

저작자표시-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nd/2.0/kr/

M.S. THESIS

Enabling User-Controlled Allocations on

Hybrid Memory Systems

하이브리드환경에서사용자의제어가가능한메모리할당

기법

July 2014

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Cui Wenfeng

Enabling User-Controlled Allocations on Hybrid Memory

Systems

하이브리드환경에서사용자의제어가가능한

메모리할당기법

지도교수염헌영

이논문을공학석사학위논문으로제출함

2014년 7월

서울대학교대학원

전기.컴퓨터공학부

최문봉

Cui Wenfeng의공학석사학위논문을인준함

2014년 7월

위 원 장 김지홍 (인)

부위원장 염헌영 (인)

위 원 이제희 (인)

Abstract

Phase-Change Memory (PCM) has received a lot of attention as a next-generation

storage component. Because PCM has higher density and lower power consumption as

main memory compared with DRAM, hybrid main memory systems are proposed as

new models that comprise PCM and DRAM. However, PCM has lower durability and

6-12 times slower write access time than DRAM. When PCM is used as main memory,

the high write latency influences performance enormously. To make up these weak-

nesses in PCM, previous researches focused on automatic page replacement by which

pages could be migrated between PCM and DRAM main memory when programs are

running based on statistics of the page access patterns. But statistics based page re-

placement approaches need pattern monitoring overhead and furthermore, proposed

hardware driven approaches are hard to deploy because memory controller has to be

redesigned and software approaches are not complete solutions because not all page

accesses are visible to software. In this paper, we propose to enable user-controlled

static memory allocations on hybrid memory systems. Through static memory allo-

cations, programmers can allocate write intensive variables to DRAM to avoid high

write access time and wearing of PCM along with energy savings.

Keywords: Phase-change memory, Memory management, Hybrid memory systems,

Memory allocations

Student Number: 2012-23962

i

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

0.1 Introduction . 1

0.2 Related Work . 2

0.2.1 Statistics based page replacement 2

0.2.2 Process layout for 64bit Linux systems 3

0.2.3 Malloc memory allocation interface in Glibc 5

0.2.4 Physical memory managements in Linux kernels 6

0.3 Motivations . 7

0.4 Design and Implementations . 7

0.4.1 Modifications in Glibc . 7

0.4.2 New design of process layout and handling page faults 8

0.5 Evaluation . 10

0.5.1 Experimental environment 10

ii

0.5.2 Quick Sort and Merge Sort performance 12

0.5.3 The lbm performance . 12

0.5.4 Data structure overhead of glibc and kernels 13

0.6 Limitations . 13

0.7 Conclusions and Future Work . 14

Bibliography 19

요약 22

Acknowledgements 23

iii

List of Figures

Figure 1 The process layout on 64bit Linux operating systems 4

Figure 2 Malloc function path in Glibc 2.12 6

Figure 3 New memory allocation interfaces path in Glibc 8

Figure 4 New process layout in 64bit systems 10

Figure 5 System settings and delays of DRAM/PCM 11

Figure 6 Runtime, Energy and R/W statistics evaluation of quicksort . 15

Figure 7 Runtime, Energy and R/W statistics evaluation mergesort . . 16

Figure 8 Runtime, Energy and R/W statistics evaluation of lbm 17

Figure 9 Glibc and kernel overhead 18

iv

List of Tables

v

0.1 Introduction

With the emergence of many-core CPUs and big data applications, the memory ca-

pacity problem is becoming an ever important issue for many platforms. With the ad-

vantages of nearly 4x higher density [Ramos et al], and lower idle power consumption

than DRAM, PCM has become one of the most promising next-generation memories.

PCM shows high potential as a storage cache layer or main memory when used with

other low write latency devices [CMU2008survey] due to its comparable read latency

with DRAM and the fact that the memory size is more critical to performance than

write latency. Energy consumption is also a major issue in the design of data centers

and the energy consumed by main memory is one of the dominant parts. Despite its

high write latency, PCM shows high performance per price in [Kim et al] when used as

the component for both the storage and the main memory even under the assumption

of its price 4 times higher than Flash based SSD(Solid State devices) for enterprises.

