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Past researches on multicore/GPGPU scheduling assume that a computational unit 

has a pre-fixed number of CPU and GPU threads. However, with recent technologies 

such as OpenCL, a computational unit can be parallelized in many different ways 

with runtime selectable numbers of CPU and GPU threads. This paper proposes 

algorithms for optimally parallelizing and scheduling a set of parallel tasks with 

multiple parallelization options on multiple CPU cores and multiple GPU devices. 

Our experimental study says that the proposed algorithms can successfully schedule 

up to two times more tasks compared with other algorithms assuming pre-fixed 

parallelization. To the best of our knowledge, this is the first work addressing the 
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problem of scheduling parallel tasks with multiple parallelization options on multiple 

heterogeneous resources. 
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Chapter 1 

Introduction 

Along with increasing features and advanced functionalities, many real-time 

applications become more and more data-intensive and computation-intensive. For 

example, a vehicle with vision, lidar, radar, and GPS sensors can be augmented into 

an autonomously driving vehicle via real-time processing of massive sensory data 

and sophisticated control algorithms [1]. For such real-time handling of massive data 

and sophisticated algorithms, it has been a recent hot topic to optimally use the 

multiple CPU cores, and GPU (Graphics Processing Unit) devices for GPGPU 

(General Purpose computing on GPU) [2]. For example, [3] and [4] address the 

problem of scheduling sequential tasks using homogeneous CPU cores. On the other 

hand, [5] and [6] tackle scheduling of parallel tasks where each parallel task is 

modeled as a sequence of segments and each segment has a number of parallel threads. 

[7] addresses more general parallel tasks where each parallel task is modeled as a 

DAG (Directed Acyclic Graph) and each vertex in the DAG has one sequential thread. 

In addition to these works addressing CPU resources only, [2] addresses scheduling 

sequential tasks on multiple CPU cores and GPU devices. 

All these works consider that each computational unit, i.e., a task in [2], [3],  
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Figure 1.1 Measured thread execution times for an edge-detection program 

(Intel Core i7, 2 × Nvidia GeForce GTX 650 Ti) 

 

[4], a segment in [5], [6] and a vertex in [7], is implemented as a pre-fixed number of 

threads. However, recent heterogeneous programming frameworks such as OpenCL 

[8] support multi-version parallelism even for a single computational unit. More 

specifically, an OpenCL kernel (main program) can be parallelized into a different 

number of CPU/GPU threads with runtime arguments and launched on that number 

of CPU cores and GPU devices. Depending on the number 𝑂cpu of CPU threads and 

the number 𝑂gpu  of GPU threads that the program is parallelized into, its 

corresponding thread execution times significantly vary. Figure 1.1 shows the 

variation of the thread execution times of each parallelization option, i.e., 

(𝑂cpu, 𝑂gpu) for an edge-detection program that can be used for lane detection in an 

autonomously driving vehicle application. The figure clearly shows the significant 
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differences among thread execution times of different runtime parallelization options. 

Motivated by this finding, this paper aims at exploiting the freedom of selecting 

one out of multiple parallelization options to improve the schedulability of given set 

of parallel tasks. Specifically, we address the problem of optimally parallelizing and 

scheduling a set of sporadic parallel tasks, where each task is described by a DAG 

(Directed Acyclic Graph) and each vertex of the DAG has multiple runtime 

parallelization options on multiple preemptive/non-preemptive resources. In this 

problem, we consider a CPU core as a representative preemptive resource and a GPU 

device as a representative non-preemptive resource. For the given problem, we first 

tackle a simplified problem where the resource model has only CPU cores not GPU 

devices and the DAG of each task is a simple directed sequence of vertexes. For this 

simplified problem, we propose an optimal algorithm. Second, we extend this 

algorithm for the heterogeneous resource model with both CPU cores and GPU 

devices. Finally, we further extend the algorithm for the general DAG-based task 

model. Our experimental study says that our proposed algorithms can successfully 

schedule up to two times more tasks than other algorithms assuming pre-fixed 

parallelization. To the best of our knowledge, this is the first work addressing the 

problem of scheduling parallel tasks with multiple parallelization options on multiple 

CPU cores and multiple GPU devices. 

The rest of this thesis is organized as follows. Chapter 2 surveys the related 

works on real-time multicore scheduling algorithms. Then, Chapter 3 describes the 

target problem. In Chapter 4, we explain our proposed scheduling algorithms. Chapter 

5 presents the experimental results. Finally, Chapter 6 concludes the thesis. 
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Chapter 2 

Related Works 

There have been numerous researches on real-time multi-core scheduling since Dhall 

and Liu first addressed it in 1978 [9]. They can be grouped as in Table 1.1 according 

to the workload and resource models. For the “sequential workload model” where 

each task is a sequential program, the first group [10], [11], [12], [13], [14], [15], [3], 

[4], [16] addresses the problem of scheduling the tasks on multiple homogeneous 

resources. Specifically, in 1993, [10] first presented an optimal algorithm for 

scheduling periodic sequential tasks on homogeneous multiprocessors. The algorithm 

was theoretically optimal, in terms of the competitiveness in schedulability, but it was 

impractical due to its heavy scheduling, preemption, and migration overheads. 

Thereafter, many researchers have proposed optimal scheduling algorithms with less 

overheads [11], [12], [13], [14], [15], [3], [4], and [16]. 

The second group for the sequential workload model [17], [2] includes 

GPUs in their resource model. However, each job is dedicated to a specific resource 

type, either a CPU core or a GPU device, meaning that it cannot be executed on 

other type resources. That is, the GPU (portions of) jobs are statically fixed and 
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Table 1.1 Categorization of real-time multicore scheduling problems 

 

cannot be executed on multicore CPUs, which limits the freedom of resource 

scheduling. 

The third group for the sequential workload model [18], [19], [20] considers 

the interchangeable heterogeneous resource model. Specifically, [19] and [20] present 

scheduling algorithms for heterogeneous resource model where jobs are allowed to 

use any type of resources. However, all the resource types considered are preemptive. 

In contrast, [18] considers preemptive CPUs and non-preemptive GPUs for 

distributing real-time data streams depending on their rates and deadlines.  

The workload model also has been extended from the sequential workload 

model to parallel workload models. The first parallel workload model called a “multi-

segment parallel workload model” assumes that each task is modeled as a sequence 

of segments and each segment consists of multiple parallelized threads. For this 

workload model, the first group [21], [22], [23], [5], [6], [24], [25], [26] addresses the 

Workload 

 

Resource 

Sequential 
Parallel 
(multi-

segment) 

Parallel 
(DAG with 
pre-fixed 

parallelism) 

Parallel 
(DAG with 

multi-version 
parallelism) 

Homogeneous 

[10] [11] 
[12] [13] 

[14] [15] [3] 
[4] [16] 

[21] [22] 
[23] [5] [6] 
[24] [25] 

[26] 

[5] [6] [28] 
[29] [7] 

[30] 

Heterogeneous 
(dedicated) 

[17] [2] [27]   

Heterogeneous 
(interchangeable) 

[18] [19] 
[20] 

  This work 
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problem of scheduling such parallel tasks on homogeneous resources. Specifically, 

[21] presents a scheduling algorithm for a single-segment parallel workload model 

on identical multiprocessors. [22] and [23] present scheduling algorithms for the fork-

join workload model where single-thread and multi-thread segments alternate, that is, 

a single-thread forks into multi-threads in the next segment and they join into a single 

thread in the next segment and so on. [5], [6], [24], [25] and [26] address a more 

general multi-segment parallel workload model without alternating fork and join 

points. 

