yt—i —|—a£ )> =1 < Yea < T, for k=1,--- g (4.1)
i=1
where

g: number of regime,
{a} : innovation, i.i.d., ~ N(0,02)
d: threshold lag, positive integer,

rj: threshold variable, real, —oo =rg <r; <--- <7, =00

TAR model has not been widely used in practice because it is hard to esti-

14



mate threshold values. Chen et al. [1995] proposed a procedure for estimating the
threshold values and other parameters objectively via Bayesian inference with Gibbs

sampler.

Stochastic Volatility(SV) model
Volatility is an important factor in financial or economic time series and has
many applications, such as option trading, risk management, and so on.
One of approaches to model volatility is stochastic volatility model(SV) which
introduce an innovation to the conditional variance equation of a;.
For a;, innovation or shock for time series y;, it is said to follow SV model if
p
a; = \/h_tet, loghy = ap + Z a;loghy_; + (4.2)
i=1

where

€: ii.d. ~ N(0,1)
ne ¢ idd. ~ N(0,0%)

{&:} and {n;} are independent.

Adding 7, the innovation, considerably increase the flexibility of the model in
describing the h; compared to other volatility models. However, for each shock a,
the model uses two innovations, that makes it difficult to estimate SV model (Tsay

[2010]). The MCMC method can be a solution for this.

15



4.2 Model

In this simulation we combine TAR (4.1) and SV (4.2). Consider following model.

¢0 +¢1 Y1+ ar , Yiq ST
Y =
¢(()2) + ¢(2)Z/t—1 +as , Ypa>T

ar = \/ t€t, € Z’l\Jd N O 1)

loghy = ag+ajloghs_ 1+, g N(0, 02) (4.3)
where

{&:} and {n;} are independent.
d: delay lag

r: threshold value

We are interested in estimating unknown parameter 6 = (¢, o, 0%, r, d) based on

observation y = (y1, -+ ,Yyn). (where ¢ = (¢0 ,(bl ,(bo : 1 ) a = (o, 1))

In this problem, maximum likelihood method is not applicable because of the
existence of latent variables b = (hy,-- - , hy,). By using data augmentation(Tanner

and Wong [1987]) in the Bayesian framework, we can overcome this difficulty.

4.3 Prior settings and sampling scheme

Applying data augmentation strategy, the parameter space is augmented to (0, h).

Conditioning on h, likelihood p(y|@, k) has closed form.

16



Note that given (6, h), the conditional likelihood is expressed as

plylo.h) = T [Z ﬁexp{—%}fﬁ] (14)

where

e = ¢§j)+¢§j)yt71

i = I(rjo1 <y—a <1y)

If we assume independent priors, posterior density is generally given as multi-

plying (4.4) by prior density.

Specifically, we consider Gibbs sampling as following.

STEP1. Sample h from f(hly, ¢, a,c? r,d)
STEP2. Sample « from f(aly, ¢, h,o? r, d)
STEP3. Sample o2 from f(c?|y, ¢, h,a,r,d)
STEP4. Sample ¢ from f(o|y, h,a, 02, 7,d)
STEP5. Sample r from f(r|y, ¢, h, o, 0%, d)

STEP6. Sample d from f(d|y, ¢, h, o, 0% 1)

Inside each steps, we also use MH algorithm with mixed Gaussian proposal as

in Remark 3.1.

17



STEP1. Volatility Vector h
The volatility vector h is drawn element-wise. Jacquier et al. [1994] use following

derivation of univariate conditional densities.

f(ht|y’ ¢7 h—ta «, 0-27 r, d)

X f(at|ht7yt7 Yt—1, ¢)f(ht|ht—la Q, U2)f(ht+1|ht, «, 02)
Yt — Mt log hy — 14
o N N| ——— 4.5
( Vhi ) ( o} ) (45)

where h_; is the vector of h excluded hy, N(-) is the density of standard normal

distribution, and

(()1) + ¢§1)yt—1 s Y—a ST

He =
QSE]Q) + ¢§2)yt—1 y Yt—a > T

v = a0l —a)/(L+a2) +ai(loghey +log hust) /(14 a?)

it = o[t ad

,with our model assumption. Since normalizing constant is difficult to calculate, we

use MH algorithm with (4.5).

Remark 4.1. Another approach to sample volatility vector h is to use of the
forward filtering and backward sampling within the Kalman filter framework. (Shep-

hard [1994] and See Tsay [2010])

18



STEP2. Volatility Coefficient «

Note that

flaly. ¢, k.o r,d) = f(alh,o?)

and the right-hand side of the above equation is the form of the AR(1) model since

log hy follows AR(1) given h.