For mobile devices, energy consumption is critical and PCM shows great potential be-

cause of its low energy consumption in idle state.Because operating system kernels do

not consider hybrid memory systems, PCM and DRAM frames are treated the same

when memory page faults occur. This leads inefficient usage of the main memory since

DRAM is more suited for write operations than PCM. We focus on the main memory

management issue of hybrid memory systems and propose a design and implemen-

tation of a new dynamic memory allocation interface with which users can allocate

main memory between PCM and DRAM explicitly. We also enable global variables

to decide their physical memory frames between PCM and DRAM by kernel modi-

fications. The new interface involves only software modifications and from the point

of Glibc(GNU C library) view, it keeps the memory allocation efficiency of Glibc but

adds a new feature of hybrid memory allocations in the library. Besides the modifica-

tion of Glibc, we modified the process layout in the 64bit Linux system to support the

1

feature of hybrid memory allocations.

Our simulation-based results show that the ability of user-controlled allocations on hy-

brid main memory systems allows the runtime reduction of 12-19% in the quick sort,

20-35% in the merge sort, 40-45% in the lbm and 1-23% in the original matrix mul-

tiplication. Along with runtime reduction, significant reduction of power consumption

comes as 33-35% in quick sort, 35-54% in the merge sort, 66-70% in the lbm and

9-40% in the original matrix multiplication.

0.2 Related Work

0.2.1 Statistics based page replacement

In addition to the advantages as stated, PCM has two critical weaknesses com-

pared with DRAM when used as main memories: its low durability of write operations

and high write latency. To cope with these two problems, page replacement algorithms

have been proposed [Ramos et al] [Lee et al]. Page replacement algorithm proposed

in [Ramos et al] which uses [Zhou et al] shows much performance improvement but it

is a hardware driven method and requires memory controller to monitor the page ac-

cess patterns and migrate pages between DRAM and PCM. CLOCK-DWF algorithm

proposed in [Lee et al] executes page replacement according to the write frequency

to estimate future write references. But the algorithm needs to monitor every access

of read/write operation on pages and makes eviction decisions of which page should

be evicted out when the DRAM or PCM area is full. It’s possible to get each page

access operation by mark page accessed function in the kernel for those pages used

as file caching but not for anonymous page accesses. On most hardware-filled TLB

platforms (e.g., Intel processors), each page table entry has an access bit, which is au-

tomatically set by hardware when the page is accessed [Zhang et al]. By periodically

checking and clearing this access bit, one can estimate the access frequency for each

2

anonymous page. However, the high overhead of scanning all the page table entries in

the main memory for statistics poses a new problem. NVMALLOC [Wang et al] pro-

posed a method for exploiting non-volatile memory as a secondary memory partition

so that applications can explicitly allocate and manipulate memory regions therein.

NVMALLOC calls the memory mapped I/O interface every time for each memory

request then users are able to manipulate the returned memory mapped area as they

do with the main memory. But the approach is not a suitable solution when PCM is

used as the main memory because it is critical to performance when memory mapped

system call is executed every time for each request. User level dynamic memory al-

location interfaces like malloc go through Glibc and the library manages the memory

allocation and deallocation between the applicatoin layer and the kernel layer. Consid-

ering the high overhead of system calls, the library does not request the memory from

the kernel for every request. When a request smaller than 64 megabytes comes, the

library request 64 megabytes from the kernel and split the allocated memory for the

request and the rest part of the 64 megabytes may be used for other requests. When the

memory of the request is to be freed, the library does not return it to the kernel ime-

diately considering new memory requests may arrive soon. For requests larger than

64 megabytes, the library request and return the memory through system calls directly.

On hybrid memory systems, we need a mechanism to allocate the memory considering

not only the requesting memory sizes but also the kind of memory requested.

0.2.2 Process layout for 64bit Linux systems

On the 64bit Linux systems, the process layout looks like Figure 1. Since the vir-

tual addresses are represented using 48 bits on 64bit systems, the size of the whole

virtual memory space is 256 terabytes. The Linux kernel divides the virtual memory

space equally into the kernel space and the user space. Those temporal variables cre-

ated during the execution of functions are located in the “stack” area. Heap is the place

3

where dynamic memory allocations usually take place. The heap area is managed by

malloc, realloc, and free in applications, which may use the brk or sbrk system calls to

adjust its size. Spaces allocated by brk or sbrk system calls are located in the “Heap”

area. Spaces allocated by mmap are located in the “Memory Mapping Region”. The

Heap area is shared by all shared libraries and dynamically loaded modules in a pro-

cess. The compiled code goes to the “Text Segment” and only read operations occur

on this segment. Global variables go to the “BSS Segment” or the “Data Segment”,

initialized global variables are located in the “Data Segment” and uninitialized global

variables are located in the “BSS Segment”. The reason to separate these two segment

is to get a smaller size of ELF(Executable and Linkable Format) file after compilation

since uninitialized data can be set as zeros during the run time when accessed.