For the multi-segment parallel workload model, the second group [27] 

addresses the problem of scheduling multi-segment parallel tasks on multiple types 

of resources including both preemptive and non-preemptive ones. However, the 

resource model is limited in that jobs are dedicated to specific resource types. It is 

still open issue how to schedule multi-segment parallel tasks on interchangeable 

heterogeneous resources.  

A more general workload model is a “DAG-based parallel workload model” 

where each task is modeled as a DAG and each vertex of the DAG has one sequential 

thread. For this workload model, [5], [6], [28], [29], [7] address the problem of 

scheduling such tasks on homogeneous resources.  

In all of the aforementioned work, a task in the sequential workload model, 

a segment in the multi-segment parallel workload model, and a vertex in the DAG-

based parallel workload model has a pre-fixed number of threads and hence it is 

modeled as a pre-fixed worst case execution time. Unlike this assumption, recent 

work [30] addresses a general DAG-based parallel workload model where each 

vertex has a freedom on the degree of parallelism. A vertex has a fixed amount of 

computation requirements, but the system can choose how many homogeneous 

resources it will use to execute the vertex. Thus, the execution time of the vertex is 
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modeled as its total computation requirement divided by the number of homogeneous 

resources used for executing it. However, such a simple execution time model for 

multi-version parallelism is not practical since such perfect parallelization is not 

possible due to parallelization overheads. Also, the resource model is limited to the 

homogeneous resource model.  

In this paper, we aim at finding a solution for the most general workload 

model, i.e., DAG-based parallel workload model with multi-version parallelism and 

the most general resource model, i.e., interchangeable heterogeneous resource model 

with multiple CPU cores and multiple GPU devices. This work is positioned right-

most and bottom-most in Table 1.1. 
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Chapter 3 

Problem Description 

In this chapter, we formally define the problem. The resource in the target system and 

the workload to be executed are depicted in Figure 3.1. We consider a system with 𝑚cpu 

preemptive resources, i.e., CPU cores, and 𝑚gpu non-preemptive resources, i.e., GPU 

devices as in the figure. Thus, the set ℛ of all the resources is modeled as: 

 

ℛ = {𝑟ℎ
cpu

|1 ≤ ℎ ≤ 𝑚cpu}  ∪ {𝑟ℎ
gpu| 1 ≤ ℎ ≤ 𝑚gpu}. 

 

On top of this set of resources, the workload to be executed is modeled as a 

set of 𝑛 independent sporadic hard real-time tasks as in Fig. 3.1:  

 

Γ = {𝜏𝑖|1 ≤ 𝑖 ≤ 𝑛}. 

 

Each task 𝜏𝑖  is characterized by DAG 𝐺𝑖 , minimum inter-release time 𝑇𝑖 , and 

relative deadline 𝐷𝑖 (𝐷𝑖 ≤ 𝑇𝑖) as follows:  

 

𝜏𝑖 = (𝐺𝑖, 𝑇𝑖, 𝐷𝑖).
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Figure 3.1 Multiple CPU/GPU resources ℛ and DAG-based workload Γ with 

multiple parallelization options 

 

𝜏𝑖  is repeatedly released with the minimum inter-release time 𝑇𝑖 . Once 𝜏𝑖  is 

released, it should execute a parallel program represented by the DAG 𝐺𝑖 . Its 

execution must be completed within the relative deadline 𝐷𝑖.  

The DAG 𝐺𝑖  consists of a set 𝑉𝑖  of vertexes and a set 𝐸𝑖  of directed 

edges. 𝑘-th vertex of DAG 𝐺𝑖 is denoted by 𝑣𝑖𝑘 where 1 ≤ 𝑘 ≤ |𝑉𝑖|. A directed 
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edge (𝑣𝑖𝑘1
, 𝑣𝑖𝑘2

) ∈ 𝐸𝑖  represents a precedence constraint meaning that 𝑣𝑖𝑘2
 can 

start its execution only after 𝑣𝑖𝑘1
 finishes the execution. Each vertex 𝑣𝑖𝑘 of DAG 

𝐺𝑖 has multiple parallelization options as depicted in the WCET table of Figure 3.1. 

An option is represented by (𝑂cpu, 𝑂gpu) meaning that the vertex is parallelized into 

𝑂cpu threads for CPU cores and 𝑂gpu threads for GPU devices.1 Out of 𝑂cpu +

𝑂gpu threads for executing 𝑣𝑖𝑘 with option (𝑂cpu, 𝑂gpu), ℓ-th thread’s worst case 

execution time (WCET) is denoted by 𝑊𝐶𝐸𝑇𝑖𝑘((𝑂cpu, 𝑂gpu), ℓ) and assumed to be 

given through offline program analysis [31] or measurements [32].2  

Problem Definition: For the given resource ℛ and workload Γ, our problem 

has two folds:  

 Parallelization: choose parallelization option (𝑂cpu, 𝑂gpu)  for every 

vertex 𝑣𝑖𝑘  of DAG 𝐺𝑖  for every task 𝜏𝑖 = (𝐺𝑖, 𝑇𝑖, 𝐷𝑖)  in Γ =

{𝜏𝑖|1 ≤ 𝑖 ≤ 𝑛} and  

 Scheduling: determine when the parallelized CPU and GPU threads should 

be executed on which CPU cores and GPU devices,  

meeting all the deadlines and precedence constraints.  

Our goal is to find the optimal or near-optimal solutions for the problem 

such that as many as possible tasks can be feasibly scheduled with the given CPU 

cores and GPU devices. 
                                            

1  This general model can cover practical scenarios where a CPU thread vertex 

launches the next vertex’s CPU/GPU threads and their results are combined by the 

next CPU thread vertex and so on. 
2 Communication overheads between CPU and GPU are defined to be a part of the 

thread’s WCET, as in [2]. Preemption and migration costs are assumed to be zero. In 

the future, we plan to extend our work for a more practical task model. 
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Chapter 4 

Proposed Solution 

To solve the problem defined in the previous chapter, in Section 4.1, we first tackle a 

simplified problem with only CPU cores and sporadic tasks modeled by simple DAGs. 

Then, Section 4.2 extends this algorithm for the heterogeneous resource model with 

both CPU cores and GPU devices. Finally, Section 4.3 further extends the algorithm 

for the general DAG-based task model. 

 

 

4.1 Solution for CPU Cores and Simple DAG-based Tasks 
 

This section proposes an optimal solution for a simplified problem. In the simplified 

problem, the resource set ℛ  has only 𝑚cpu  CPU cores and each task τi in the 

sporadic task set Γ = {𝜏𝑖|1 ≤ 𝑖 ≤ 𝑛} is modeled by a simple DAG, i.e., a directed 

sequence of |𝑉𝑖| vertexes. For this problem, we have to jointly address the two issues, 

(1) parallelization, i.e., determining a parallelization option for each vertex and (2) 
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Figure 4.1 Simple DAG workload {𝜏1, 𝜏2} with fixed parallelization options and 

assigned local deadlines 

 

scheduling, i.e., determining when the parallelized threads should be executed on 

which CPU core. 

For the scheduling issue, we take the similar scheduling model as in [4]. 

