creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Scheduling Algorithms for Parallel Real-
Time Tasks with Multiple Parallelization
Options on Multicore/GPGPU System

E|ZO|/CPGPU NAH 4oA 54 Y% SN2
AL Y8 AT EAT AYEY Y

AUGUST 2014

A A

Scheduling Algorithms for Parallel Real-Time Tasks
with Multiple Parallelization Options
on Multicore/GPGPU System

Nede o @ 3

Abstract

Scheduling Algorithms for Parallel Real-
Time Tasks with Multiple Parallelization
Options on Multicore/GPGPU System

Jihye Kwon

School of Electrical Engineering and Computer Science
College of Engineering

The Graduate School

Seoul National University

Past researches on multicore/GPGPU scheduling assume that a computational unit
has a pre-fixed number of CPU and GPU threads. However, with recent technologies
such as OpenCL, a computational unit can be parallelized in many different ways
with runtime selectable numbers of CPU and GPU threads. This paper proposes
algorithms for optimally parallelizing and scheduling a set of parallel tasks with
multiple parallelization options on multiple CPU cores and multiple GPU devices.
Our experimental study says that the proposed algorithms can successfully schedule
up to two times more tasks compared with other algorithms assuming pre-fixed

parallelization. To the best of our knowledge, this is the first work addressing the

problem of scheduling parallel tasks with multiple parallelization options on multiple

heterogeneous resources.

keywords : parallelization, multicore, gpgpu, real-time, scheduling

student number : 2012-20739

i Al 5

Contents

Abstract

Contents

List of Figures

List of Tables

Chapter 1 Introduction
Chapter 2 Related Works
Chapter 3 Problem Description

Chapter 4 Proposed Solution
4.1 Solution for CPU Cores and Simple DAG-based Tasks
4.2 Extension for GPU Devices
4.3 Extension for General DAG-based Tasks

Chapter 5 Experiments
Chapter 6 Conclusion
Bibliography

Abstract in Korean

iii

iii

iv

11

23
29

31

37

38

43

List of Figures

Figure 1.1

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Measured thread execution times for an edge-
detection program
(Intel Core 17, 2 x Nvidia GeForce GTX 650 Ti)

Multiple CPU/GPU resources R and DAG-based

workload T' with multiple parallelization options

Simple DAG workload {t;,7,} with fixed

parallelization options and assigned local deadlines

[lustration of the Algorithm for CPU cores and
Simple DAG-based Task

Illustration of a non-optimal solution point

(white dot) on a (Cj, d;)-plane
Ilustration of solutions for Optimization Problem 1

Partitioning GPU threads of vertex v;, into

cgv
2 - -E—| bins of size d;
dik :

Reduction procedure of Optimization Problem 2 to

Optimization Problem 1 for vertex vj,

Transforming general DAG to simple DAG for

task t;

Average numbers of acceptable tasks by different

methods

v

12

15

17

24

28

30

33

List of Tables

Table 1.1 Categorization of real-time multicore scheduling

problems

Chapter 1

Introduction

Along with increasing features and advanced functionalities, many real-time
applications become more and more data-intensive and computation-intensive. For
example, a vehicle with vision, lidar, radar, and GPS sensors can be augmented into
an autonomously driving vehicle via real-time processing of massive sensory data
and sophisticated control algorithms [1]. For such real-time handling of massive data
and sophisticated algorithms, it has been a recent hot topic to optimally use the
multiple CPU cores, and GPU (Graphics Processing Unit) devices for GPGPU
(General Purpose computing on GPU) [2]. For example, [3] and [4] address the
problem of scheduling sequential tasks using homogeneous CPU cores. On the other
hand, [5] and [6] tackle scheduling of parallel tasks where each parallel task is
modeled as a sequence of segments and each segment has a number of parallel threads.
[7] addresses more general parallel tasks where each parallel task is modeled as a
DAG (Directed Acyclic Graph) and each vertex in the DAG has one sequential thread.
In addition to these works addressing CPU resources only, [2] addresses scheduling
sequential tasks on multiple CPU cores and GPU devices.

All these works consider that each computational unit, i.e., a task in [2], [3],

Execution Time

(ms)

600
B cru thread e
i GPU thread

200

0

1
(Ogpu) hregqy
Figure 1.1 Measured thread execution times for an edge-detection program

(Intel Core 17, 2 x Nvidia GeForce GTX 650 Ti)

[4], a segment in [5], [6] and a vertex in [7], is implemented as a pre-fixed number of
threads. However, recent heterogeneous programming frameworks such as OpenCL
[8] support multi-version parallelism even for a single computational unit. More
specifically, an OpenCL kernel (main program) can be parallelized into a different
number of CPU/GPU threads with runtime arguments and launched on that number
of CPU cores and GPU devices. Depending on the number OP" of CPU threads and
the number OfPY of GPU threads that the program is parallelized into, its
corresponding thread execution times significantly vary. Figure 1.1 shows the
variation of the thread execution times of each parallelization option, i.e.,
(0°PY, 08PY) for an edge-detection program that can be used for lane detection in an

autonomously driving vehicle application. The figure clearly shows the significant

2 s - w k)

differences among thread execution times of different runtime parallelization options.

Motivated by this finding, this paper aims at exploiting the freedom of selecting
one out of multiple parallelization options to improve the schedulability of given set
of parallel tasks. Specifically, we address the problem of optimally parallelizing and
scheduling a set of sporadic parallel tasks, where each task is described by a DAG
(Directed Acyclic Graph) and each vertex of the DAG has multiple runtime
parallelization options on multiple preemptive/non-preemptive resources. In this
problem, we consider a CPU core as a representative preemptive resource and a GPU
device as a representative non-preemptive resource. For the given problem, we first
tackle a simplified problem where the resource model has only CPU cores not GPU
devices and the DAG of each task is a simple directed sequence of vertexes. For this
simplified problem, we propose an optimal algorithm. Second, we extend this
algorithm for the heterogeneous resource model with both CPU cores and GPU
devices. Finally, we further extend the algorithm for the general DAG-based task
model. Our experimental study says that our proposed algorithms can successfully
schedule up to two times more tasks than other algorithms assuming pre-fixed
parallelization. To the best of our knowledge, this is the first work addressing the
problem of scheduling parallel tasks with multiple parallelization options on multiple
CPU cores and multiple GPU devices.

The rest of this thesis is organized as follows. Chapter 2 surveys the related
works on real-time multicore scheduling algorithms. Then, Chapter 3 describes the
target problem. In Chapter 4, we explain our proposed scheduling algorithms. Chapter

5 presents the experimental results. Finally, Chapter 6 concludes the thesis.

Chapter 2

Related Works

There have been numerous researches on real-time multi-core scheduling since Dhall
and Liu first addressed it in 1978 [9]. They can be grouped as in Table 1.1 according
to the workload and resource models. For the “sequential workload model” where
each task is a sequential program, the first group [10], [11], [12], [13], [14], [15], [3],
[4], [16] addresses the problem of scheduling the tasks on multiple homogeneous
resources. Specifically, in 1993, [10] first presented an optimal algorithm for
scheduling periodic sequential tasks on homogeneous multiprocessors. The algorithm
was theoretically optimal, in terms of the competitiveness in schedulability, but it was
impractical due to its heavy scheduling, preemption, and migration overheads.
Thereafter, many researchers have proposed optimal scheduling algorithms with less
overheads [11], [12], [13], [14], [15], [3], [4], and [16].