Figure 1 The process layout on 64bit Linux operating systems

4

0.2.3 Malloc memory allocation interface in Glibc

One of the typical dynamic memory allocations interface is malloc(int size) where

“size” is the requested memory size. As we can see in Figure 2, malloc involves three

layers. When users call malloc, requests are passed to Glibc and then sbrk and mmap

systems are called by Glibc. Arenas exist in the Glibc library and they are responsible

for allocating memories for requests from malloc. In the original versions, there is only

one main arena. For each memory allocation request, processes will lock the main

arena and free the lock after allocations. As the SMP(Symmetric multiprocessing)

architecture become popular, the contention among threads degrades the performance

of the malloc function. Hence, the malloc is improved to be adjusted to multithreading

environment by adding non-main arenas for the lock contention reduction on the main

arena. Non-main arenas are added to a linked list with the main arena. Each arena

uses one lock to ensure synchronization among threads. Each process has only one

main arena but may have many non-main arenas. The number of non-main arenas

increases as the contention among threads increases. When a thread attempts to request

a memory space, it looks over if has an arena among thread-local variables; if there is

an arena, it tries to lock this arena and if it fails, this thread scans the linked list of

arenas to find an arena which is not locked; if all of the arenas are locked, it will create

a new non-main arena to reduce contentions among threads. When a thread attempts

to free a memory space, it has to wait until the arena which manages the memory

space is unlocked. Main arena accesses the “Heap segment” and the “mmap” area. In

other words, main arena can request memory by sbrk and mmap but non-main arenas

can only access the ’mmap’ area. Users will get continuous virtual memory space if

they don’t call sbrk and brk since the main arena will request virtual memory using

sbrk only. Non-main arenas use mmap to get 64 megabytes memory from the kernel

in 64bit systems and then slice this large amount of memory as many small number

5

of allocation units for requests. Since system calls are expensive compared with user

space function calls, malloc requests a large size memory at one time to reduce the

cost of system calls. For the free operations for those allocated spaces, Glibc library

does not return those spaces to the kernel immediately since other requests probably

come afterwards.

Figure 2 Malloc function path in Glibc 2.12

0.2.4 Physical memory managements in Linux kernels

The physical memory address space is divided into three zones in Linux system:

DMA, DMA32 and Normal zone, which serve different functions accordingly. “DMA”

zone provides the memory space for those devices in which only 16 megabyte address

range is accessible because of the limitation of address lines. Similarly, ’DMA32’ zone

provides the memory space for those devices in which 4 gigabyte address range is

accessible. The ’Normal’ zone manages the rest of the memory space(equal or greater

than 4 gigabyte address space) and provides the memory space for other cases. Each

zone maintains a independent buddy allocator management system so making PCM as

a separate zone is an obvious way to distinguish DRAM and PCM. By creating a PCM

zone, we are able to handle allocated frames when page faults occur.

6

0.3 Motivations

As was discussed, hardware approaches have difficulties in deployment and soft-

ware approaches of automatic page migrations have difficulties in monitoring the page

access patterns of anonymous pages and the overhead of scanning page table entries.

We focus on static memory allocation only by software approaches assuming that pro-

grammers have knowledge of the write intensive variables. Because the malloc inter-

face in the Glibc is designed with deliberation of performance, we try to implement

hmalloc(hybrid memory allocations) with low overhead.