Specifically, once the parallelization option 𝑂𝑖𝑘
cpu is fixed for each vertex 𝑣𝑖𝑘, we 

assign a “local deadline” 𝑑𝑖𝑘, which roles as the same deadline for all the threads of 

𝑣𝑖𝑘 as shown in Figure 4.1. All the threads of 𝑣𝑖𝑘 are assumed to be released at the 

same time when 𝑣𝑖(𝑘−1) ’s deadline 𝑑𝑖(𝑘−1)  has been reached and have to be 

completed before the same deadline 𝑑𝑖𝑘. These parallelized threads with assigned 

local deadlines are scheduled by an existing optimal multicore scheduling algorithm 

such as LLREF[10] and they can meet their local deadlines on 𝑚cpu CPU cores if 

the sum of the densities of all active threads is not greater than 𝑚cpu at all times. 

Note that a thread is defined active from its release time to its absolute deadline and 

its density is defined as its WCET divided by its relative deadline. Thus, if each vertex 

𝑣𝑖𝑘 chooses a parallelization options 𝑂𝑖𝑘
cpu and a deadline 𝑑𝑖𝑘 (See Figure 4.1), its 
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density is 𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

)

𝑑𝑖𝑘
 where 𝐶𝑖𝑘(𝑂𝑖𝑘

cpu
) is the total execution time requirement, i.e.,  

 

𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

) =  ∑ 𝑊𝐶𝐸𝑇𝑖𝑘(𝑂𝑖𝑘
cpu

, ℓ ).
𝑂𝑖𝑘

cpu

ℓ=1
 

 

Since at most one vertex of 𝜏𝑖 is active at a time, 𝜏𝑖’s peak density is the 

largest one among all vertex densities, that is, max
1≤𝑘≤|𝑉𝑖|

𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

)

𝑑𝑖𝑘
 . Moreover, the sum 

of densities of all active threads becomes largest when each task’s peak density meets 

all together as marked as “total peak density” in Figure 4.1. 

Therefore, to minimize the total peak density to schedule as many as 

possible tasks with 𝑚cpu CPU cores, the problem boils down to minimizing each 

task 𝜏𝑖’s peak density independently by optimally determining the parallelization 

option 𝑂𝑖𝑘
cpu  and the deadline 𝑑𝑖𝑘  for each vertex 𝑣𝑖𝑘  of 𝜏𝑖 . This optimization 

problem can be formulated as follows:  

 

Optimization Problem 1. 

Minimize 
𝑂𝑖𝑘

cpu
, 𝑑𝑖𝑘  (1 ≤ 𝑘 ≤ |𝑉𝑖|) 

 
max

1≤𝑘≤|𝑉𝑖|

𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

)

𝑑𝑖𝑘
  

 

  

    

Subject to  𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
) ≤ 𝑑𝑖𝑘 , ∀1 ≤ 𝑘 ≤ |𝑉𝑖| (1) 

  
∑ 𝑑𝑖𝑘

|𝑉𝑖|

𝑘=1
≤ 𝐷𝑖 (2) 

 

The first constraint Equation (1) says that each vertex 𝑣𝑖𝑘’s deadline 𝑑𝑖𝑘 

should be greater than or equal to the minimum time requirement 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
) 



 

 １４ 

needed to complete it with the selected parallelization option 𝑂𝑖𝑘
cpu. 𝐶𝑖𝑘

min(𝑂𝑖𝑘
cpu

) is 

the WCET of the longest thread out of 𝑂𝑖𝑘
cpu threads, i.e.,  

𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
) =  max

1 ≤ ℓ ≤ 𝑂𝑖𝑘
cpu

𝑊𝐶𝐸𝑇𝑖𝑘(𝑂𝑖𝑘
cpu

, ℓ ) ∑ 𝑊𝐶𝐸𝑇(𝑂𝑖𝑘
cpu

, ℓ ).
𝑂𝑖𝑘

cpu

ℓ=1
 

 

The second constraint Equation (2) says that the sum of local deadlines of all the 

vertexes should be smaller than or equal to 𝐷𝑖 to meet the task 𝜏𝑖’s original deadline 

requirement 𝐷𝑖.  

To solve this problem, our algorithm consists of the following five steps: 

 

Algorithm for CPU cores and Simple DAG-based Task  

Input: Simple DAG 𝐺𝑖, the parallelization options 𝑂𝑖𝑘
cpus and their corresponding 

(𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) pairs for each vertex 𝑣𝑖𝑘 in 𝐺𝑖, and deadline 𝐷𝑖 of task 

𝜏𝑖.  

Output: Minimized peak density 𝛿𝑖 for task 𝜏𝑖 and optimal parallelization option 

𝑂𝑖𝑘
cpu and optimal deadline 𝑑𝑖𝑘 for each vertex 𝑣𝑖𝑘 of 𝜏𝑖. 

 Step 1: From (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) pairs of each vertex 𝑣𝑖𝑘 in Figure 

4.2 (a), we form a continuous relation between 𝐶𝑖𝑘 and 𝑑𝑖𝑘 as in Figure 

4.2 (b). 

 Step 2: We transform the (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-relation of each vertex 𝑣𝑖𝑘 in Figure 

4.2 (b) to the relation between vertex’s density 𝛿𝑖𝑘 =
𝐶𝑖𝑘

𝑑𝑖𝑘
 and deadline 𝑑𝑖𝑘 

as in Figure 4.2 (c). 
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Figure 4.2 Illustration of the Algorithm for CPU cores and Simple DAG-based Task 

 

(a) (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 

𝐶𝑖𝑘
min(𝑂𝑖𝑘

𝑐𝑝𝑢
)) points 

(b) Continuous 
(𝐶𝑖𝑘 , 𝑑𝑖𝑘)-relation 

(d) Finding optimal 
peak density 𝛿𝑖(opt) 

(e) Optimal solution 
(𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt)) 

(c) Continuous 
(𝛿𝑖𝑘 , 𝑑𝑖𝑘)-relation 
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 Step 3: We merge the (𝛿𝑖𝑘 , 𝑑𝑖𝑘)-relation of every vertex 𝑣𝑖𝑘 in Figure 4.2 

(c) into the relation between task’s density 𝛿𝑖  and the deadline sum 

∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1  as in Figure 4.2 (d). 

 Step 4: From the (𝛿𝑖 , ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1 )-relation in Figure 4.2 (d), we find 𝛿𝑖(opt) 

where ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1  becomes equal to 𝐷𝑖 . That 𝛿𝑖(opt)  is the optimal 

objective value of Optimization Problem 1.  

 Step 5: By reverse mapping the found 𝛿𝑖(opt) to the (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-relations 

as in Figure 4.2 (e), we find the optimal 𝑂𝑖𝑘
cpu and 𝑑𝑖𝑘 for each vertex 𝑣𝑖𝑘 

of 𝜏𝑖. 

 

 

We now give the details of each step and explain why the algorithm indeed finds 

the optimal solution.  

 

Step 1: Generally, for a vertex 𝑣𝑖𝑘, as increasing the number 𝑂𝑖𝑘
cpu of threads 

for executing it, the minimum required execution time 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
) decreases but 

the total execution time requirement 𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

) increases due to parallelization 

overhead. In Figure 4.2 (a), (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) pairs corresponding to the 

discrete parallelization options 𝑂𝑖𝑘
cpus are depicted by black dots in the 2-dimensional 

space of 𝐶𝑖𝑘  and 𝑑𝑖𝑘 . These discrete (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) pairs for each 

vertex 𝑣𝑖𝑘 are extended to an imaginary continuous (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation as follows 

(see Figure 4.2 (b)): (1) We draw a vertical line segment from ∞ down to the first 

discrete point of (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) (See part  in Figure 4.2 (b)). (2) From 

there, we draw a horizontal line segment until 𝐶𝑖𝑘 becomes the same as that of the  
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Figure 4.3 Illustration of a non-optimal solution point (white dot)  

on a (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-plane 

 

second discrete point of (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) (See part  in Figure 4.2 (b)). 