The second group for the sequential workload model [17], [2] includes
GPUs in their resource model. However, each job is dedicated to a specific resource
type, either a CPU core or a GPU device, meaning that it cannot be executed on

other type resources. That is, the GPU (portions of) jobs are statically fixed and

Table 1.1 Categorization of real-time multicore scheduling problems

Workload Parallel Parallel Parallel
)) (DAG with (DAG with
Sequential (multi-))
pre-fixed multi-version
Resource segment) . .
parallelism) | parallelism)
[10][11] [21][22]
[12] [13] [23]1[5116] | [51[6][28]
Homogeneous [30]
[14][15][3] | [24][25] [29]117]
[4] [16] [26]
Heterogeneous
. [17]12] [27]
(dedicated)
Heterogeneous 18][19
) 8 L8] 119] This work
(interchangeable) [20]

cannot be executed on multicore CPUs, which limits the freedom of resource
scheduling.

The third group for the sequential workload model [18], [19], [20] considers
the interchangeable heterogeneous resource model. Specifically, [19] and [20] present
scheduling algorithms for heterogeneous resource model where jobs are allowed to
use any type of resources. However, all the resource types considered are preemptive.
In contrast, [18] considers preemptive CPUs and non-preemptive GPUs for
distributing real-time data streams depending on their rates and deadlines.

The workload model also has been extended from the sequential workload
model to parallel workload models. The first parallel workload model called a “multi-
segment parallel workload model” assumes that each task is modeled as a sequence
of segments and each segment consists of multiple parallelized threads. For this

workload model, the first group [21], [22], [23], [5], [6], [24], [25], [26] addresses the

problem of scheduling such parallel tasks on homogeneous resources. Specifically,
[21] presents a scheduling algorithm for a single-segment parallel workload model
on identical multiprocessors. [22] and [23] present scheduling algorithms for the fork-
join workload model where single-thread and multi-thread segments alternate, that is,
a single-thread forks into multi-threads in the next segment and they join into a single
thread in the next segment and so on. [5], [6], [24], [25] and [26] address a more
general multi-segment parallel workload model without alternating fork and join
points.

For the multi-segment parallel workload model, the second group [27]
addresses the problem of scheduling multi-segment parallel tasks on multiple types
of resources including both preemptive and non-preemptive ones. However, the
resource model is limited in that jobs are dedicated to specific resource types. It is
still open issue how to schedule multi-segment parallel tasks on interchangeable
heterogeneous resources.

A more general workload model is a “DAG-based parallel workload model”
where each task is modeled as a DAG and each vertex of the DAG has one sequential
thread. For this workload model, [5], [6], [28], [29], [7] address the problem of
scheduling such tasks on homogeneous resources.

In all of the aforementioned work, a task in the sequential workload model,
a segment in the multi-segment parallel workload model, and a vertex in the DAG-
based parallel workload model has a pre-fixed number of threads and hence it is
modeled as a pre-fixed worst case execution time. Unlike this assumption, recent
work [30] addresses a general DAG-based parallel workload model where each
vertex has a freedom on the degree of parallelism. A vertex has a fixed amount of
computation requirements, but the system can choose how many homogeneous

resources it will use to execute the vertex. Thus, the execution time of the vertex is

modeled as its total computation requirement divided by the number of homogeneous
resources used for executing it. However, such a simple execution time model for
multi-version parallelism is not practical since such perfect parallelization is not
possible due to parallelization overheads. Also, the resource model is limited to the
homogeneous resource model.

In this paper, we aim at finding a solution for the most general workload
model, i.e., DAG-based parallel workload model with multi-version parallelism and
the most general resource model, i.e., interchangeable heterogeneous resource model
with multiple CPU cores and multiple GPU devices. This work is positioned right-

most and bottom-most in Table 1.1.

Chapter 3

Problem Description

In this chapter, we formally define the problem. The resource in the target system and

the workload to be executed are depicted in Figure 3.1. We consider a system with m¢P!

preemptive resources, i.e., CPU cores, and m5P" non-preemptive resources, i.e., GPU
devices as in the figure. Thus, the set R of all the resources is modeled as:

R ={r,P"[1 < h <mP} U {r*P"| 1 < h < m8PY}.

On top of this set of resources, the workload to be executed is modeled as a

set of n independent sporadic hard real-time tasks as in Fig. 3.1:
F={r|1<i<n}

Each task t; is characterized by DAG G;, minimum inter-release time T;, and

relative deadline D; (D; < T;) as follows:

7; = (G, Ty, D).

mP™ CPU cores m*™ GPU devices

R -
£pu pu
CICOEGDIIET RN
A
T
< Dy Time
<]‘1 >
r 3 (v
----------- s waan
e e
| e
Un2 , Un2
< D, > Time
< T >
iy
WCET table for v,,3
~
o
R 0 1 2
Orcpu
0 — -
——]
1] — —
 —
. —
5 |]]
=] . =
\ [J

Figure 3.1 Multiple CPU/GPU resources R and DAG-based workload ' with

multiple parallelization options

T; is repeatedly released with the minimum inter-release time T;. Once Tt; is
released, it should execute a parallel program represented by the DAG G;. Its
execution must be completed within the relative deadline D;.

The DAG G; consists of a set V; of vertexes and a set E; of directed

edges. k-th vertex of DAG G; is denoted by v;;, where 1 < k < |V;|. A directed

9 gk

e

]

I

ITU

edge (vik 1’vik2) € E; represents a precedence constraint meaning that vy, can
start its execution only after vy, finishes the execution. Each vertex vy, of DAG
G; has multiple parallelization options as depicted in the WCET table of Figure 3.1.
An option is represented by (0°PY, 08PY) meaning that the vertex is parallelized into
O°PY threads for CPU cores and 08PY threads for GPU devices.! Out of OP" +
O®PY threads for executing vy, with option (O°PY, 08PY), (-th thread’s worst case
execution time (WCET) is denoted by WCET;, ((0O°PY, 08PY),) and assumed to be
given through offline program analysis [31] or measurements [32].2

Problem Definition: For the given resource R and workload T, our problem

has two folds:

® Parallelization: choose parallelization option (O°PY,08PY) for every
vertex vy, of DAG G; for every task t; =(G;,T;,D;) in I'=
{ri|]1 <i <n} and

® Scheduling: determine when the parallelized CPU and GPU threads should

be executed on which CPU cores and GPU devices,

meeting all the deadlines and precedence constraints.
Our goal is to find the optimal or near-optimal solutions for the problem
such that as many as possible tasks can be feasibly scheduled with the given CPU

cores and GPU devices.

! This general model can cover practical scenarios where a CPU thread vertex
launches the next vertex’s CPU/GPU threads and their results are combined by the
next CPU thread vertex and so on.

2 Communication overheads between CPU and GPU are defined to be a part of the
thread’s WCET, as in [2]. Preemption and migration costs are assumed to be zero. In

the future, we plan to extend our work for a more practical task model.

¥ [|
10 = L1

Chapter 4

Proposed Solution

To solve the problem defined in the previous chapter, in Section 4.1, we first tackle a
simplified problem with only CPU cores and sporadic tasks modeled by simple DAGs.
Then, Section 4.2 extends this algorithm for the heterogeneous resource model with
both CPU cores and GPU devices. Finally, Section 4.3 further extends the algorithm
for the general DAG-based task model.