0.4 Design and Implementations

0.4.1 Modifications in Glibc

The Glibc maintains a list of arenas, each managing its own allocated memory

spaces. Each memory space is represented as a chunk in Glibc. Many chunks with sim-

ilar sizes are usually grouped together in a linked list as a bin. Each arena maintains

128 bins considering the performance under different requesting sizes. If a requested

size is greater than the maximum size the largest bin can maintain, the mmap system

call is invoked and the munmap is called when the requested space is freed. Obviously,

small requested spaces are cached by bins of an arena. When a thread tries to request

a memory space, it remembers the pointer of the arena as a thread local variable and

will try to use it again in the next request. To distinguish PCM requests and DRAM

requests in hmalloc(size, DRAM or PCM), we create another list(harena list in Fig-

ure 3) of arenas which is responsible for caching PCM requests and make the existing

list(arena list in Figure 3) responsible for DRAM requests. Of course, each thread will

have 2 thread local variables. One is the pointer to the arena responsible for DRAM

requests and the other is the pointer to the harena(the pointer of its arena for PCM

allocations). Arenas in the arena list are not modified so they still call sbrk or mmap

7

to extend the virtual memory spaces. But arenas in the harena list can only call the

mmap system call. There is only one parameter difference between the mmap called

by arenas and harenas to differentiate a request between for DRAM and PCM.

Figure 3 New memory allocation interfaces path in Glibc

0.4.2 New design of process layout and handling page faults

A page fault is a trap to the software raised by the hardware when a program ac-

cesses a page that is mapped in the virtual address space, but not loaded in the physical

memory. When a page fault occurs, the information we know in the kernel is lim-

ited since it is raised by the hardware and it is hard to pass extra parameters to the

do page fault function. The only useful information we can obtain is the virtual ad-

dress where the page fault occurs and it is stored in the CR2 register. Hence, we propose

to use different virtual address space for DRAM area and PCM area. We make it possi-

ble to decide DRAM or PCM frame we should allocate for a page fault only by the page

fault virtual address. This idea drives us to modify the default process layout as shown

in Figure 4. Basically, we have enough virtual memory space as large as 256 terabytes

which is much larger than the physical memory a machine can equipped with. So we

divide the whole virtual space into two parts. The cut-off value is 0x558862ef0000

8

and it is the median of the beginning values of two “Memory Mapping Region”s. This

value is trivial since each “Memory Mapping Region” has a terabyte level space, we

assume each region is enough for containing all DRAM requests or PCM requests

without striding the median value. The upper part includes the kernel space and its

range is from cut-off value to 256 terabytes. The lower part has a range from 0 to cut-

off value. The default “Memory Mapping Region” lies in the lower part and raises from

bottom up. We create another “Memory Mapping Region” which lies in the upper part

and descends from top to bottom leaving enough virtual memory space for the “Stack”

area. The function mmap is called by arenas use the top-down“Memory Mapping Re-

gion” and those called by harenas use the bottom-up “Memory Mapping Region” re-

gion. Because events in the kernel space are critical to the system performance, we

allocate DRAM frames when page faults occur in the upper part and PCM frames for

the lower part. By allocating diffrent frames for the two “Memory Mapping Region”s

and making the Glibc library calls different mmap functions, we implement a user-

controlled interface(textithmalloc) for dynamic memory allocations. But as we look in

Figure 4, those segments lie in the lower part such as “Text Segment”, “BSS Segment”

and “Data segment”. Allocating PCM frames to the “Text Segment” segment is not

critical for the performance since only read operations occur in the “Text Segment”.

But write operations possibly occur in the ’BSS Segment’ and the ’Data segment’.

When the size of these segments become larger and get more write operations, the

performance degradation from these segments can become non-negligible. The GNU

compiler provides a feature that we can use attribute (section(’segment name’)) to

embellish global variables. To make use of this feature, we define another segment

name called ’DRAM AREA’ and place write intensive variables in this segment. In

the kernel, when a page fault occurs, first we check if the address is in the ’DRAM

AREA’ segment; if yes we allocate DRAM frames; if not we check if the address is in

the upper or lower part. The function which loads ELF files is the load elf binary in

9

the kernel. When an ELF file is loaded, we remember the range of “DRAM AREA” of

the file and make the mm struct of the process remember the range. When a page fault

occurs, we can get the “DRAM AREA” value from the mm struct of current process

and use it to check where the page fault address belong to.