The end of such a horizontal line segment is called a pivot point and marked as a 

black triangle. (3) From there, we draw a vertical line down to the second discrete 

point of (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)) (See part  in Figure 4.2 (b)). (4) We continue 

this until the last discrete point of (𝐶𝑖𝑘(𝑂𝑖𝑘
cpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
)). (5) After that, we draw 

a horizontal line toward ∞ (See part  in Figure 4.2 (b)). 

With such formed continuous (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation, we can form an “imaginary 

continuous solution space” where not only 𝑑𝑖𝑘 but also 𝐶𝑖𝑘 are continuous. Lemma 

1 says that the optimal solution 𝐶𝑖𝑘(opt) and 𝑑𝑖𝑘(opt) in the imaginary continuous 

solution space, which we call “continuous optimal solution”, is located on the 

(𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation of each vertex 𝑣𝑖𝑘. 

 

Lemma 1. Any continuous optimal solution 𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt) (1 ≤ 𝑘 ≤ |𝑉𝑖|) 

for Optimization Problem 1 is located on (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation (1 ≤ 𝑘 ≤ |𝑉𝑖|). 
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Proof. For any vertex 𝑣𝑖𝑘 , consider a 2-dimensional space of 𝐶𝑖𝑘  and 𝑑𝑖𝑘  as in 

Figure 4.3. Since 𝑑𝑖𝑘 should be greater than or equal to 𝐶𝑖𝑘
min, any valid solution 

(𝐶𝑖𝑘 , 𝑑𝑖𝑘) should be located above or on the (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation, that is, the shaded 

area in the figure. Consider a solution (𝐶𝑖𝑘 , 𝑑𝑖𝑘) located above the (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-

relation, for example, the white dot in the figure. We show that this solution is not 

optimal as follows: Note that when we draw a line from (0, 0) to (𝐶𝑖𝑘 , 𝑑𝑖𝑘), its slope 

𝑑𝑖𝑘

𝐶𝑖𝑘
 is the inverse of the vertex density 𝐶𝑖𝑘

𝑑𝑖𝑘
. Thus, following this line, we can find a 

point (𝐶𝑖𝑘′, 𝑑𝑖𝑘′) on the (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation, i.e., the star mark in the figure. This 

point has the same slope and hence the same vertex density, i.e., 𝐶𝑖𝑘′

𝑑𝑖𝑘′
=

𝐶𝑖𝑘

𝑑𝑖𝑘
, but 

𝐶𝑖𝑘′ < 𝐶𝑖𝑘  and 𝑑𝑖𝑘′ < 𝑑𝑖𝑘 . By replacing (𝐶𝑖𝑘 , 𝑑𝑖𝑘) with (𝐶𝑖𝑘′, 𝑑𝑖𝑘′), the original 

solution can be transformed into another solution with the same vertex densities. 

However, this transformed solution has a deadline gap of 𝑑𝑖𝑘 − 𝑑𝑖𝑘′. By distributing 

this deadline gap to all the vertexes, we can reduce the densities of all the vertexes 

and hence the peak density. This means the original solution cannot be optimal. Thus, 

the lemma follows.  

 

Due to Lemma 1, we can consider (𝐶𝑖𝑘, 𝐶𝑖𝑘
min)-relation as the set of (𝐶𝑖𝑘 , 𝑑𝑖𝑘) 

candidates for the continuous optimal solution. Thus, we treat (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)-relation 

as (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-relation for the continuous optimal solution. 

 

Step 2: For every point on (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-relation in Figure 4.2 (b), its density 𝛿𝑖𝑘 

is simply given as 𝐶𝑖𝑘

𝑑𝑖𝑘
, i.e., the inverse of its slope. Thus, by transforming every 

(𝐶𝑖𝑘 , 𝑑𝑖𝑘) point to its corresponding (𝛿𝑖𝑘 , 𝑑𝑖𝑘) point, we can construct (𝛿𝑖𝑘 , 𝑑𝑖𝑘)-

relation as in Figure 4.2 (c).  
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Figure 4.4 Illustration of solutions for Optimization Problem 1 

 

Step 3: In this step, we vertically add 𝑑𝑖𝑘 values on the (𝛿𝑖𝑘 , 𝑑𝑖𝑘)-relations of 

all vertexes in Figure 4.2 (c) for each density value 𝛿𝑖, resulting in (𝛿𝑖 , ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1 )-

relation as in Figure 4.2 (d). Lemma 2 allows this addition without loss of optimality 

by saying that an optimal solution can be found from the cases where all the vertex 

densities are the same, i.e., 𝛿𝑖1 = 𝛿𝑖2 = ⋯ = 𝛿𝑖|𝑉𝑖| = 𝛿𝑖 , as in Figure 4.4 (b).  

 

Lemma 2. For any feasible solution 𝐶𝑖𝑘, 𝑑𝑖𝑘 (1 ≤ 𝑘 ≤ |𝑉𝑖|) with the peak density 

𝛿𝑖 = max
1≤𝑘≤|𝑉𝑖|

𝐶𝑖𝑘

𝑑𝑖𝑘
 , there exists another solution 𝐶𝑖𝑘′, 𝑑𝑖𝑘  (1 ≤ 𝑘 ≤ |𝑉𝑖|) where all 

the vertex densities are uniform as 𝛿𝑖, i.e., 

𝐶𝑖1′

𝑑𝑖1
=

𝐶𝑖2′

𝑑𝑖2
= ⋯ =

𝐶𝑖|𝑉𝑖|′

𝑑𝑖|𝑉𝑖|
= 𝛿𝑖 . 

See Figure 4.4 (b). 

(a) A solution with 
non-uniform vertex densities 

(b) A solution with 
uniform vertex densities 

(c) A solution with uniform vertex 
densities and tight deadline 
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Proof. If a feasible solution 𝐶𝑖𝑘 , 𝑑𝑖𝑘 (1 ≤ 𝑘 ≤ |𝑉𝑖|) with the peak density 𝛿𝑖 has 

non-uniform vertex densities as in Figure 4.4 (a), it can always be modified into 

another feasible solution 𝐶𝑖𝑘′, 𝑑𝑖𝑘 (1 ≤ 𝑘 ≤ |𝑉𝑖|) with uniform vertex densities 𝛿𝑖 

as in Figure 4.4 (b) as follows. For every vertex 𝑣𝑖𝑘 with a smaller density than the 

peak density 𝛿𝑖, we increase its total execution time requirement 𝐶𝑖𝑘 to 𝐶𝑖𝑘
′ = 𝛿𝑖 ⋅

𝑑𝑖𝑘 such that its density becomes the same as 𝛿𝑖. This increase of 𝐶𝑖𝑘 is valid since 

(1) 𝐶𝑖𝑘 is a continuous variable until ∞ and (2) increasing 𝐶𝑖𝑘 results in the same 

or a smaller 𝐶𝑖𝑘
min and hence the constraint of 𝐶𝑖𝑘

min ≤ 𝑑𝑖𝑘 in Equation (1) is still 

met. Thus, the lemma follows. 

 

Step 4: We find the point where (𝛿𝑖 , ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1 )-relation and the horizontal 

line at 𝐷𝑖 meet, as the star mark in Figure 4.2 (d), that gives the continuous optimal 

solution with the minimum uniform density 𝛿𝑖(opt) by Lemma 2 and the following 

lemma.  