4.1 Solution for CPU Cores and Simple DAG-based Tasks

This section proposes an optimal solution for a simplified problem. In the simplified

¢PU CPU cores and each task i in the

problem, the resource set R has only m
sporadic task set T' = {7;|1 < i < n} is modeled by a simple DAG, i.e., a directed
sequence of |V;| vertexes. For this problem, we have to jointly address the two issues,

(1) parallelization, i.e., determining a parallelization option for each vertex and (2)

C (O = 3) C12(2) Cis(d) opm. . Total peak density
L3220 s peak density B
Cu(3) 1z)

Time

21

l (”’,'”): T2’s peak density

:
H
H
:
:
V21 U214
I —
I Vo3 — Voo T
] I I I

Time

Figure 4.1 Simple DAG workload {74,7,} with fixed parallelization options and

assigned local deadlines

scheduling, i.e., determining when the parallelized threads should be executed on
which CPU core.

For the scheduling issue, we take the similar scheduling model as in [4].
Specifically, once the parallelization option Oickpu is fixed for each vertex v, we
assign a “local deadline” d;;,, which roles as the same deadline for all the threads of
v, as shown in Figure 4.1. All the threads of v;;, are assumed to be released at the
same time when vjg_q)’s deadline d;_1) has been reached and have to be
completed before the same deadline d;;. These parallelized threads with assigned
local deadlines are scheduled by an existing optimal multicore scheduling algorithm
such as LLREF[10] and they can meet their local deadlines on m“P" CPU cores if

CPU at all times.

the sum of the densities of all active threads is not greater than m
Note that a thread is defined active from its release time to its absolute deadline and
its density is defined as its WCET divided by its relative deadline. Thus, if each vertex

Vi chooses a parallelization options Oickpu and a deadline d;;, (See Figure 4.1), its

N, 1] =1 —
12 A = TH oF)Y/

cpu
Ci(OF™

density is where Cj (Oickp ") is the total execution time requirement, i.e.,

ik

cpu

o;
WO = 2, [, WORTW(OR)

Since at most one vertex of 7; is active at a time, t;’s peak density is the

..) Cir (0™
largest one among all vertex densities, that is, max ———%—= Moreover, the sum

1<k<|v;| dik
of densities of all active threads becomes largest when each task’s peak density meets
all together as marked as “total peak density” in Figure 4.1.
Therefore, to minimize the total peak density to schedule as many as

possible tasks with mPY

CPU cores, the problem boils down to minimizing each
task 7;’s peak density independently by optimally determining the parallelization
option Ol-ckpu and the deadline d;;, for each vertex v;, of ;. This optimization

problem can be formulated as follows:

Optimization Problem 1.

Minimize - Cir (Oscpu)
0P dy 1 <k < |V3]) 15k<iVil dy
Subject to min(0P") < dy, V1< k < |V (1)
Vil
Z dix < D; ()
k=1

The first constraint Equation (1) says that each vertex v;,’s deadline d;

should be greater than or equal to the minimum time requirement Ci‘}c‘i“(Ofkpu

13 ."\._! - i.._' _.-

needed to complete it with the selected parallelization option OCpu. min (OCpu) is

the WCET of the longest thread out of Oikp threads, i.e.,

o™
ci™(0") = max_ WCETy (05", 0) z * wcET(0FM0).
1<l< 0C =1

The second constraint Equation (2) says that the sum of local deadlines of all the
vertexes should be smaller than or equal to D; to meet the task 7;’s original deadline
requirement D;.

To solve this problem, our algorithm consists of the following five steps:

Algorithm for CPU cores and Simple DAG-based Task

Input: Simple DAG G;, the parallelization options Oickpus and their corresponding
(Cu(0P™), i (07P™)) pairs for each vertex vy, in Gy, and deadline D; of task
;.

Output: Minimized peak density §; for task 7; and optimal parallelization option

Oickpu and optimal deadline d;; for each vertex v;, of ;.

® Step 1: From (Cy(0;"), Cli™(0;P")) pairs of each vertex vy, in Figure
4.2 (a), we form a continuous relation between Cj, and dj, as in Figure
4.2 (b).
® Step 2: We transform the (Cj, d;)-relation of each vertex vy in Figure
ik

4.2 (b) to the relation between vertex’s density 6;, = Z— and deadline dj;,
ik

as in Figure 4.2 (c).

1 4 g _-'i . __.:E

dy di1 Continuous d;1

L,_/ (Cix, C}qin)
(D) -relation 1
. 6—-}---?‘/@. ‘.---A.“
° (2) -4 oA
. == 'o---}---- -
@
0 Ca 0 Gy 0 Bii
dijv,| ' di|v;| - Continuous d;}y,|
(Cav; 1 Civ,) M
° &4 _relation -
° PN “e--a
. boaiess j
(@) (C(0M), (b) Continuous (c) Continuous
CR™(0:F")) points (Cix, dij)-relation (8, dix)-relation
A i1
z d,;, i
k=1 Case @
. Rk
' Ea
1 L e
-
+ 0 Cii
‘.'"A
D o dijvi|
e i "
o
; Case @
S
0 — 0;
d;(opt) 0 i
(d) Finding optimal (e) Optimal solution
peak density §;(opt) (Cix (opt), djx (opt))

Figure 4.2 Illustration of the Algorithm for CPU cores and Simple DAG-based Task

15 s M EEw

e

® Step 3: We merge the (J;, dj)-relation of every vertex vy, in Figure 4.2
(c) into the relation between task’s density §; and the deadline sum

Wil dy as in Figure 4.2 (d).

® Step 4: From the (51-,2‘,',(‘/:"'1 d;)-relation in Figure 4.2 (d), we find §;(opt)
where ZLle d;; becomes equal to D;. That §;(opt) is the optimal

objective value of Optimization Problem 1.

® Step 5: By reverse mapping the found §;(opt) to the (Cj,d;;)-relations

cpu

as in Figure 4.2 (¢), we find the optimal O~ and dj for each vertex vy

of ;.

We now give the details of each step and explain why the algorithm indeed finds

the optimal solution.

Step 1: Generally, for a vertex vy, as increasing the number 0.C PU of threads

for executing it, the minimum required execution time C mm(OCpu

) decreases but
the total execution time requirement Clk(O) increases due to parallelization
overhead. In Figure 4.2 (a), (Cy(0X"), C™(0;P")) pairs corresponding to the
discrete parallelization options 0. "5 are depicted by black dots in the 2-dimensional
space of Cy and dy. These discrete (Ci(0;2"), Cmm(OCpu)) pairs for each
vertex vy, are extended to an imaginary continuous (Cy, C/H1")-relation as follows
(see Figure 4.2 (b)): (1) We draw a vertical line segment from ©© down to the first

discrete point of (Cy(0;7"), CI™(0;")) (See part @ in Figure 4.2 (b)). (2) From

there, we draw a horizontal line segment until C;;, becomes the same as that of the

¥ [|
16 = L1

N\ i .
d‘ik : Continuous
— (Cig, CMIM)-relation
- — A /o
h ¢
o-----a
o----4
1
@rmmmmms
0 Cip

Figure 4.3 Illustration of a non-optimal solution point (white dot)

ona (Ci,dix)-plane

second discrete point of (Cy(0;P"), C™™(0;P")) (See part @ in Figure 4.2 (b)).
The end of such a horizontal line segment is called a pivot point and marked as a
black triangle. (3) From there, we draw a vertical line down to the second discrete
point of (Cy(0;7), CI™(0;F")) (See part ® in Figure 4.2 (b)). (4) We continue
this until the last discrete point of (Cy(0;7"), CI™(0;")). (5) After that, we draw
a horizontal line toward ©© (See part @ in Figure 4.2 (b)).

