E D
FLICH.

=

S

ive

5
MEXHE HAIGHA OF

O N

2|

=

o

M

[—

creat
commons

x=, @o
t

MNEXEAl-
o)

LICt:

s

2 SESE 0
12

O M

M, o

=
=
g

C
MNERLEAlL A

=R
==
==}
==

o Ol M&
o Ol M&
ChS &2 =4S Matof

oll
0

Ju
o

180

o

Ju
s

o
R0
B

79)

Rr

Ol M&=2 THOI=O0lLt b

7l56t=,
b

LICH

H

A

X ESLICh
2

b

S
er

E

o
=

I 2

HOd

ot |

[¢]

H

=

[¢

o]
lection

=

=

Disclaimer
Co

L

=

SHAl LEEHLH O OF
NE2RH Ex2 61D

=

]

0l N2 0| =3 & 72 (Legal Code)

PN
)

4

HEAH0 OGE 08K Hels 22 ol o

(=) =|
2 9=

http://creativecommons.org/licenses/by-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nd/2.0/kr/

M.S. THESIS

Enabling User-Controlled Allocations on
Hybrid Memory Systems

stol el = B ol A A8 Alol7} Hs e ME e aY

714

July 2014

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Cui Wenfeng

_H 2T]| Jr T

of

1—

H
H

s

Systems
[e)

bol el = g7ell A AFgAFe] Aloj7t 7hs
o 2.2

Enabling User-Controlled Allocations on Hybrid Memory
O

~L
ToH e e
it 2T
N A
A
o) —
d A
ald O 1
Wm 1_._TL o ‘__LO._I qm—_ﬂ ‘_A_Lu‘lonw ol __io BO|'lo
or m AT opp X m sty
o I S S = I
jo - <t
In ~ py TH ﬂ ol =
o 8 BT O S
X or of 7,_ Ao
: — X
o X %
ol 5
g =
u1) RO RO o
4 = 7 o
) = or
&) oF 1R oF

kil

-]

[,

SE

Abstract

Phase-Change Memory (PCM) has received a lot of attention as a next-generation
storage component. Because PCM has higher density and lower power consumption as
main memory compared with DRAM, hybrid main memory systems are proposed as
new models that comprise PCM and DRAM. However, PCM has lower durability and
6-12 times slower write access time than DRAM. When PCM is used as main memory,
the high write latency influences performance enormously. To make up these weak-
nesses in PCM, previous researches focused on automatic page replacement by which
pages could be migrated between PCM and DRAM main memory when programs are
running based on statistics of the page access patterns. But statistics based page re-
placement approaches need pattern monitoring overhead and furthermore, proposed
hardware driven approaches are hard to deploy because memory controller has to be
redesigned and software approaches are not complete solutions because not all page
accesses are visible to software. In this paper, we propose to enable user-controlled
static memory allocations on hybrid memory systems. Through static memory allo-
cations, programmers can allocate write intensive variables to DRAM to avoid high

write access time and wearing of PCM along with energy savings.

Keywords: Phase-change memory, Memory management, Hybrid memory systems,
Memory allocations

Student Number: 2012-23962

s A 21| &

TU

Contents

Abstract i
Contents ii
List of Figures iv
List of Tables v
0.1 Introduction 1

0.2 RelatedWork 2
0.2.1 Statistics based page replacement 2

0.2.2 Process layout for 64bit Linux systems 3

0.2.3 Malloc memory allocation interface in Glibc 5

0.2.4 Physical memory managements in Linux kernels 6

0.3 Motivationso 7
0.4 Design and Implementations 7
0.4.1 Modifications inGlibc 7

0.4.2 New design of process layout and handling page faults 8

0.5 Evaluation 10
0.5.1 Experimental environment 10

il

A& st

0.5.2 Quick Sort and Merge Sort performance 12

0.5.3 Thelbm performance 12

0.5.4 Data structure overhead of glibc and kernels 13

0.6 Limitations e e 13

0.7 Conclusions and Future Work 14
Bibliography 19
Q9F 22
Acknowledgements 23

iii

A& st

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

The process layout on 64bit Linux operating systems

Malloc function path in Glibc2.12
New memory allocation interfaces path in Glibc
New process layout in 64bit systems
System settings and delays of DRAM/PCM
Runtime, Energy and R/W statistics evaluation of quicksort .
Runtime, Energy and R/W statistics evaluation mergesort . .
Runtime, Energy and R/W statistics evaluation of Ibm