 

Lemma 3. Any continuous optimal solution 𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt) (1 ≤ 𝑘 ≤ |𝑉𝑖|) 

for Optimization Problem 1 satisfies  

∑ 𝑑𝑖𝑘(opt)
|𝑉𝑖|

𝑘=1
= 𝐷𝑖. 

See Figure 4.4 (c).  

 

Proof. For any feasible solution 𝐶𝑖𝑘′, 𝑑𝑖𝑘  (1 ≤ 𝑘 ≤ |𝑉𝑖|) with ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1 < 𝐷𝑖 as 

in Figure 4.4 (b), we can construct another feasible solution 𝐶𝑖𝑘′, 𝑑𝑖𝑘′ (1 ≤ 𝑘 ≤

|𝑉𝑖|) with a smaller peak density as in Figure 4.4 (c) by distributing the deadline gap 

𝐷𝑖 − ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1  to all the vertexes to lengthen their deadlines, i.e., to decrease their 

densities. Thus, the lemma follows.  
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If the horizontal line at 𝐷𝑖 is completely below the (𝛿𝑖 , ∑ 𝑑𝑖𝑘
|𝑉𝑖|
𝑘=1 )-relation 

and hence there is no crossover point, it means that there is no feasible solution, that 

is, such small 𝐷𝑖 cannot be satisfied even with the maximum parallelization options 

for all vertexes.  

 

Step 5: By reverse mapping 𝛿𝑖(opt) to 𝐶𝑖𝑘  and 𝑑𝑖𝑘  using (𝐶𝑖𝑘 , 𝑑𝑖𝑘)-

relations, we can eventually find the continuous optimal solution 𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt) 

(1 ≤ 𝑘 ≤ |𝑉𝑖|). If the found 𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt) for a vertex 𝑣𝑖𝑘 is on the vertical 

line segment as in case  of Figure 4.2 (e), its corresponding 𝑂𝑖𝑘
cpu and 𝑑𝑖𝑘(opt) 

is the valid optimal solution for 𝑣𝑖𝑘. Otherwise, that is, case  of Figure 4.2 (e), we 

use 𝑂𝑖𝑘
cpu of the leftmost point of the horizontal line segment and the same deadline 

𝑑𝑖𝑘(opt) as the valid solution for 𝑣𝑖𝑘 . Theorem 1 says that such found solution 

𝑂𝑖𝑘
cpu and 𝑑𝑖𝑘 (1 ≤ 𝑘 ≤ |𝑉𝑖|) is the optimal solution for Optimization Problem 1. 

 

Theorem 1. The above algorithm finds the optimal solution 𝑂𝑖𝑘
cpu

, 𝑑𝑖𝑘 (1 ≤ 𝑘 ≤

|𝑉𝑖|) for Optimization Problem 1.  

 

Proof. 𝐶𝑖𝑘(opt), 𝑑𝑖𝑘(opt)  (1 ≤ 𝑘 ≤ |𝑉𝑖|)  found by the above algorithm is the 

continuous optimal solution with the minimum possible uniform density 𝛿𝑖(opt)  

of 𝜏𝑖 due to Lemma 1, Lemma 2, and Lemma 3. Its mapping to the 𝑂𝑖𝑘
cpu and 𝑑𝑖𝑘 

in Step 5 results in a valid solution with the same peak density 𝛿𝑖(opt) since the 

vertex densities of case  in Figure 4.2 (e) decrease but those of case  in Figure 

4.2 (e) remain the same.  

 

The above steps can be practically carried out using only the discrete points, 

i.e., black dots and black triangles in Figure 4.2, as follows. For Steps 1 and 2, the 
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discrete points in Figure 4.2 (b) and Figure 4.2 (c) can be formed with time 

complexity of 𝑂(𝑛O|𝑉𝑖|) where 𝑛O  is the number of parallelization options for 

each vertex. For Step 3, the discrete points in Figure 4.2 (d) can be formed with time 

complexity of 𝑂(𝑛O|𝑉𝑖| log|𝑉𝑖|). Only with these discrete points, for Step4, we can 

find in between which two discrete points the continuous optimal solution is located, 

with the time complexity of 𝑂(𝑛O|𝑉𝑖|). For Step 5, these two discrete points can be 

reverse-mapped to the discrete points of (𝐶𝑖𝑘, 𝑑𝑖𝑘)-relation as in Figure 4.2 (e), and 

thus identify in between which two discrete points of (𝐶𝑖𝑘 , 𝑑𝑖𝑘) of each vertex 𝑣𝑖𝑘 

the continuous optimal point is located, and whether it is case  or case . For every 

vertex 𝑣𝑖𝑘  of case , we clearly know its deadline 𝑑𝑖𝑘(opt) since the 𝑑𝑖𝑘  is 

constant on the horizontal line segment. Thus, 𝐷𝑖 − ∑ 𝑑𝑖𝑘𝑣𝑖𝑘 of  (opt)  is the 

remaining deadline that can be given to all the vertexes of case . For every vertex 

𝑣𝑖𝑘 of case , we clearly know its 𝐶𝑖𝑘(opt) since 𝐶𝑖𝑘 is constant on the vertical 

line segment. Also, the densities of these vertexes are uniform as 𝛿𝑖(opt). Thus, for 

these vertexes, their average density 
∑ 𝐶𝑖𝑘𝑣𝑖𝑘 of  (opt) 

𝐷𝑖−∑ 𝑑𝑖𝑘𝑣𝑖𝑘 of  (opt) 
 now gives the exact value 

of 𝛿𝑖(opt). From 𝛿𝑖(opt), we can now determine 𝑑𝑖𝑘 for each vertex of case  as 

𝐶𝑖𝑘(opt)

𝛿𝑖(opt)
. This step takes 𝑂(𝑛O|𝑉𝑖|). Overall, we can find the optimal solution with 

time complexity of 𝑂(𝑛O|𝑉𝑖| log|𝑉𝑖|). 

If such optimal solutions are determined for all the tasks 𝜏1, 𝜏2, … , 𝜏𝑛, their 

optimal densities 𝛿𝑖(opt)s are summed up. If the sum, i.e., ∑ 𝛿𝑖(opt)𝑛
𝑖=1 , is smaller 

than or equal to the number of CPU cores, i.e., 𝑚cpu, then all the tasks can be feasibly 

scheduled using an optimal multicore scheduling algorithm such as LLREF.  
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Theorem 2. For the simplified problem, the proposed parallelization and scheduling 

algorithm is optimal (amongst the algorithms adding intermediate deadlines) when 

the schedulability test is based on the density.  

 

Proof. The proposed algorithm minimizes each task’s peak density and hence the total 

peak density of the given set of sporadic tasks. Thus, if the proposed algorithm cannot 

successfully schedule the given task set, that is, the minimum of possible total peak 

density is greater than the number 𝑚cpu CPU cores, then the given task set is not 

schedulable by any other algorithm that assigns intermediate deadlines and tests the 

schedulability based on the total peak density.  

 

 

4.2 Extension for GPU Devices 
 

This section extends the optimal algorithm for the simplified problem to a near 

optimal algorithm for heterogeneous resources with both preemptive CPU cores and 

non-preemptive GPU devices. For this, we need GPU’s total density bound like 

CPU’s total density bound of 𝑚cpu. Note that once a GPU thread enters into a GPU 

device, it is executed by the GPU-internal scheduler for which we have no control 

until the result comes out. 3  Thus, a GPU device is usually modeled as a non-

preemptive resource. In order to derive a total density bound for such non-preemptive 

𝑚gpu  GPU devices that works for any GPU-internal scheduling, we consider a 

partitioned scheduling approach where GPU threads are partitioned and a GPU device 

is dedicated for each partition.  