Figure 4 New process layout in 64bit systems

0.5 Evaluation

0.5.1 Experimental environment

We used simulation based evaluations to evaluate the performance of our new

memory allocation management scheme. We used MARSS-x86 cycle accurate sim-

ulator for system simulation[Patel et al]. We also used Dramsim2 to simulate the main

memory system in the MARSS-x86[Rosenfeld et al]. By using these two simulators,

we could get cycle accurate physical memory traces, then replay these traces in another

self-implemented simulator. We configure the memory latency as short as possible in

the Dramsim2 and simulate actual latency of DRAM and PCM in the trace simula-

10

tion. We filter out memory references that are accessed directly from the L1 and L2

cache memories and gather only the memory references observed at the main mem-

ory system. We get diffrent trace distributions between DRAM and PCM by using the

malloc and hmalloc. Then we replay the two diffrent traces in the trace simulation to

get the runtime and energy consumption results. Figure 5 shows the system settings

and DRAM/PCM delay configurations. We referred [Lee et al] and [Ramos et al] for

the experimental enviroment.

Figure 5 System settings and delays of DRAM/PCM

11

0.5.2 Quick Sort and Merge Sort performance

We evaluate two sorting algorithms as in Figure 6 and Figure 7 using benchmarks

in [Quicksort] and [mergesort]. We modified the memory allocating function call from

malloc to hmalloc by which the space for storing the sorted arrays are allocated. We

also modified the buffer allocation function to the hmalloc in the mergesort bench-

mark code. X axis represents the number of elements in the sorting algorithms and y

axis represents the runtime or energy. The Figure 6(c) and Figure 7(c) show the statis-

tics of R/W operations occur in DRAM(zone0) and PCM(zone1). We compared our

default kernel&Glibc and customized kernel&Glibc. We only modified memory allo-

cation interfaces from malloc to hmalloc in the application code. As results show, in

our customized kernel&Glibc the runtime of quicksort reduces by 12-29% along with

energy reduction by 33-42% compared with the default kernel&Glibc. The runtime

of the mergesort reduces by 16-35% along with energy reduction by 34-54%. PCM

has a much much slower write latency than DRAM, so we can get more performance

improvement from the mergesort since the mergesort has a higher ratio of write oper-

ations than the quicksort.

0.5.3 The lbm performance

We evaluated the “lbm” workload in the SPEC benchmarks as an example of write

intensive workloads and the result is shown in Figure 8. We modified memory alloca-

tion interfaces from malloc to hmalloc where the space of cells were allocated. This

workload takes too long time to get the whole trace so we limit the read/write oper-

ations to 2 million. The X axis represents the cell size of the “lbm” workload. The

write ratio in this workload is relatively stable and we get runtime reduction of 40-

45% along with energy reduction by 66-70% compared with the default kernel&Glibc

in our customized kernel&Glibc.

12

0.5.4 Data structure overhead of glibc and kernels

We compare the performances of hmalloc and malloc in Figure 9. We measure

the malloc performance from a default Glibc2.12 and hmalloc in our own modified

Glibc2.12. We designed four kinds of tests as below.

(1) ’small size’: allocate 1e6 times of small range: [1, 512] bytes, then free it all as

Figure 9(a).

(2) ’large size’: allocate 1e6 times of memory of large sizes, range:[1, 524287]

bytes, then free it all as Figure 9(b).

(3) ’hybrid-non-free loop’: allocate 1e4 times of memory of different sizes, range:[1,

524287] bytes, free all of it, repeat this loop 10 times, then free all spaces finally

as Figure 9(c).

(4) ’hybrid-half-free loop’: allocate 1e4 times of memory of different sizes, range:[1,

524287] bytes, free half of it (e.g. the even allocations), repeat this loop 10 times,

then free all spaces finally as Figure 9(d).

As we know, we keep the original malloc path, add another list of arenas and only mod-

ify one parameter of the mmap function. The results shows that the hmalloc performs

even better than the malloc in many cases(’-’ means runtime reduction of hmalloc

compared with malloc) so we implement the hmalloc with low overhead.

0.6 Limitations

Our approach makes it possible to place variables in dynamically allocated area

and process segments into separate DRAM and PCM areas. However, it is still not

possible to handle variables in the stack on hybrid memory systems. One possible

approach named distributed stack involves compiler modification and have to solve the

13

virtual memory space layer problem since physical main memories are not visible to

CPUs on modern computers unlike embedded systems [Avissar et al]. Today’s modern

computers even mobile devices have a level of gigabytes of the main memories but the

default stack size of programs in the Linux kernels is only 8 megabytes. Moreover,

the last level cache size has reached megabyte level so variable accesses in the stack

will hit the cache especially those iterators in loops so these variables in the stack are

not critical to the performance of processes. So we remain it as a future work when

necessary.