Glibc and kernel overhead

v

;H "‘: 1_'_” 'aj}

10
11
15
16
17

TU

List of Tables

;ﬂ i r_‘_” 'f::'}-

TU

0.1 Introduction

With the emergence of many-core CPUs and big data applications, the memory ca-
pacity problem is becoming an ever important issue for many platforms. With the ad-
vantages of nearly 4x higher density [Ramos et al], and lower idle power consumption
than DRAM, PCM has become one of the most promising next-generation memories.
PCM shows high potential as a storage cache layer or main memory when used with
other low write latency devices [CMU2008survey] due to its comparable read latency
with DRAM and the fact that the memory size is more critical to performance than
write latency. Energy consumption is also a major issue in the design of data centers
and the energy consumed by main memory is one of the dominant parts. Despite its
high write latency, PCM shows high performance per price in [Kim et al] when used as
the component for both the storage and the main memory even under the assumption
of its price 4 times higher than Flash based SSD(Solid State devices) for enterprises.
For mobile devices, energy consumption is critical and PCM shows great potential be-
cause of its low energy consumption in idle state.Because operating system kernels do
not consider hybrid memory systems, PCM and DRAM frames are treated the same
when memory page faults occur. This leads inefficient usage of the main memory since
DRAM is more suited for write operations than PCM. We focus on the main memory
management issue of hybrid memory systems and propose a design and implemen-
tation of a new dynamic memory allocation interface with which users can allocate
main memory between PCM and DRAM explicitly. We also enable global variables
to decide their physical memory frames between PCM and DRAM by kernel modi-
fications. The new interface involves only software modifications and from the point
of Glibc(GNU C library) view, it keeps the memory allocation efficiency of Glibc but
adds a new feature of hybrid memory allocations in the library. Besides the modifica-

tion of Glibc, we modified the process layout in the 64bit Linux system to support the

s A 21| &

TU

feature of hybrid memory allocations.

Our simulation-based results show that the ability of user-controlled allocations on hy-
brid main memory systems allows the runtime reduction of 12-19% in the quick sort,
20-35% in the merge sort, 40-45% in the Ibm and 1-23% in the original matrix mul-
tiplication. Along with runtime reduction, significant reduction of power consumption
comes as 33-35% in quick sort, 35-54% in the merge sort, 66-70% in the Ibm and

9-40% in the original matrix multiplication.

0.2 Related Work

0.2.1 Statistics based page replacement

In addition to the advantages as stated, PCM has two critical weaknesses com-
pared with DRAM when used as main memories: its low durability of write operations
and high write latency. To cope with these two problems, page replacement algorithms
have been proposed [Ramos et al] [Lee et al]. Page replacement algorithm proposed
in [Ramos et al] which uses [Zhou et al] shows much performance improvement but it
is a hardware driven method and requires memory controller to monitor the page ac-
cess patterns and migrate pages between DRAM and PCM. CLOCK-DWF algorithm
proposed in [Lee et al] executes page replacement according to the write frequency
to estimate future write references. But the algorithm needs to monitor every access
of read/write operation on pages and makes eviction decisions of which page should
be evicted out when the DRAM or PCM area is full. It’s possible to get each page
access operation by mark_page_accessed tfunction in the kernel for those pages used
as file caching but not for anonymous page accesses. On most hardware-filled TLB
platforms (e.g., Intel processors), each page table entry has an access bit, which is au-
tomatically set by hardware when the page is accessed [Zhang et al]. By periodically

checking and clearing this access bit, one can estimate the access frequency for each

;H "‘: 1_'_” 'aj}

TU

anonymous page. However, the high overhead of scanning all the page table entries in
the main memory for statistics poses a new problem. NVMALLOC [Wang et al] pro-
posed a method for exploiting non-volatile memory as a secondary memory partition
so that applications can explicitly allocate and manipulate memory regions therein.
NVMALLOC calls the memory mapped I/O interface every time for each memory
request then users are able to manipulate the returned memory mapped area as they
do with the main memory. But the approach is not a suitable solution when PCM is
used as the main memory because it is critical to performance when memory mapped
system call is executed every time for each request. User level dynamic memory al-
location interfaces like malloc go through Glibc and the library manages the memory
allocation and deallocation between the applicatoin layer and the kernel layer. Consid-
ering the high overhead of system calls, the library does not request the memory from
the kernel for every request. When a request smaller than 64 megabytes comes, the
library request 64 megabytes from the kernel and split the allocated memory for the
request and the rest part of the 64 megabytes may be used for other requests. When the
memory of the request is to be freed, the library does not return it to the kernel ime-
diately considering new memory requests may arrive soon. For requests larger than
64 megabytes, the library request and return the memory through system calls directly.
On hybrid memory systems, we need a mechanism to allocate the memory considering

not only the requesting memory sizes but also the kind of memory requested.