With such formed continuous (C, C/H™)

-relation, we can form an “imaginary
continuous solution space” where not only d;;, butalso C;, are continuous. Lemma
1 says that the optimal solution C;,(opt) and d;;(opt) inthe imaginary continuous
solution space, which we call “continuous optimal solution”, is located on the

(Cir, C™)_relation of each vertex vy

Lemma 1. Any continuous optimal solution Cj,(opt), di(opt) (1 <k <|V;])

for Optimization Problem 1 is located on (Cj, C/H1™)-relation (1 < k < |V;]).

17 A= r]

Proof. For any vertex vy, consider a 2-dimensional space of Cj, and d;;, as in
Figure 4.3. Since d;;, should be greater than or equal to cg,’gi“, any valid solution
(Cix,d;ix) should be located above or on the (Ci, Ci‘,‘}i“)—relation, that is, the shaded
area in the figure. Consider a solution (Cj,d;;) located above the (Cik,C{Ein -
relation, for example, the white dot in the figure. We show that this solution is not
optimal as follows: Note that when we draw a line from (0,0) to (Cix, dix), its slope

dik

Ci
ik d;

is the inverse of the vertex density —%. Thus, following this line, we can find a
ik

point (Cy',dy) on the (Cy, C™)-relation, i.e., the star mark in the figure. This

. L Ci! _ Cj
point has the same slope and hence the same vertex density, i.c., d‘—k, = d—‘k, but
ik ik

Cir' < Cy and dy,' < dy,. By replacing (Cy,d;) with (Cii',d;"), the original
solution can be transformed into another solution with the same vertex densities.
However, this transformed solution has a deadline gap of d;;, — d;;’. By distributing
this deadline gap to all the vertexes, we can reduce the densities of all the vertexes
and hence the peak density. This means the original solution cannot be optimal. Thus,

the lemma follows.

Due to Lemma 1, we can consider (Cy, ir,'{‘in)—relation as the set of (Cy, dx)
candidates for the continuous optimal solution. Thus, we treat (Cy, C/Bi")-relation

as (Ci,d;)-relation for the continuous optimal solution.

Step 2: For every point on (Cj, d;)-relation in Figure 4.2 (b), its density &j

is simply given as d#"", i.e., the inverse of its slope. Thus, by transforming every
ik

(Cix,dix) point to its corresponding (8;, djx) point, we can construct (8, d;x)-

relation as in Figure 4.2 (¢).

18 A _";".- 1_..5 = |

Ci Ciz Cis Ci Cly Cly J
G (], | rGeraes (]’2 G (1'-3 "ix Time &s (}i |+ (1'-2 G f[[jj “i Time
< - D, - > < - D, - >

(a) A solution with (b) A solution with
non-uniform vertex densities uniform vertex densities
.............................. 2

ol ¥ s/
Ciy Cia Cis 9j < 0i
\
Gin d;’] suadenans d(’_} W T u’}f:{ iy Time
D,

(¢) A solution with uniform vertex

densities and tight deadline

Figure 4.4 Tllustration of solutions for Optimization Problem 1

Step 3: In this step, we vertically add d;;, values on the (8, d;jx)-relations of
all vertexes in Figure 4.2 (c) for each density value §;, resulting in (51-,22/:"'1 dix)-
relation as in Figure 4.2 (d). Lemma 2 allows this addition without loss of optimality
by saying that an optimal solution can be found from the cases where all the vertex

densities are the same, i.e., §;; = §;; = -+ = &y, = 6;, as in Figure 4.4 (b).

Lemma 2. For any feasible solution Cj, d;, (1 < k < |V;|) with the peak density

Ci : .
8; = max —%£ there exists another solution Cj;/, diy (1 <k < |V;|) where all
1<k<|Vy| dik

the vertex densities are uniform as 6;, i.e.,
! ! !
G Cp Civ;

—_— = = e = l|=8i

din di dijv,)

See Figure 4.4 (b).

19 ".:r'“' I 'kl-|- 1—-“ ...‘lll.

Proof. If a feasible solution Cj, dy (1 < k < |V;|) with the peak density &; has
non-uniform vertex densities as in Figure 4.4 (a), it can always be modified into
another feasible solution Cj’, di, (1 < k < |V;|) with uniform vertex densities &;
as in Figure 4.4 (b) as follows. For every vertex v with a smaller density than the
peak density &;, we increase its total execution time requirement Cy, to Cj = 6; -
d;r such that its density becomes the same as &;. This increase of Cj; is valid since
(1) Cj is acontinuous variable until ©© and (2) increasing C;, results in the same
or a smaller Ci‘}(‘in and hence the constraint of Cg,‘}i“ < d;; in Equation (1) is still

met. Thus, the lemma follows.

Step 4: We find the point where (§;, Zlszill d;x)-relation and the horizontal
line at D; meet, as the star mark in Figure 4.2 (d), that gives the continuous optimal
solution with the minimum uniform density §;(opt) by Lemma 2 and the following

lemma.

Lemma 3. Any continuous optimal solution Cj;(opt), d;(opt) (1 <k <|V;])

for Optimization Problem 1 satisfies

il
> duopt) = .

See Figure 4.4 (c).

Proof. For any feasible solution Cy,', dj (1 <k < |V;]) with Zlszlll dir < D; as
in Figure 4.4 (b), we can construct another feasible solution Cj’, dj’ (1 <k <
|V;|) with a smaller peak density as in Figure 4.4 (c) by distributing the deadline gap

D; — ZLV:ill d;; to all the vertexes to lengthen their deadlines, i.e., to decrease their

densities. Thus, the lemma follows.

¥ [|
20 = L1

If the horizontal line at D; is completely below the (§;, Zlszlll d;i)-relation
and hence there is no crossover point, it means that there is no feasible solution, that
is, such small D; cannot be satisfied even with the maximum parallelization options

for all vertexes.

Step 5: By reverse mapping 6;(opt) to Cj, and d;, using (Ci, dix)-
relations, we can eventually find the continuous optimal solution Cjj (opt), d;, (opt)
(1 <k < |V;]). If the found C;,(opt), djx(opt) for a vertex vy, is on the vertical
line segment as in case @ of Figure 4.2 (e), its corresponding Oickpu and d;; (opt)
is the valid optimal solution for v;;. Otherwise, that is, case @ of Figure 4.2 (), we
use Oickpu of the leftmost point of the horizontal line segment and the same deadline
d;r(opt) as the valid solution for v;,. Theorem 1 says that such found solution

Oickpu and dy, (1 <k <|V;]) is the optimal solution for Optimization Problem 1.

Theorem 1. The above algorithm finds the optimal solution Oickpu, dip 1<k<

|V;]) for Optimization Problem 1.