0.7 Conclusions and Future Work

We have proposed static memory allocation methodologies where no page mi-

grations will happen assuming programmers know which part of variables are write

intensive. Dominating memory consuming variables are made up of two kinds, one is

the global data whose memory ranges are fixed after compilation, another is dynam-

icly allocated variables whose values are determined during the runtime of programs.

We make use of the attribute feature with some kernel modification to make global

variables’ addresses optional between PCM and DRAM main memories. For dynam-

icly allocated memory variables, we implement a hybrid memory allocation interface

called hmalloc by kernel and Glibc modifications. Compared with the interface mal-

loc, hmalloc needs not only the requesting memory size but also the flag indicating

PCM or DRAM, where the allocated memory space should be located in. Because

the process layout in 64bit systems allow us to use a huge virtual memory space, by

segmenting the process layout carefully, we can define the mapping rules according to

the ranges of each area in the layout. We implemented a new memory allocation in-

terface in PCM+DRAM hybrid memory systems with low overhead only by software

approaches.

14

(a) (b)

(c)

Figure 6 Runtime, Energy and R/W statistics evaluation of quicksort

15

(a) (b)

(c)

Figure 7 Runtime, Energy and R/W statistics evaluation mergesort

16

(a) (b)

(c)

Figure 8 Runtime, Energy and R/W statistics evaluation of lbm

17

(a) (b)

(c) (d)

Figure 9 Glibc and kernel overhead

18

Bibliography

[Lee et al] Lee, Benjamin C and Ipek, Engin and Mutlu, Onur and Burger, Doug.

Architecting phase change memory as a scalable dram alternative. In ACM

SIGARCH Computer Architecture News, 2009.

[matrix] http://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[Quicksort] Stanford. Quicksort benchmark. https://chromium.googlesource.com/native client/pnacl-

llvm-testsuite/+/master-backup/SingleSource/Benchmarks/Stanford/Quicksort.c.

[mergesort] http://groups.csail.mit.edu/cag/raw/benchmark/suites/mergesort/.

[Rosenfeld et al] Rosenfeld, Paul and Cooper-Balis, Elliott and Jacob, Bruce. Dram-

sim2: A cycle accurate memory system simulator. In IEEE Computer Architec-

ture Letters Computer Architecture News, 2011.

[Patel et al] Patel, Avadh and Afram, Furat and Ghose, Kanad. Marss-x86: A qemu-

based micro-architectural and systems simulator for x86 multicore processors. In

1st International Qemu Users Forum, 2011.

[Qureshi et al] Qureshi, Moinuddin K and Srinivasan, Vijayalakshmi and Rivers, Jude

A. Scalable high performance main memory system using phase-change memory

technology. In ACM SIGARCH Computer Architecture News, 2009.

19

[Mogul et al] Mogul, Jeffrey C and Argollo, Eduardo and Shah, Mehul A and Fara-

boschi, Paolo. Operating System Support for NVM+ DRAM Hybrid Main Mem-

ory. In HotOS, 2009.

[Avissar et al] Avissar, Oren and Barua, Rajeev and Stewart, Dave. Heterogeneous

memory management for embedded systems. In ACM Proceedings of the 2001

international conference on Compilers, architecture, and synthesis for embedded

systems, 2001.

[Zhang et al] Zhang, Xiao and Dwarkadas, Sandhya and Shen, Kai. Towards practical

page coloring-based multicore cache management. In ACM Proceedings of the

4th ACM European conference on Computer systems, 2001.

[Luk et al] Luk, Chi-Keung and Cohn, Robert and Muth, Robert and Patil, Harish

and Klauser, Artur and Lowney, Geoff and Wallace, Steven and Reddi, Vijay

Janapa and Hazelwood, Kim. Pin: building customized program analysis tools

with dynamic instrumentation. In ACM Sigplan Notices, 2005.

[Wang et al] Wang, Chao and Vazhkudai, Sudharshan S and Ma, Xiaosong and Meng,

Fei and Kim, Youngjae and Engelmann, Christian. Nvmalloc: Exposing an ag-

gregate ssd store as a memory partition in extreme-scale machines. In Parallel

& Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International,

2012

[CMU2008survey] Carnegie Mellon. Phase Change Memory.

http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[micron2012mobile] Micron Corporation. Micron Announces

Availability of Phase Change Memory for Mobile

Devices. http://files.shareholder.com/downloads/ABEA-

20

45YXOQ/0x0x583454/d3618e67-4160- 4740-92b5-

9d47531ec598/MU News 2012 7 17 Product News.pdf.