0.2.2 Process layout for 64bit Linux systems

On the 64bit Linux systems, the process layout looks like Figure 1. Since the vir-
tual addresses are represented using 48 bits on 64bit systems, the size of the whole
virtual memory space is 256 terabytes. The Linux kernel divides the virtual memory
space equally into the kernel space and the user space. Those temporal variables cre-

ated during the execution of functions are located in the “stack™ area. Heap is the place

s A 21| &

TU

where dynamic memory allocations usually take place. The heap area is managed by
malloc, realloc, and free in applications, which may use the brk or sbrk system calls to
adjust its size. Spaces allocated by brk or sbrk system calls are located in the “Heap”
area. Spaces allocated by mmap are located in the “Memory Mapping Region”. The
Heap area is shared by all shared libraries and dynamically loaded modules in a pro-
cess. The compiled code goes to the “Text Segment” and only read operations occur
on this segment. Global variables go to the “BSS Segment” or the “Data Segment”,
initialized global variables are located in the “Data Segment” and uninitialized global
variables are located in the “BSS Segment”. The reason to separate these two segment
is to get a smaller size of ELF(Executable and Linkable Format) file after compilation

since uninitialized data can be set as zeros during the run time when accessed.

128T [Kernel space
B OxFFFF800000000000
Undefined Region 0x00007FFFFFFFFO00=TASK_SIZE
[Stack

|
Memory Mapping Region 0xD0002AAAAAAAADOD

12878~

Hébo
BSS Segment

Data Segment |
Text Segment(ELF) 0x0000000000400000

Lo

Figure 1 The process layout on 64bit Linux operating systems

0.2.3 Malloc memory allocation interface in Glibc

One of the typical dynamic memory allocations interface is malloc(int size) where
“size” is the requested memory size. As we can see in Figure 2, malloc involves three
layers. When users call malloc, requests are passed to Glibc and then sbrk and mmap
systems are called by Glibc. Arenas exist in the Glibe library and they are responsible
for allocating memories for requests from malloc. In the original versions, there is only
one main arena. For each memory allocation request, processes will lock the main
arena and free the lock after allocations. As the SMP(Symmetric multiprocessing)
architecture become popular, the contention among threads degrades the performance
of the malloc function. Hence, the malloc is improved to be adjusted to multithreading
environment by adding non-main arenas for the lock contention reduction on the main
arena. Non-main arenas are added to a linked list with the main arena. Each arena
uses one lock to ensure synchronization among threads. Each process has only one
main arena but may have many non-main arenas. The number of non-main arenas
increases as the contention among threads increases. When a thread attempts to request
a memory space, it looks over if has an arena among thread-local variables; if there is
an arena, it tries to lock this arena and if it fails, this thread scans the linked list of
arenas to find an arena which is not locked; if all of the arenas are locked, it will create
a new non-main arena to reduce contentions among threads. When a thread attempts
to free a memory space, it has to wait until the arena which manages the memory
space is unlocked. Main arena accesses the “Heap segment” and the “mmap” area. In
other words, main arena can request memory by sbrk and mmap but non-main arenas
can only access the 'mmap’ area. Users will get continuous virtual memory space if
they don’t call sbrk and brk since the main arena will request virtual memory using
sbrk only. Non-main arenas use mmap to get 64 megabytes memory from the kernel

in 64bit systems and then slice this large amount of memory as many small number

s - i)

of allocation units for requests. Since system calls are expensive compared with user
space function calls, malloc requests a large size memory at one time to reduce the
cost of system calls. For the free operations for those allocated spaces, Glibc library
does not return those spaces to the kernel immediately since other requests probably

come afterwards.