Proof. Cy.(opt), dix(opt) (1 <k <|V;|) found by the above algorithm is the
continuous optimal solution with the minimum possible uniform density 6;(opt)
of 1; dueto Lemma 1, Lemma 2, and Lemma 3. Its mapping to the Oickpu and dg
in Step 5 results in a valid solution with the same peak density &;(opt) since the
vertex densities of case @ in Figure 4.2 (e) decrease but those of case ® in Figure

4.2 (e) remain the same.

The above steps can be practically carried out using only the discrete points,

i.e., black dots and black triangles in Figure 4.2, as follows. For Steps 1 and 2, the

2 1 g _-'i . __. :E

discrete points in Figure 4.2 (b) and Figure 4.2 (c¢) can be formed with time
complexity of O(ng|V;|) where ng is the number of parallelization options for
each vertex. For Step 3, the discrete points in Figure 4.2 (d) can be formed with time
complexity of O(ng|V;|log|V;|). Only with these discrete points, for Step4, we can
find in between which two discrete points the continuous optimal solution is located,
with the time complexity of O(ng|V;|). For Step 5, these two discrete points can be
reverse-mapped to the discrete points of (Cjy, dj)-relation as in Figure 4.2 (e), and
thus identify in between which two discrete points of (Cj, d;,) of each vertex vy,
the continuous optimal point is located, and whether it is case @ or case @. For every
vertex v, of case @, we clearly know its deadline d;,(opt) since the dj; is
constant on the horizontal line segment. Thus, D; — Z,,ik of@ dix (opt) 1is the
remaining deadline that can be given to all the vertexes of case @. For every vertex
Vi, of case @, we clearly know its Cj,(opt) since Cj is constant on the vertical
line segment. Also, the densities of these vertexes are uniform as &;(opt). Thus, for

Z"ik of ® Clk(opt)

Di=%y,, of @ dik(0PY)

these vertexes, their average density now gives the exact value

of §;(opt). From §;(opt), we can now determine d;, for each vertex of case @ as

Cix(opt)
§i(opt)

. This step takes O(ng|V;|). Overall, we can find the optimal solution with
time complexity of O(ng|V;|log|V;]).

If such optimal solutions are determined for all the tasks 4, 75, ..., T, their
optimal densities &;(opt)s are summed up. If the sum, i.e., Y,i=, §;(opt), is smaller

than or equal to the number of CPU cores, i.e., mPY, then all the tasks can be feasibly

scheduled using an optimal multicore scheduling algorithm such as LLREF.

5 2] _ 1_'. -

Theorem 2. For the simplified problem, the proposed parallelization and scheduling
algorithm is optimal (amongst the algorithms adding intermediate deadlines) when

the schedulability test is based on the density.

Proof. The proposed algorithm minimizes each task’s peak density and hence the total
peak density of the given set of sporadic tasks. Thus, if the proposed algorithm cannot
successfully schedule the given task set, that is, the minimum of possible total peak

€PU CPU cores, then the given task set is not

density is greater than the number m
schedulable by any other algorithm that assigns intermediate deadlines and tests the

schedulability based on the total peak density.

4.2 Extension for GPU Devices

This section extends the optimal algorithm for the simplified problem to a near
optimal algorithm for heterogeneous resources with both preemptive CPU cores and
non-preemptive GPU devices. For this, we need GPU’s total density bound like
CPU’s total density bound of m°P". Note that once a GPU thread enters into a GPU
device, it is executed by the GPU-internal scheduler for which we have no control
until the result comes out.®> Thus, a GPU device is usually modeled as a non-
preemptive resource. In order to derive a total density bound for such non-preemptive
m8PY GPU devices that works for any GPU-internal scheduling, we consider a
partitioned scheduling approach where GPU threads are partitioned and a GPU device

is dedicated for each partition.

3 In this work, the term GPU thread refers to a sequence of GPU operations (host-
to-device memory copy, kernel execution, and device-to-host memory copy).

¥ [|
23 = L1

| 1 |
e N |

|
C"l.q‘_“
|

(a) When the last group

is more than 50% full

«——— 0.5-d;; «—> 0.5-d;;
: | < > > 0.5 dyy, | | <> <0.5-dyy
L I I I | T J L I I [[1l |
[T e
¥
s | |oow s ! |ow [[.
L | I | | o | o |
|7 By
(b) When the last group < 50% full (c) When the last group < 50% full
and the last split thread > 0.5 - dj, and the last split thread < 0.5 - dj

gpu
Cik
dik

Figure 4.5 Partitioning GPU threads of vertex v, into [2 . J bins of size dj,

Let us explain such GPU thread partitioning algorithm assuming a fixed
parallelization option (Oickpu, Oigkpu) and a fixed local deadline d;;, for each vertex
vy, of task 7;. From now on, we use Cickpu(Oickpu, Oiipu) to denote the total CPU
execution time requirement, i.e., the sum of WCETs of the Oickpu CPU threads and

C igkpu (Oickpu, Oﬁcpu) to denote the total GPU execution time requirement, i.e., the sum

cpu

of WCETs of the 05’" GPU threads. Also, we use C2™(0;F", 03™) to denote

the minimum time requirement, that is, the WCET of the longest threads out of all the

2 4 M 2 CH &

11

cpu
Oik

cE,

+ Oigpu threads. For the notational simplicity, if no ambiguity, we use Clkp ,

mln

and omitting the parallelization option.

Figure 4.5 depicts our GPU thread partitioning for a vertex v;. First, we

ci

put all the GPU threads of v;, in a row, whose length becomes , and divide

this row into groups of size d;, as in the top part of Figure 4.5 (a). This results in

Cgpu Cgpu
[d] groups with at most l P

ik

J threads split into two groups. Since GPU threads
ik

gpu

are non-preemptive, their execution cannot be split. Thus, we add l J extra

groups and move the split threads to the added groups as in the bottom part of Figure

gpu gpu
4.5 (a). As a result, the GPU threads of v;, are partitioned into [] [C J

dik
groups. For each partition, we dedicate a GPU device. Then, the threads of each
partition can be scheduled within d;, by any GPU-internal work-conserving
scheduling.

On top of this base partitioning, if the rightmost group is less than 50% full
as in the top part of Figure 4.5 (b) and Figure 4.5 (c), we can pack the non-split threads
of the rightmost group, i.e., dark boxes in Figure 4.5 (b) and Figure 4.5 (c), either into
the second rightmost group as in the case of Figure 4.5 (b) or into the rightmost extra

group as in the case of Figure 4.5 (c) and remove the rightmost group. Thus, in this
cepu cEP
case, the GPU threads are partitioned into [] l J — 1 groups and hence can

be scheduled within d;;, with that number of GPU devices. Note that this packing is
. csP
possible only when ”‘ > 1.
In both cases of non-packing (Figure 4.5 (a)) and packing (Figure 4.5 (b)
gpu gpu

and Figure 4.5 (c)), we assume C"‘ > 0.5. Thus, if £ Sk < 0.5 for a vertex, we

dik

¥ [|
25 = L1

conservatively treat its GPU density as 0.5 in the GPU schedulability check. Thus,

gpu
vertex v;,’s GPU density denoted by Sipu is defined as max(CdL, 0.5).
ik

With this partitioned GPU scheduling, the following theorem says that

m8pu

GPU’s total density bound is

Theorem 3. All GPU threads of simple DAG-based tasks with the total GPU peak
density &8PY not greater than @ can meet their local deadlines using the

aforementioned partitioned scheduling on m8P" GPU devices.