                                            
3 In this work, the term GPU thread refers to a sequence of GPU operations (host-
to-device memory copy, kernel execution, and device-to-host memory copy). 
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Figure 4.5 Partitioning GPU threads of vertex 𝑣𝑖𝑘 into ⌊2 ⋅  
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌋ bins of size 𝑑𝑖𝑘 

 

Let us explain such GPU thread partitioning algorithm assuming a fixed 

parallelization option (𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

) and a fixed local deadline 𝑑𝑖𝑘 for each vertex 

𝑣𝑖𝑘 of task 𝜏𝑖. From now on, we use 𝐶𝑖𝑘
cpu

(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

) to denote the total CPU 

execution time requirement, i.e., the sum of WCETs of the 𝑂𝑖𝑘
cpu CPU threads and 

𝐶𝑖𝑘
gpu

(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

) to denote the total GPU execution time requirement, i.e., the sum 

of WCETs of the 𝑂𝑖𝑘
gpu GPU threads. Also, we use 𝐶𝑖𝑘

min(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

) to denote 

the minimum time requirement, that is, the WCET of the longest threads out of all the 

(a) When the last group 
is more than 50% full 

(b) When the last group ≤ 50% full 
and the last split thread > 0.5 ⋅ 𝑑𝑖𝑘 

(c) When the last group ≤ 50% full 
and the last split thread ≤ 0.5 ⋅ 𝑑𝑖𝑘 

(b) When the last group ≤ 50% full 
and the last split thread > 0.5 ⋅ 𝑑𝑖𝑘 

(c) When the last group ≤ 50% full 
and the last split thread ≤ 0.5 ⋅ 𝑑𝑖𝑘 
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𝑂𝑖𝑘
cpu

+ 𝑂𝑖𝑘
gpu threads. For the notational simplicity, if no ambiguity, we use 𝐶𝑖𝑘

cpu, 

𝐶𝑖𝑘
gpu, and 𝐶𝑖𝑘

min omitting the parallelization option.  

Figure 4.5 depicts our GPU thread partitioning for a vertex 𝑣𝑖𝑘. First, we 

put all the GPU threads of 𝑣𝑖𝑘 in a row, whose length becomes 𝐶𝑖𝑘
gpu, and divide 

this row into groups of size 𝑑𝑖𝑘, as in the top part of Figure 4.5 (a). This results in 

⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ groups with at most ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ threads split into two groups. Since GPU threads 

are non-preemptive, their execution cannot be split. Thus, we add ⌊
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌋  extra 

groups and move the split threads to the added groups as in the bottom part of Figure 

4.5 (a). As a result, the GPU threads of 𝑣𝑖𝑘  are partitioned into ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋  

groups. For each partition, we dedicate a GPU device. Then, the threads of each 

partition can be scheduled within 𝑑𝑖𝑘  by any GPU-internal work-conserving 

scheduling.  

On top of this base partitioning, if the rightmost group is less than 50% full 

as in the top part of Figure 4.5 (b) and Figure 4.5 (c), we can pack the non-split threads 

of the rightmost group, i.e., dark boxes in Figure 4.5 (b) and Figure 4.5 (c), either into 

the second rightmost group as in the case of Figure 4.5 (b) or into the rightmost extra 

group as in the case of Figure 4.5 (c) and remove the rightmost group. Thus, in this 

case, the GPU threads are partitioned into ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ − 1 groups and hence can 

be scheduled within 𝑑𝑖𝑘 with that number of GPU devices. Note that this packing is 

possible only when 𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
> 1. 

In both cases of non-packing (Figure 4.5 (a)) and packing (Figure 4.5 (b) 

and Figure 4.5 (c)), we assume 𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
≥ 0.5. Thus, if 𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
< 0.5 for a vertex, we 
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conservatively treat its GPU density as 0.5 in the GPU schedulability check. Thus, 

vertex 𝑣𝑖𝑘’s GPU density denoted by 𝛿𝑖𝑘
gpu is defined as max(

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
, 0.5). 

With this partitioned GPU scheduling, the following theorem says that 

GPU’s total density bound is 𝑚gpu

2
. 

 

Theorem 3. All GPU threads of simple DAG-based tasks with the total GPU peak 

density 𝛿gpu  not greater than 𝑚gpu

2
 can meet their local deadlines using the 

aforementioned partitioned scheduling on 𝑚gpu GPU devices.  

 

Proof. In the non-packing case (Figure 4.5 (a)), all the GPU threads of 𝑣𝑖𝑘 can be 

scheduled within 𝑑𝑖𝑘 with ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ GPU devices. In this case, since 𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
’s 

fractional part is greater than or equal to 0.5, ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ is less than or equal to 

⌊2 ⋅  
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌋. Also, in the packing case (Figure 4.5 (b) and Figure 4.5 (c)), all the GPU 

threads of 𝑣𝑖𝑘 can be scheduled within 𝑑𝑖𝑘 with ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ − 1 GPU devices. 

In this case, ⌈
𝐶𝑖𝑘

gpu

𝑑𝑖𝑘
⌉ + ⌊

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋ − 1 is less than or equal to ⌊2 ⋅  

𝐶𝑖𝑘
gpu

𝑑𝑖𝑘
⌋. Combining these 

two cases, any vertex 𝑣𝑖𝑘  with density 𝛿𝑖𝑘
gpu  can be scheduled within 𝑑𝑖𝑘  with 

⌊2 ⋅  𝛿𝑖𝑘
gpu

⌋ GPU devices. For a task 𝜏𝑖, since no two vertexes are simultaneously 

active, all the GPU threads of 𝜏𝑖  can be scheduled meeting their deadlines with 

max
1≤𝑘≤|𝑉𝑖|

⌊2 ⋅  𝛿𝑖𝑘
gpu

⌋ = ⌊2 ⋅  𝛿𝑖
gpu

⌋  GPU devices where 𝛿𝑖
gpu  is 𝜏𝑖 ’s GPU peak 

density, i.e., max
1≤𝑘≤|𝑉𝑖|

𝛿𝑖𝑘
gpu. Therefore, all GPU threads of a task set with the total GPU 
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peak density 𝛿
gpu

= ∑ 𝛿𝑖
gpu𝑛

𝑖=1  can be successfully scheduled on ∑ ⌊2 ⋅𝑛
𝑖=1

 𝛿𝑖𝑘
gpu

⌋ ≤ 2 ⋅ 𝛿gpu GPU devices. Thus, the theorem follows.  

In order to schedule as many as possible tasks with the CPU’s total density 

bound 𝑚cpu  and GPU’s total density bound 𝑚gpu

2
, for each task 𝜏𝑖 , we aim at 

minimizing a greater density out of CPU peak density 𝛿𝑖
cpu and GPU peak density 

𝛿𝑖
gpu  normalized by their respective bounds. More specifically, we minimize 

max{
𝛿𝑖

cpu

𝑚cpu ,
𝛿𝑖

gpu

𝑚gpu/2
}  by optimally determining a CPU/GPU parallelization option 

(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

) and a local deadline 𝑑𝑖𝑘 for each vertex 𝑣𝑖𝑘 (1 ≤ 𝑘 ≤ |𝑉𝑖|). Thus, 

the problem is formulated as follows:  

 

Optimization Problem 2. 