Application
malloc(size)
Default:PCM
Glibc .
arena_list
Kernel V \
sbrk() mmap()

Figure 2 Malloc function path in Glibc 2.12

0.2.4 Physical memory managements in Linux kernels

The physical memory address space is divided into three zones in Linux system:
DMA, DMA32 and Normal zone, which serve different functions accordingly. “DMA”
zone provides the memory space for those devices in which only 16 megabyte address
range is accessible because of the limitation of address lines. Similarly, DMA32’ zone
provides the memory space for those devices in which 4 gigabyte address range is
accessible. The ’Normal’ zone manages the rest of the memory space(equal or greater
than 4 gigabyte address space) and provides the memory space for other cases. Each
zone maintains a independent buddy allocator management system so making PCM as
a separate zone is an obvious way to distinguish DRAM and PCM. By creating a PCM

zone, we are able to handle allocated frames when page faults occur.

2 X 2-)| &y

0.3 Motivations

As was discussed, hardware approaches have difficulties in deployment and soft-
ware approaches of automatic page migrations have difficulties in monitoring the page
access patterns of anonymous pages and the overhead of scanning page table entries.
We focus on static memory allocation only by software approaches assuming that pro-
grammers have knowledge of the write intensive variables. Because the malloc inter-
face in the Glibc is designed with deliberation of performance, we try to implement

hmalloc(hybrid memory allocations) with low overhead.

0.4 Design and Implementations

0.4.1 Modifications in Glibc

The Glibc maintains a list of arenas, each managing its own allocated memory
spaces. Each memory space is represented as a chunk in Glibc. Many chunks with sim-
ilar sizes are usually grouped together in a linked list as a bin. Each arena maintains
128 bins considering the performance under different requesting sizes. If a requested
size is greater than the maximum size the largest bin can maintain, the mmap system
call is invoked and the munmap is called when the requested space is freed. Obviously,
small requested spaces are cached by bins of an arena. When a thread tries to request
a memory space, it remembers the pointer of the arena as a thread local variable and
will try to use it again in the next request. To distinguish PCM requests and DRAM
requests in hmalloc(size, DRAM or PCM), we create another list(harena_list in Fig-
ure 3) of arenas which is responsible for caching PCM requests and make the existing
list(arena_list in Figure 3) responsible for DRAM requests. Of course, each thread will
have 2 thread local variables. One is the pointer to the arena responsible for DRAM
requests and the other is the pointer to the harena(the pointer of its arena for PCM

allocations). Arenas in the arena_list are not modified so they still call sbrk or mmap

s A 21| &

TU

to extend the virtual memory spaces. But arenas in the harena_list can only call the
mmap system call. There is only one parameter difference between the mmap called

by arenas and harenas to differentiate a request between for DRAM and PCM.

Application
malloc(size) hmalloc(size, DRAM or PCM)
N /]
Default:PCM PCM DRAM
Glibc V4 .
arena_list harena_list
\%JQ Up — Down
Kernel v
sbrk() mmap()

Figure 3 New memory allocation interfaces path in Glibc

0.4.2 New design of process layout and handling page faults

A page fault is a trap to the software raised by the hardware when a program ac-
cesses a page that is mapped in the virtual address space, but not loaded in the physical
memory. When a page fault occurs, the information we know in the kernel is lim-
ited since it is raised by the hardware and it is hard to pass extra parameters to the
do_page_fault function. The only useful information we can obtain is the virtual ad-
dress where the page fault occurs and it is stored in the CR2 register. Hence, we propose
to use different virtual address space for DRAM area and PCM area. We make it possi-
ble to decide DRAM or PCM frame we should allocate for a page fault only by the page
fault virtual address. This idea drives us to modify the default process layout as shown
in Figure 4. Basically, we have enough virtual memory space as large as 256 terabytes
which is much larger than the physical memory a machine can equipped with. So we

divide the whole virtual space into two parts. The cut-off value is 0x558862ef0000