Proof. In the non-packing case (Figure 4.5 (a)), all the GPU threads of v;;, can be

Cgpu

cEPt cEPu gpu
scheduled within d;;, with [] l J GPU devices. In this case, since £—'s
dik dik dik

gpu

gpu
] [J is less than or equal to
dik

fractional part is greater than or equal to 0.5, [

gpu
l . J Also, in the packing case (Figure 4.5 (b) and Figure 4.5 (¢)), all the GPU

gpu

gpu
threads of vy, canbe scheduled within d;;, with [] + [L

J — 1 GPU devices.
dik

gpu gpu

gpu
In this case, [l lc J — 1 isless than or equal to [2 J Combining these

two cases, any vertex v;, with density 85(pu can be scheduled within d;;, with
[2 . 6§<puj GPU devices. For a task t;, since no two vertexes are simultaneously

active, all the GPU threads of 7; can be scheduled meeting their deadlines with

1<r}r;13|)‘s|[2 5gpuJ = [2 6gpu] GPU devices where 8gp is 7;’s GPU peak

density, i.e., mal)‘(/ ldﬁcp Therefore, all GPU threads of a task set with the total GPU

¥ [|
26 = L1

peak density &§%P" =Y1 Slfgpu can be successfully scheduled on Y7 |2-
65‘?“] < 2 - 68P" GPU devices. Thus, the theorem follows.

In order to schedule as many as possible tasks with the CPU’s total density
gpu
bound mP" and GPU’s total density bound mT, for each task t;, we aim at

minimizing a greater density out of CPU peak density 5l.c PY and GPU peak density
Sigpu normalized by their respective bounds. More specifically, we minimize

cpu gpu

max{-* ~—1 by optimally determining a CPU/GPU parallelization option

mCPu’ m8pu /2
(Oickpu, Oiipu) and a local deadline d;; for each vertex vy, (1 <k < |V;]). Thus,

the problem is formulated as follows:

Optimization Problem 2.

Minimize 5icpu 6igpu
max ,
Oickpu' Oﬁfu,dik A<k {mcpu mgpu/z}
Subject to CR™(0p " OF") < dig, V1 < k < |V

Vil
Z dix < D;
k=1

This optimization problem can be reduced to Optimization Problem 1 via

the following procedure for each vertex vy.

® Black dots in Figure 4.6 (a) denote the (Cickpu(Oickpu, inu), Cgcpu(OiCkpu,

0EP™), cin(0:P", 08P™)) points for the actual discrete parallelization

options (Oickpu, Oiipu).

1
2 7 i '\'\.-.i — ;' .

(/min Cmin (","L“ C*t '“'
ik ik ik, — W plane

rrcPu

Cpu Cpu
Cik Cik
(a) Actual (b) Mapping actual points
Gt e
ik
onto — = = mgpu 7 plane
(-,niin (y\.‘l?ll (l‘l!
%)

: E —
e

Cik

sepu
¢ ik

(c) Decreasing (Cyy, CP2™) points

Figure 4.6 Reduction procedure of Optimization Problem 2 to Optimization

Problem 1 for vertex vy

cpu gpu

, cf
We map each (C;P", CEPY, CJ™) point onto the = mgpu/z plane as

in Figure 4.6 (b). That is, on the (Cj; U ¢ gpu) -plane, the points below the

cepu gpu
k_ — line move upward, and those over the line move rightward,

mepu gpu/z
2 8 r ;| 1 H 'L-l-lr' '|]|

until they reach the line while keeping the same C/2" values.

cpu Cgpu

. Ci _ Ci
® Out of the points mapped onto the m = mglpu 72

plane, we eliminate the

non-decreasing points and obtain decreasing (Cj, Cix'™") points as in

Figure 4.6 (c).

With such obtained (Cyy, Ci‘,’?i“) points for each vertex v, we apply the same
algorithm in Figure 4.2 to find the valid optimal solution (Cy,d;;). By reverse
mapping the found C;; point to its corresponding (kapu(Oi(;cpu, Oiipu), Cgcpu(Oickpu,
inu)) point using Figure 4.6 (c), we can determine the CPU/GPU parallelization
option (Oickpu, Oi%(pu).

By applying this optimization for each task, we can accept tasks until either
gpu
CPU’s total density bound mP" or GPU’s total density bound mT is reached.

After that, if there still remains room for the CPU’s density, we accept tasks using

CPU only parallelization options as explained in Section 4.1.

4.3 Extension for General DAG-based Tasks

We address the problem of general DAG-based tasks by transforming each task’s
general DAG into a simple DAG as in Figure 4.7 and then applying the algorithm in
the previous sections. Specifically, for each task t;, we transform its DAG into a

simple DAG as follows.

® We calculate the depth of each vertex as in Figure 4.7 (a).

¥ [|
29 = L1

(a) Calculating vertex (b) Forming simple DAG

depths of general DAG based on vertex depths

Figure 4.7 Transforming general DAG to simple DAG for task t;

® The vertexes of the same depth are combined into a single vertex as the first

and the fourth vertexes in Figure 4.7 (b).

® We connect the resulting vertexes with a directed edge from the vertex of

each depth to the next as in Figure 4.7 (b).

Such simplified DAG respects all of the original DAG’s precedence relations.
Also, for a new vertex v;,' that consists of two or more vertexes from the original
DAG, a combination of the parallelization options of the original vertexes, e.g.,
((Oiclpu, Oiglpu), (Oic3pu, ngu)) for the first vertex in Figure 4.7 (b), becomes a
parallelization option determining a point of (Cickpu, Cﬁcpu, g,’gi“), e.g., a black dot in
Figure 4.6 (a). Thus, we can apply the same algorithm as in Figure 4.6 and Figure 4.2
to find the solution.

Even though this simple DAG transformation is not optimal, it performs close to

the optimal transformation as will be shown in Chapter 5, since we enjoy the freedom

of both total computation requirement and local deadline.

30 A= rl

Chapter 5

Experiments

In order to study how much more real-time tasks are schedulable by enjoying the
freedom of multiple parallelization options, this section presents our simulation
results. As a hardware platform, we consider a system like ASUS ESC4000 G2 [33]
equipped with 8 CPU cores and 7 GPU devices.

In our first experiment, we consider the problem of scheduling simple DAG-
based tasks on 8 CPU cores. For this we randomly generate a list of tasks. Each task
7;’s DAG is formed as a directed sequence of |V;| vertexes where |V;| is randomly
generated from 4 to 10. For each vertex v;;, we generate a random number E from
the range of (100 ms, 400 ms) and use it as v;;’s WCET for the single CPU thread
version. Then, its multiple CPU thread versions up to Oickpu = 4 are made such that
each thread for Oickpu thread version has the WCET of E/ Oickpu +a(E—-E/ Oickpu)
on average, where a models the parallelization overhead ranging from 0 to 1. That
is, @ = 0 means perfect parallelization with zero overhead and @ = 1 means no
reduction of a thread execution time due to parallelization. Each task t; is assumed
to have the implicit deadline D; = T; where T; is randomly generated in the range
of (0.2, 1.4) times the sum of single CPU thread version’s WCETs of all vertexes.
This deadline range is selected because beyond this range, the deadlines are either too
1 ™ 7l

31 ']'"i 2 N

tight or too loose making no difference among methods. For such generated task list,
we admit tasks one by one until the system is no longer schedulable to obtain the
number of acceptable tasks. We repeat this experiment for 100 different task lists and
average the number of acceptable tasks. Figure 5.1 (a) compares the average numbers
of acceptable tasks by the following five methods as increasing the parallelization

overhead a:

® Nelissen et al.’s method [6] assuming, for every vertex, the fixed single
thread option (Nelissen with Single option), the fixed maximum
parallelization option (Nelissen with Max option), and a randomly selected

option (Nelissen with Random option),

® (Qamhieh et al.’s method [30] that tries to enjoy the freedom of
parallelization but assumes zero parallelization overhead (Qamhieh with

option freedom), and

® Our proposed method (Ours with option freedom) explained in Section 4.1.