[Zhou et al] Zhou, Yuanyuan and Philbin, James and Li, Kai. Nvmalloc: Exposing an

aggregate ssd store as a memory partition in extreme-scale machines. In USENIX

Annual Technical Conference, General Track, 2001

[Beloglazov et al] Beloglazov, Anton and Buyya, Rajkumar. Energy efficient resource

management in virtualized cloud data centers. In IEEE Computer Society, 2010.

[Ramos et al] Ramos, Luiz E and Gorbatov, Eugene and Bianchini, Ricardo. Page

placement in hybrid memory systems. In Proceedings of the international con-

ference on Supercomputing, 2011.

[Kim et al] Kim, Hyojun and Seshadri, Sangeetha and Dickey, Clement L and Chiu,

Lawrence. Evaluating phase change memory for enterprise storage systems: a

study of caching and tiering approaches. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies (FAST 14), 2014.

[Lee et al] Lee, Soyoon and Bahn, Hyokyung and Noh, S. CLOCK-DWF: A Write-

History-Aware Page Replacement Algorithm for Hybrid PCM and DRAM Mem-

ory Architectures. In IEEE Computer Society, 2013.

21

요약

Phase-Change Memory (PCM) 은 차세대 메모리로 주목을 받고 있다. PCM은

DRAM과비교해서 높은 밀도를가지고 있고비휘발성이므로 idle상태에서 에너지

가크지않다.하지만, PCM은짧은소자수명과느린쓰기속도가문제가된다.이를

해결하기 위하여 현재는 PCM과 DRAM을 혼용하는 하이브리드 메모리 시스템에

대한연구가진행되고있다.최근의연구로는리눅스커널에서 page단위의 DRAM

과 PCM사이에서이동을시키는기법들을진행해왔다.그러나 DRAM과 PCM사이

에서 page들을 이동을 시키려면 각각의 page에 대해서 읽기/쓰기가 발생한 통계가

필요하며이런통계를위해서는또다른자료구조들을만들어야된다.하드웨어기

반의 접근법은 성능이 좋게 나오나 배포하는데 어려움이 있고 소프트웨어기반의

접근법은익명페이지에대해서통계계산의어려움이있다.본논문에서는 기존의

메모리할당 인터페이스를 확장하여, 변수들을 DRAM 또는 PCM에구분하여 할당

하는방식을연구하였다.

주요어:서울대학교,전기.컴퓨터공학부,졸업논문

학번: 2012-23962

22

	0.1 Introduction
	0.2 Related Work
	0.2.1 Statistics based page replacement
	0.2.2 Process layout for 64bit Linux systems
	0.2.3 Malloc memory allocation interface in Glibc
	0.2.4 Physical memory managements in Linux kernels

	0.3 Motivations
	0.4 Design and Implementations
	0.4.1 Modifications in Glibc
	0.4.2 New design of process layout and handling page faults

	0.5 Evaluation
	0.5.1 Experimental environment
	0.5.2 Quick Sort and Merge Sort performance
	0.5.3 The lbm performance
	0.5.4 Data structure overhead of glibc and kernels

	0.6 Limitations
	0.7 Conclusions and Future Work
	Bibliography
	요약

<startpage>9
0.1 Introduction 1
0.2 Related Work 2
 0.2.1 Statistics based page replacement 2
 0.2.2 Process layout for 64bit Linux systems 3
 0.2.3 Malloc memory allocation interface in Glibc 5
 0.2.4 Physical memory managements in Linux kernels 6
0.3 Motivations 7
0.4 Design and Implementations 7
 0.4.1 Modifications in Glibc 7
 0.4.2 New design of process layout and handling page faults 8
0.5 Evaluation 10
 0.5.1 Experimental environment 10
 0.5.2 Quick Sort and Merge Sort performance 12
 0.5.3 The lbm performance 12
 0.5.4 Data structure overhead of glibc and kernels 13
0.6 Limitations 13
0.7 Conclusions and Future Work 14
Bibliography 19
¿ä¾à 22
</body>