Minimize 
𝑂𝑖𝑘

cpu
, 𝑂𝑖𝑘

gpu
, 𝑑𝑖𝑘  (1 ≤ 𝑘 ≤ |𝑉𝑖|) 

 
max{

𝛿𝑖
cpu

𝑚cpu
,

𝛿𝑖
gpu

𝑚gpu/2
}  

 

   

Subject to  𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
, 𝑂𝑖𝑘

gpu
) ≤ 𝑑𝑖𝑘 , ∀1 ≤ 𝑘 ≤ |𝑉𝑖| 

  
∑ 𝑑𝑖𝑘

|𝑉𝑖|

𝑘=1
≤ 𝐷𝑖 

 

This optimization problem can be reduced to Optimization Problem 1 via 

the following procedure for each vertex 𝑣𝑖𝑘.  

 

 Black dots in Figure 4.6 (a) denote the (𝐶𝑖𝑘
cpu

(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

), 𝐶𝑖𝑘
gpu

(𝑂𝑖𝑘
cpu

,

𝑂𝑖𝑘
gpu

), 𝐶𝑖𝑘
min(𝑂𝑖𝑘

cpu
, 𝑂𝑖𝑘

gpu
))  points for the actual discrete parallelization 

options (𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

). 
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Figure 4.6 Reduction procedure of Optimization Problem 2 to Optimization 

Problem 1 for vertex 𝑣𝑖𝑘 

 

 We map each (𝐶𝑖𝑘
cpu

, 𝐶𝑖𝑘
gpu

, 𝐶𝑖𝑘
min) point onto the 𝐶𝑖𝑘

cpu

𝑚cpu =  
𝐶𝑖𝑘

gpu

𝑚gpu/2
 plane as 

in Figure 4.6 (b). That is, on the (𝐶𝑖𝑘
cpu

, 𝐶𝑖𝑘
gpu

)-plane, the points below the 

𝐶𝑖𝑘
cpu

𝑚cpu =  
𝐶𝑖𝑘

gpu

𝑚gpu/2
 line move upward, and those over the line move rightward, 

(a) Actual  
(𝐶𝑖𝑘

cpu
, 𝐶𝑖𝑘

gpu
, 𝐶𝑖𝑘

min) 

(b) Mapping actual points 

onto 𝐶𝑖𝑘
cpu

𝑚cpu =
𝐶𝑖𝑘

gpu

𝑚gpu/2
 plane 

(c) Decreasing (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min) points 
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until they reach the line while keeping the same 𝐶𝑖𝑘
min values.  

 Out of the points mapped onto the 𝐶𝑖𝑘
cpu

𝑚cpu =  
𝐶𝑖𝑘

gpu

𝑚gpu/2
 plane, we eliminate the 

non-decreasing points and obtain decreasing (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min)  points as in 

Figure 4.6 (c). 

 

With such obtained (𝐶𝑖𝑘 , 𝐶𝑖𝑘
min) points for each vertex 𝑣𝑖𝑘, we apply the same 

algorithm in Figure 4.2 to find the valid optimal solution (𝐶𝑖𝑘 , 𝑑𝑖𝑘). By reverse 

mapping the found 𝐶𝑖𝑘 point to its corresponding (𝐶𝑖𝑘
cpu

(𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

), 𝐶𝑖𝑘
gpu

(𝑂𝑖𝑘
cpu

,

𝑂𝑖𝑘
gpu

)) point using Figure 4.6 (c), we can determine the CPU/GPU parallelization 

option (𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

). 

By applying this optimization for each task, we can accept tasks until either 

CPU’s total density bound 𝑚cpu or GPU’s total density bound 𝑚gpu

2
 is reached. 

After that, if there still remains room for the CPU’s density, we accept tasks using 

CPU only parallelization options as explained in Section 4.1. 

 

 

4.3 Extension for General DAG-based Tasks 
 

We address the problem of general DAG-based tasks by transforming each task’s 

general DAG into a simple DAG as in Figure 4.7 and then applying the algorithm in 

the previous sections. Specifically, for each task 𝜏𝑖, we transform its DAG into a 

simple DAG as follows. 

 

 We calculate the depth of each vertex as in Figure 4.7 (a). 
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Figure 4.7 Transforming general DAG to simple DAG for task 𝜏𝑖 

 

 The vertexes of the same depth are combined into a single vertex as the first 

and the fourth vertexes in Figure 4.7 (b). 

 We connect the resulting vertexes with a directed edge from the vertex of 

each depth to the next as in Figure 4.7 (b). 

 

Such simplified DAG respects all of the original DAG’s precedence relations. 

Also, for a new vertex 𝑣𝑖𝑘′ that consists of two or more vertexes from the original 

DAG, a combination of the parallelization options of the original vertexes, e.g., 

((𝑂𝑖1
cpu

, 𝑂𝑖1
gpu

), (𝑂𝑖3
cpu

, 𝑂𝑖3
gpu

))  for the first vertex in Figure 4.7 (b), becomes a 

parallelization option determining a point of (𝐶𝑖𝑘
cpu

, 𝐶𝑖𝑘
gpu

, 𝐶𝑖𝑘
min), e.g., a black dot in 

Figure 4.6 (a). Thus, we can apply the same algorithm as in Figure 4.6 and Figure 4.2 

to find the solution.  

Even though this simple DAG transformation is not optimal, it performs close to 

the optimal transformation as will be shown in Chapter 5, since we enjoy the freedom 

of both total computation requirement and local deadline. 

 

 

 

(a) Calculating vertex 
depths of general DAG 

(b) Forming simple DAG 
based on vertex depths 
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Chapter 5 

Experiments 

In order to study how much more real-time tasks are schedulable by enjoying the 

freedom of multiple parallelization options, this section presents our simulation 

results. As a hardware platform, we consider a system like ASUS ESC4000 G2 [33] 

equipped with 8 CPU cores and 7 GPU devices.  

In our first experiment, we consider the problem of scheduling simple DAG-

based tasks on 8 CPU cores. For this we randomly generate a list of tasks. Each task 

𝜏𝑖’s DAG is formed as a directed sequence of |𝑉𝑖| vertexes where |𝑉𝑖| is randomly 

generated from 4 to 10. For each vertex 𝑣𝑖𝑘, we generate a random number 𝐸 from 

the range of (100 ms, 400 ms) and use it as 𝑣𝑖𝑘’s WCET for the single CPU thread 

version. Then, its multiple CPU thread versions up to 𝑂𝑖𝑘
cpu

= 4 are made such that 

each thread for 𝑂𝑖𝑘
cpu thread version has the WCET of 𝐸/𝑂𝑖𝑘

cpu
+ 𝛼(𝐸 − 𝐸/𝑂𝑖𝑘

cpu
) 

on average, where 𝛼 models the parallelization overhead ranging from 0 to 1. That 

is, 𝛼 = 0 means perfect parallelization with zero overhead and 𝛼 = 1 means no 

reduction of a thread execution time due to parallelization. Each task 𝜏𝑖 is assumed 

to have the implicit deadline 𝐷𝑖 = 𝑇𝑖 where 𝑇𝑖 is randomly generated in the range 

of (0.2, 1.4) times the sum of single CPU thread version’s WCETs of all vertexes. 

This deadline range is selected because beyond this range, the deadlines are either too 
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tight or too loose making no difference among methods. For such generated task list, 

we admit tasks one by one until the system is no longer schedulable to obtain the 

number of acceptable tasks. We repeat this experiment for 100 different task lists and 

average the number of acceptable tasks. Figure 5.1 (a) compares the average numbers 

of acceptable tasks by the following five methods as increasing the parallelization 

overhead 𝛼:  

 Nelissen et al.’s method [6] assuming, for every vertex, the fixed single 

thread option (Nelissen with Single option), the fixed maximum 

parallelization option (Nelissen with Max option), and a randomly selected 

option (Nelissen with Random option), 

 Qamhieh et al.’s method [30] that tries to enjoy the freedom of 

parallelization but assumes zero parallelization overhead (Qamhieh with 

option freedom), and 

 Our proposed method (Ours with option freedom) explained in Section 4.1. 