(4.6)

Therefore, we set the conjugate prior distribution of a as multivariate normal

MV N(ay, Vo)
, then the posterior distribution becomes
MV N(a, V)

where

n

a, = V() _alogh/o® + Vi aw),

=2
n
-1 1y 2 -1
Vi = E 2z /0" + Vg
=2

z = (1,loghy_)

STEP3. Volatility Innovation o2

Note that
f(0®ly, é, h,a,1,d) = f(0*h, )

19
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and the right-hand side of the above equation is the form of the AR(1) model.

We set the conjugate prior distribution as (mM)/o? ~ x?2,, then

mA + Z?:Q 771:2

2
o2 ~ Xm-l—n—l

STEP4. TAR Coefficient ¢

We set the prior distribution of ( (()k), ¢§’“’) as
MV N (¢, Who)

and posterior distribution can be easily obtained similarly as STEP2.

STEP5. Threshold Variable r
We assume 7 follows uniform distribution on (I, ). [ and u are suitably chosen

as quantiles of the observation y to ensure sufficient sample size for valid inference

(Chen et al. [1995]).

STEPG6. Delay lag d
We assume d follows a discrete uniform distribution on {1,2,--- ,do}. Then

posterior distribution is multinomial distribution with probability

f(¢7 h7 a? 0-27 d - 7:7 r‘y)
S0 f(p h a0 d=jr]y)

p(d=ily,¢,h,a,0° 1) =

20



4.4 Simulation study

Until now we see TAR with SV model and Bayesian estimation methodologies. We
now try simulation experiment through an example to investigate the result.

We consider the following model.

0.02—-08y;—1+a; , y—3<0.5
Y =

—3+05y;-1+a; , y—3>0.5
ay = 1/ htEt, €t Z’Z\'d N(O, 1)

loghy = —02+08loghi1+n, m < N(0,1) (4.8)

The choice of autoregressive coefficients and stochastic volatility coefficients refer
to the explanations of So et al. [2002] that the autoregressive coefficient is usually
positive when y, > 0 and the converse is true. Also we put the fact that high
persistence in variance was discovered in most of the stochastic volatility literature.

T=500 samples are generated, 'R 3.0.2 for Windows’ is used for simulation (some
codes use Fortran for the speed issue) and Total 3000 iterations are conducted for
sampling, and the first 1000 iterations are ignored as burn-in iterations.

Initial values are set to be (0,0,0,0) for ¢, (0.1,0.5) for e, 10 for %, median
of sample y; for r, and 5 for d. Latent variable vector h are randomly chosen from
N(0,1).

Also hyperparameters -parameters in prior distribution- are set to be oy = (0, 0),

Vo = diag(10,10), ¢ro = (0,0), Wyo = diag(10,10), I and u are 0.1, 0.9 quantiles of
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Yi , do = 10.
Fig.4.1 shows the generated sample y;, h; and 90% CI of sampled h;.
Table 4.1 shows the result statistics of the estimated posterior distribution.
We can see that estimated values are similar to the true values and 95% confi-

dence interval include the true values.

Table 4.1: Simulation results

Parameter ‘ ¢(<)1) ¢§1) qbéQ) ¢(12) ‘ ag aq o2 T d
True 0.02 -0.8 -3 0.5 -0.2 0.8 1 0.5 3
Mean 0.017 -0.775 -3.030 0.530 -0.172 0.812 1.021 0.456 3
Median -0.022 -0.795 -3.016 0.519 -0.156 0.810 0.989 0.402 3
Std 0.047 0.029 0.051 0.038 0.068 0.038 0.137 0.113 0
95% CI low. -0.040 -0.862 -3.069 0.440 -0.220 0.741 0.655 0.380 3

95% CI upp. 0.066 -0.746 -2.836 0.562 -0.078 0.893 1.261 0.614 3
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Figure 4.1: Generated time series y; & hy, and estimated volatility hy
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4.5 Empirical study

In this section, we see how to apply Bayesian inference to real data analysis. This
section includes estimating parameters and hypothesis testing for model selection.
Chen et al. [1995] studied U.S. monthly civilian unemployment rates from the
2Q of 1948 to the 1Q of 1991 to estimate TAR(2;4,2) model. We use the same data
but updated with 675 observations from 2Q of 1948 to the 1Q of 2004. This data
is available in BAYSTAR package in R. Figure 4.2 shows the time plot of this data.
Here we conduct analysis on this data set for the proposed model to compare result
with only TAR model. We use the first differenced series r; = y; — y;—1 since the

sample autocorrelation function decays slowly.