“Nelissen with Single option” method can accept the same number of tasks
regardless of parallelization overhead since it always uses the non-parallelized option.
On the other hand, “Nelissen with Max option” can accept much more tasks when
the parallelization overhead is small but it becomes worse than “Nelissen with Single
option” as the parallelization overhead becomes large. “Nelissen with Random option”
is in between “Nelissen with Single option” and “Nelissen with Max option”
depending on the parallelization overhead. “Qamhieh with option freedom” can
accept more tasks than “Nelissen with Single option” and “Nelissen+Random” when
the parallelization overhead is zero but it does not deal with other cases. Compared

to these four existing methods, our proposed method can always accept more tasks,

10

IS =) o]

Number of acceptable tasks

[N

10

1= (o2} e e]

Number of acceptable tasks

)

—e=— Nelissen with Single option
—a— Nelissen with Max option
—o— Nelissen with Random option

n —=—{Qambhieh with option freedom |

—o— Ours with option freedom

| |
0 0.2 0.4 0.6 0.8 1

Parallelization overhead «

(a) Simple DAG-based task and CPU resource model

—&— Ours with Single option
—a— Ours with Max option
—— QOurs with Random option
B —e— Qurs with option freedom

| |
0 0.2 0.4 0.6 0.8 1

Parallelization overhead «

(b) Simple DAG-based task and heterogeneous resource model

33

10 I I \ \ \ \ \
—a— Qurs with Single option after Exhaustive DAG transformation
—— Qurs with Max option after Exhaustive DAG transformation
—+— Ours with Random option after Exhaustive DAG transformation
8~ | —e— Ours with option freedom after Exhaustive DAG transformation ||
—e— Qurs with option freedom after Simple DAG transformation

.

(

S
[
|

Number of acceptable tasks

|

0 1 2 3
DAG unbalance factor 8

(c) General DAG-based task and heterogeneous resource model

Figure 5.1 Average numbers of acceptable tasks by different methods

i.e., up to two times more than “Nelissen with Single option”, up to four times more
than “Nelissen with Max option”, and up to three times more than “Nelissen with
Random option”, by enjoying the freedom of multiple parallelization options.

In the second experiment, we consider the problem of scheduling simple
DAG-based tasks on 8 CPU cores and 7 GPU devices. For this, we similarly generate
a list of tasks. However, in this case, based on each vertex’s WCET for the single
CPU thread version, i.e., E, we make its thread versions up to OL-Ckpu =4 and
Oi%(pu = 2 such that each thread of parallelization option (Oickpu, inu) has the
WCET of E/(OL-‘;(pu +2- Oi%{pu) + a(E — E/(Oickpu +2- Oigkpu)) on average,

modeling more reduction of thread WCETs by using GPU threads. Figure 5.1 (b)

54 : _"i I !_. .-

shows the results. Since there is no existing solution for scheduling parallel tasks on
interchangeable CPU/GPU resources, we compare our proposed method that
exercises full freedom of parallelization options (Ours with option freedom) with our
methods assuming a fixed single thread option (Ours with Single option), a fixed
maximum parallelization option (Ours with Max option), and a randomly selected
option (Ours with Random option). From this, we can note that enjoying the
parallelization freedom can make significant improvement also in the coexistence of
CPU cores and GPU devices.

Finally, we consider the problem of scheduling general DAG-based tasks on
8 CPU cores and 7 GPU devices. For this, we randomly generate a general DAG with
8 vertexes for each task 7;. The way for forming a DAG with 8 vertexes is controlled
by a DAG unbalance factor § that models the length difference between the longest
path and the shortest path in the DAG. The unbalance factor § ranges from 0 to 3
where § = 0 models a balanced DAG with all the same length paths and = 3
models a largely unbalanced DAG with path length difference up to 3 vertexes. For

each vertex of such formed DAG, we make its multiple parallelization options up to

cpu
Oik

=2 and Oigkpu = 2 in the same way. For each task t;’, we randomly assign
implicit deadline D; = T; from the range of (0.7, 1.2) times the sum of single CPU
thread version’s WCETs of vertexes on the longest path. The parallelization overhead
a is randomly selected in the range of (0, 1). Figure 5.1 (¢) shows the results. In order
to study the loss by our simple DAG transformation, we compare our method using
simple DAG transformation denoted by “Ours with option freedom after Simple
DAG transformation” with the best one obtained by exhaustive DAG transformation
denoted by “Ours with option freedom after Exhaustive DAG transformation”. “Ours

with option freedom after Simple DAG transformation” shows very close

performance to “Ours with option freedom after Exhaustive DAG transformation”

1 -11
35 = L

when [issmall. Even when f is large, the loss by our simple DAG transformation
is not that significant. This can be explained as follows. With the simple DAG
transformation, unbalance can happen in terms of number of vertexes merged into
one in the transformed simple DAG. However, such unbalance can be even out in
terms of vertex density by controlling both local deadline and parallelization option,
i.e., total computation requirement and minimum required computation time. On the
other hand, if we cannot enjoy the freedom of multiple parallelization options, even
the exhaustive DAG transformations, denoted by “Ours with Single option after
Exhaustive DAG transformation”, “Ours with Max option after Exhaustive DAG
transformation”, and “Ours with Random option after Exhaustive DAG
transformation” cannot beat “Ours with option freedom after Simple DAG

transformation” in the all range of £.

36 A= rl

Chapter 6

Conclusion

This paper proposes optimal and near optimal algorithms for parallelizing and
scheduling real-time tasks with multiple parallelization options on multiple CPU
cores and multiple GPU devices. For a simplified problem with the simple DAG task
model and the CPU resource model, an optimal algorithm is proposed. Extending this
optimal algorithm, near optimal algorithms are proposed for the problem with the
CPU/GPU resource model and the general DAG-based task model. Our simulation
study says that the proposed algorithms can schedule up to two times more tasks with
the same number of CPU cores and GPU devices by enjoying the freedom of multiple
parallelization options. In the future, we plan to investigate how to trade such
increased capacity for minimizing the energy consumption. We also plan to mitigate
conservativeness of the partitioned scheduling for GPU devices, and to extend the
system model so that it practically considers the communication, preemption, and

migration overheads.

3 7 g _-'i . __. :E

Bibliography

[1]

(2]

(3]

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving in urban

environments: Boss and the urban challenge,” Journal of Field Robotics,

vol. 25, no. 8, pp. 425 - 466, 2008.