 

“Nelissen with Single option” method can accept the same number of tasks 

regardless of parallelization overhead since it always uses the non-parallelized option. 

On the other hand, “Nelissen with Max option” can accept much more tasks when 

the parallelization overhead is small but it becomes worse than “Nelissen with Single 

option” as the parallelization overhead becomes large. “Nelissen with Random option” 

is in between “Nelissen with Single option” and “Nelissen with Max option” 

depending on the parallelization overhead. “Qamhieh with option freedom” can 

accept more tasks than “Nelissen with Single option” and “Nelissen+Random” when 

the parallelization overhead is zero but it does not deal with other cases. Compared 

to these four existing methods, our proposed method can always accept more tasks, 
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(a) Simple DAG-based task and CPU resource model 

(b) Simple DAG-based task and heterogeneous resource model 
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Figure 5.1 Average numbers of acceptable tasks by different methods 

 

i.e., up to two times more than “Nelissen with Single option”, up to four times more 

than “Nelissen with Max option”, and up to three times more than “Nelissen with 

Random option”, by enjoying the freedom of multiple parallelization options. 

In the second experiment, we consider the problem of scheduling simple 

DAG-based tasks on 8 CPU cores and 7 GPU devices. For this, we similarly generate 

a list of tasks. However, in this case, based on each vertex’s WCET for the single 

CPU thread version, i.e., 𝐸 , we make its thread versions up to 𝑂𝑖𝑘
cpu

= 4  and 

𝑂𝑖𝑘
gpu

= 2  such that each thread of parallelization option (𝑂𝑖𝑘
cpu

, 𝑂𝑖𝑘
gpu

)  has the 

WCET of 𝐸/(𝑂𝑖𝑘
cpu

+ 2 ⋅ 𝑂𝑖𝑘
gpu

) + 𝛼(𝐸 − 𝐸/(𝑂𝑖𝑘
cpu

+ 2 ⋅ 𝑂𝑖𝑘
gpu

))  on average, 

modeling more reduction of thread WCETs by using GPU threads. Figure 5.1 (b) 

(c) General DAG-based task and heterogeneous resource model 
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shows the results. Since there is no existing solution for scheduling parallel tasks on 

interchangeable CPU/GPU resources, we compare our proposed method that 

exercises full freedom of parallelization options (Ours with option freedom) with our 

methods assuming a fixed single thread option (Ours with Single option), a fixed 

maximum parallelization option (Ours with Max option), and a randomly selected 

option (Ours with Random option). From this, we can note that enjoying the 

parallelization freedom can make significant improvement also in the coexistence of 

CPU cores and GPU devices.  

Finally, we consider the problem of scheduling general DAG-based tasks on 

8 CPU cores and 7 GPU devices. For this, we randomly generate a general DAG with 

8 vertexes for each task 𝜏𝑖. The way for forming a DAG with 8 vertexes is controlled 

by a DAG unbalance factor 𝛽 that models the length difference between the longest 

path and the shortest path in the DAG. The unbalance factor 𝛽 ranges from 0 to 3 

where 𝛽 = 0 models a balanced DAG with all the same length paths and 𝛽 = 3 

models a largely unbalanced DAG with path length difference up to 3 vertexes. For 

each vertex of such formed DAG, we make its multiple parallelization options up to 

𝑂𝑖𝑘
cpu

= 2 and 𝑂𝑖𝑘
gpu

= 2 in the same way. For each task 𝜏𝑖’, we randomly assign 

implicit deadline 𝐷𝑖 = 𝑇𝑖 from the range of (0.7, 1.2) times the sum of single CPU 

thread version’s WCETs of vertexes on the longest path. The parallelization overhead 

𝛼 is randomly selected in the range of (0, 1). Figure 5.1 (c) shows the results. In order 

to study the loss by our simple DAG transformation, we compare our method using 

simple DAG transformation denoted by “Ours with option freedom after Simple 

DAG transformation” with the best one obtained by exhaustive DAG transformation 

denoted by “Ours with option freedom after Exhaustive DAG transformation”. “Ours 

with option freedom after Simple DAG transformation” shows very close 

performance to “Ours with option freedom after Exhaustive DAG transformation” 
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when 𝛽 is small. Even when 𝛽 is large, the loss by our simple DAG transformation 

is not that significant. This can be explained as follows. With the simple DAG 

transformation, unbalance can happen in terms of number of vertexes merged into 

one in the transformed simple DAG. However, such unbalance can be even out in 

terms of vertex density by controlling both local deadline and parallelization option, 

i.e., total computation requirement and minimum required computation time. On the 

other hand, if we cannot enjoy the freedom of multiple parallelization options, even 

the exhaustive DAG transformations, denoted by “Ours with Single option after 

Exhaustive DAG transformation”, “Ours with Max option after Exhaustive DAG 

transformation”, and “Ours with Random option after Exhaustive DAG 

transformation” cannot beat “Ours with option freedom after Simple DAG 

transformation” in the all range of 𝛽. 
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Chapter 6 

Conclusion 

This paper proposes optimal and near optimal algorithms for parallelizing and 

scheduling real-time tasks with multiple parallelization options on multiple CPU 

cores and multiple GPU devices. For a simplified problem with the simple DAG task 

model and the CPU resource model, an optimal algorithm is proposed. Extending this 

optimal algorithm, near optimal algorithms are proposed for the problem with the 

CPU/GPU resource model and the general DAG-based task model. Our simulation 

study says that the proposed algorithms can schedule up to two times more tasks with 

the same number of CPU cores and GPU devices by enjoying the freedom of multiple 

parallelization options. In the future, we plan to investigate how to trade such 

increased capacity for minimizing the energy consumption. We also plan to mitigate 

conservativeness of the partitioned scheduling for GPU devices, and to extend the 

system model so that it practically considers the communication, preemption, and 

migration overheads. 
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요약 (국문 초록) 
 

멀티코어/GPGPU 실시간 스케줄링에 관한 기존의 연구들은 하나의 계산 유닛 (순차 

태스크 모델의 태스크, 멀티 세그먼트 병렬 태스크 모델의 세그먼트, DAG 기반 병렬 

태스크 모델의 정점) 이 미리 정해진 개수의 CPU 쓰레드와 GPU 쓰레드를 가지는 

것으로 가정하였다. 그러나, 최근 OpenCL 프레임워크 등의 발전으로, 하나의 계산 

유닛이 런타임에 동적으로 정하는 개수의 CPU와 GPU 쓰레드로 병렬화될 수 있게 

되었다. 본 논문은 복수 병렬화 옵션을 가진 실시간 병렬 태스크들을 여러 개의 CPU 

코어와 GPU 디바이스 자원 위에 최적으로 병렬화하고 스케줄하는 알고리즘들을 

제안한다. 본 논문의 실험 결과에 의하면 제안하는 알고리즘들은 미리 정해진 병렬화 

옵션을 사용하는 다른 알고리즘보다 두 배까지 많은 태스크들을 성공적으로 스케줄할 

수 있다. 본 논문은 다수의 이종 자원 위에서 복수의 병렬화 옵션을 가지는 실시간 

병렬 태스크들을 스케줄하는 문제의 해결을 최초로 시도하고 있다. 
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