10 —

unemployrate

600 700

Figure 4.2: Time series plot of U.S. monthly unemployment rates
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Estimation
Initial settings are similar to the former simulation study except that we use
AR(4) model for regime 1, and AR(2) model for regime 2. The estimated parameters

are in Table 4.2.

Table 4.2: Parameters estimated in real data analysis

Paramotor oD oD o) oD oD ‘ e o) e ‘ oo o ‘ o2 r d
Mean 0.003  -0.057 0.114  0.020  0.086 | -0.032 0.227  0.255 | -2.601 0.252 | 0.501  0.050
Median -0.003  -0.021  0.130 -0.008 0.134 | -0.066 0.183  0.430 | -2.541  0.243 | 0.502  0.050 | 2
Std 0.010  0.100  0.095  0.057  0.059 | 0.037  0.049 0.191 | 0.182  0.054 | 0.035  0.030
95% CI low. | -0.003  -0.282  0.000  -0.008 0.000 | -0.066  0.183  0.048 | -3.117  0.119 | 0.446 0.003 | 2
95% CI upp. | 0.025  0.000  0.285  0.147  0.134 | 0.009  0.280 0.430 | -2.419 0.310 | 0.567 0.094 | 2

Compared to Chen et al. [1995], estimated coefficients in the mean structure,
threshold variables are similar to them. With this model, we also can model the
volatility of the series. To check the convergence, we practically use trace plot(Figure
(4.3)) and autocorrelation plot(Figure (4.4)). From the figures, we can say that our

MCMC samples are well converged to the samples from true posterior distribution.

Model Comparison

Next, we use Bayes factor to compare model. Assume that M; is our model, Ms
is the TAR(2;4,2) model. If the calculated BF is greater than 1, we can conclude
that our model is more supported by the data y.

In the BF definition (2.1), it is hard to compute integrations. There are many
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numerical approximation methods for calculation of BF, here we use MCMC method
with posterior density.

Note that in the definition of BF (Remark 4.2) |
Pl = [ p(yl6s, M)m(©,0)d8,

(N i i 2_: p(y|®§i),Mj>‘1> (4.9)

=1

Q

where

©; : the parameters of the Model j
7(0;|M;) : the prior density under M,

@gi) . the sample drawn from ith MCMC iteration.

In this example, log BF = log 1197.362 — log 1000.282 = 0.180 and BF' = 1.20.

Thus our model M; is more supported by the data.

Remark 4.2. (4.9) is derived as below (see Kass and Raftery [1995])

Dropping the notational dependence on M;, then

p(yIM;) = ply) = / p(y160)m(9)d6

The simplest Monte Carlo integration estimation is

m

POIM) = — 3 plylo®)

i=1
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where #) is the ith sample from prior distribution 7(6).

To improve estimation, above equation becomes,

plyiMy) = =P
i=1 "1

(4.10)

where

w; = m(609)/p(6]y),

0@ is the ith sample from posterior distribution p(6]|y).

Then use the following equation and substitute into the (4.10), these give the

result of (4.9)

_ p(ylo)m(0)

p(0ly) )
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Chapter 5

Conclusion

We see the concepts and application of Bayesian financial time series via MCMC
method. Unlike Frequentist approach, Bayesian inference is based on posterior dis-
tribution so that prior beliefs before observing data can be included in analysis.
Also by Bayes factor, hypothesis testing can be flexible.

From an application example, we apply MCMC method to estimate threshold
autoregressive model with stochastic volatility. Although TAR and SV model have
very complex structure, by using MCMC we see that parameters can be nicely esti-
mated. Also we studied real data to compare with other literature. After estimating
parameters, we conduct hypothesis testing for model selection via Bayes factor. Here
we see that by using BF, testing problem becomes relatively simple.

In addition to the problem of estimating parameters or model selection in this

thesis, there are many other applications of Bayesian inference with MCMC. Ap-
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plications include other model selection problem such as unit root test, also the
important issue in financial time series. Therefore, the model we saw could be ex-
tended to unit root test, with an another approximate calculation of Bayes factor

and mixed prior distributions proposed by Li and Yu [2010] and Chen et al. [2013].
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