G. A. Elliott and J. H. Anderson, “Globally scheduled real-time
multiprocessor systems with gpus,” Real-Time Systems, vol. 48, no. 1, pp.

34-74,2012.

G. Levin, S. Funk, C. Sadowski, 1. Pye, and S. Brandt, “Dp-fair: A simple
model for understanding optimal multiprocessor scheduling,” in 22nd

Euromicro Conference on Real-Time Systems (ECRTS), 2010.

P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in

32nd IEEE Real-Time Systems Symposium (RTSS), 2011.

A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in 32nd IEEE Real-Time
Systems Symposium (RTSS), 2011.

1 O
38 N =

(6]

[7]

[8]

[10]

[11]

[12]

[13]

G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,” in

24th Euromicro Conference on Real-Time Systems (ECRTS), 2012.

A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill, “Parallel real-
time scheduling of dags,” in IEEE Transactions on Parallel and Distributed

Systems, 2014.
Khronos Group, https://www.khronos.org/opencl/.

S. K. Dhall and C. Liu, “On a real-time scheduling problem,” Operations
Research, vol. 26, no. 1, pp. 127.140, 1978.

S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress:
a notion of fairness in resource allocation,” in 25th annual ACM

symposium on Theory of computing, 1993.

D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic scheduling
problem: how much fairness is necessary?” in 24th IEEE Real-Time

Systems Symposium (RTSS), 2003.

A. Srinivasan and J. H. Anderson, “Fair scheduling of dynamic task
systems on multiprocessors,” Journal of Systems and Software, vol. 77, no.

1, pp. 67 - 80, 2005.

H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling
algorithm for multiprocessors,” in 27th IEEE Real-Time Systems
Symposium (RTSS), 2006.

1 O
39 N =

[14]

[15]

[16]

[17]

[18]

[19]

K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-
time scheduling on multiprocessors,” in 20th Euromicro Conference on

Real-Time Systems (ECRTS), 2008.

S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task systems,”
in 30th IEEE Real-Time Systems Symposium (RTSS), 2009.

G. Nelissen, V. Berten, V. N'elis, J. Goossens, and D. Milojevic, “U-edf:
An unfair but optimal multiprocessor scheduling algorithm for sporadic
tasks,” in 24th Euromicro Conference on Real-Time Systems (ECRTS),
2012.

B. Andersson and A. Easwaran, “Provably good multiprocessor scheduling
with resource sharing,” Real-Time Systems, vol. 46, no. 2, pp. 153 - 159,
2010.

U. Verner, A. Schuster, and M. Silberstein, “Processing data streams with
hard real-time constraints on heterogeneous systems,” in International

Conference on Supercomputing (ICS), 2011.

A. Wiese, V. Bonifaci, and S. Baruah, “Partitioned edf scheduling on a few
types of unrelated multiprocessors,” Real-Time Systems, vol. 49, no. 2, pp.

219 - 238, 2013.

G. Raravi, B. Andersson, V. N'elis, and K. Bletsas, “Task assignment
algorithms for two-type heterogeneous multiprocessors,” Real-Time

Systems, vol. 50, no. 1, pp. 87 - 141, 2014.

N
40 i —

[21]

[22]

(23]

(24]

[25]

[26]

J. H. Anderson and J. M. Calandrino, “Parallel real-time task scheduling

)

on multicore platforms,’

(RTSS), 2006.

in 27th IEEE Real-Time Systems Symposium

K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-time
tasks on multi-core processors,” in 31st IEEE Real-Time Systems

Symposium (RTSS), 2010.

F. Fauberteau, S. Midonnet, and M. Qamhieh, “Partitioned scheduling of
parallel real-time tasks on multiprocessor systems,” ACM SIGBED
Review, vol. 8, no. 3, pp. 28 - 31, 2011.

L. Nogueira, J. C. Fonseca, C. Maia, and L. M. Pinho, “Dynamic global
scheduling of parallel real-time tasks,” in 15th IEEE International

Conference on Computational Science and Engineering (CSE), 2012.

B. Bado, L. George, P. Courbin, and J. Goossens, “A semi-partitioned
approach for parallel real-time scheduling,” in 20th ACM International

Conference on Real-Time and Network Systems, 2012.

P. Courbin, 1. Lupu, and J. Goossens, “Scheduling of hard real-time multi-
phase multi-thread (mpmt) periodic tasks,” Real-time systems, vol. 49, no.

2, pp. 239 - 266, 2013.

M. Holenderski, R. J. Bril, and J. J. Lukkien, “Parallel-task scheduling on
multiple resources,” in 24th Euromicro Conference on Real-Time Systems

(ECRTS), 2012.

T
41 A =

(28]

[29]

[30]

[31]

[32]

[33]

C. Liu and J. H. Anderson, “Supporting soft real-time dag-based systems
on multiprocessors with no utilization loss,” in 31st IEEE Real-Time

Systems Symposium (RTSS), 2010.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A.
Wiese, “A generalized parallel task model for recurrent real-time

processes,” in 33rd IEEE Real-Time Systems Symposium (RTSS), 2012.

M. Qambhieh, S. Midonnet, and L. George, “Dynamic scheduling algorithm
for parallel real-time graph tasks,” ACM SIGBED Review, vol. 9, no. 4,
pp. 25 - 28, 2012.

H. Ozaktas, C. Rochange, and P. Sainrat, “Automatic wcet analysis of real-
time parallel applications,” in 13th International Workshop on Worst-Case

Execution Time Analysis, 2013.

R. Mangharam and A. A. Saba, “Anytime algorithms for gpu architectures,”
in 32nd IEEE Real-Time Systems Symposium (RTSS), 2011.

Asus, https://www.asus.com/Commercial Servers Workstations/ESC4000
G2/.

¥ ! | ¥
42 M =2 TH 2

29 (I AE)

H

YE|DO/GPGPU ANt AHETFO AT NZEY AFS2 Y HY R (&A
ElAJ HEe AT, HE NTIHE Y2 HAJ DHY ATHE, DAG Tjtt B
EfAT T@o| HN) o O 78N 4o CPU MICEQ GPU MZYCE AL
HoE TYorct. 12y, &2 OpenCL D QQT 59 WMOR By Hat
fR0 BEY FHLE AOI= e CPUY GPU MICE YEYE 2 A

EOIL. B =22 He YHY M2 M AN Y HAISS o Y9 CPU

=

H>

= TN B2 HATSS 43N z
5 UM B =22 049 OF AY YOIN H4 WEHY 282 MNE AN
CEEE

AJS2 AYZOE 2N B HAE AT UL

Q0| : YHY, YE|T0, GPGPU, AN, ANE

8 W :2012-20739

43

	1 Introduction
	2 Related Works
	3 Problem Description
	4 Proposed Solution
	4.1 Solution for CPU Cores and Simple DAG-based Tasks
	4.2 Extension for GPU Devices
	4.3 Extension for General DAG-based Tasks

	5 Experiments
	6 Conclusion

<startpage>9
1 Introduction 1
2 Related Works 4
3 Problem Description 8
4 Proposed Solution 11
 4.1 Solution for CPU Cores and Simple DAG-based Tasks 11
 4.2 Extension for GPU Devices 23
 4.3 Extension for General DAG-based Tasks 29
5 Experiments 31
6 Conclusion 37
</body>