;H "‘._; 1_'_” 'aj}

TU

and it is the median of the beginning values of two “Memory Mapping Region”s. This
value is trivial since each “Memory Mapping Region” has a terabyte level space, we
assume each region is enough for containing all DRAM requests or PCM requests
without striding the median value. The upper part includes the kernel space and its
range is from cut-off value to 256 terabytes. The lower part has a range from 0 to cut-
off value. The default “Memory Mapping Region” lies in the lower part and raises from
bottom up. We create another “Memory Mapping Region” which lies in the upper part
and descends from top to bottom leaving enough virtual memory space for the “Stack”
area. The function mmap is called by arenas use the top-down“Memory Mapping Re-
gion” and those called by harenas use the bottom-up “Memory Mapping Region” re-
gion. Because events in the kernel space are critical to the system performance, we
allocate DRAM frames when page faults occur in the upper part and PCM frames for
the lower part. By allocating diffrent frames for the two “Memory Mapping Region”s
and making the Glibc library calls different mmap functions, we implement a user-
controlled interface(textithmalloc) for dynamic memory allocations. But as we look in
Figure 4, those segments lie in the lower part such as “Text Segment”, “BSS Segment”
and “Data segment”. Allocating PCM frames to the “Text Segment” segment is not
critical for the performance since only read operations occur in the “Text Segment”.
But write operations possibly occur in the ’BSS Segment’ and the 'Data segment’.
When the size of these segments become larger and get more write operations, the
performance degradation from these segments can become non-negligible. The GNU
compiler provides a feature that we can use __attribute__(section(’segment name’)) to
embellish global variables. To make use of this feature, we define another segment
name called 'DRAM AREA’ and place write intensive variables in this segment. In
the kernel, when a page fault occurs, first we check if the address is in the 'DRAM
AREA’ segment; if yes we allocate DRAM frames; if not we check if the address is in

the upper or lower part. The function which loads ELF files is the load_elf_binary in

s A 21| &

TU

the kernel. When an ELF file is loaded, we remember the range of “DRAM_AREA” of
the file and make the mm _struct of the process remember the range. When a page fault
occurs, we can get the “DRAM_AREA” value from the mm_struct of current process

and use it to check where the page fault address belong to.

128TB Kernel space
OxFFFF800000000000

Undefined Regian OX00007FFFFFFFFO00=TASK_SIZE

Stack

] Memory Mapping Region
New mmap region D/E8PP0E ZCE!

v
Memory Mapping Region 0x00002AAAAAAAAO00

H;!p

New DRAM area | | DRAM_AREA |
1 BSS Segment
Data Segment
Text Segment(ELF) 0x0000000000400000

- 0

12878~

Figure 4 New process layout in 64bit systems

0.5 Evaluation

0.5.1 Experimental environment

We used simulation based evaluations to evaluate the performance of our new
memory allocation management scheme. We used MARSS-x86 cycle accurate sim-
ulator for system simulation[Patel et al]. We also used Dramsim?2 to simulate the main
memory system in the MARSS-x86[Rosenfeld et al]. By using these two simulators,
we could get cycle accurate physical memory traces, then replay these traces in another
self-implemented simulator. We configure the memory latency as short as possible in

the Dramsim2 and simulate actual latency of DRAM and PCM in the trace simula-

10

Lk

tion. We filter out memory references that are accessed directly from the L1 and L2
cache memories and gather only the memory references observed at the main mem-
ory system. We get diffrent trace distributions between DRAM and PCM by using the
malloc and hmalloc. Then we replay the two diffrent traces in the trace simulation to
get the runtime and energy consumption results. Figure 5 shows the system settings
and DRAM/PCM delay configurations. We referred [Lee et al] and [Ramos et al] for

the experimental enviroment.

System settings Value

CPU Single core, 2.7Ghz

L1 cache size 128k

L2 cache size 2M

Cache policy write back

DRAM size 2GB

PCM size 2GB

page size 4k

Memory Devices PCM DRAM
tRCD delay 37ns 10ns
tRP delay 100ns 10ns
tRRDact delay 3ns 4ns
tRRDpre delay 18ns 4ns
Refresh time n/a 64ns
tRFC / tREFI n/a 74ns / 3.906ps
Rank size 2048MB 512MB
Bank size 256MB 64MB
Current PCM DRAM
Row Buffer Read 220mA 220mA
Row Buffer Write 220mA 220mA
Avg Array R/W 242mA 110mA
Active Standby 62mA 62mA
Precharge Powerdown 40mA 40mA
Refresh n/a 240mA

Figure 5 System settings and delays of DRAM/PCM

11

0.5.2 Quick Sort and Merge Sort performance

We evaluate two sorting algorithms as in Figure 6 and Figure 7 using benchmarks
in [Quicksort] and [mergesort]. We modified the memory allocating function call from
malloc to hmalloc by which the space for storing the sorted arrays are allocated. We
also modified the buffer allocation function to the hmalloc in the mergesort bench-
mark code. X axis represents the number of elements in the sorting algorithms and y
axis represents the runtime or energy. The Figure 6(c) and Figure 7(c) show the statis-
tics of R/W operations occur in DRAM(zone() and PCM(zonel). We compared our
default kernel&Glibc and customized kernel&Glibc. We only modified memory allo-
cation interfaces from malloc to hmalloc in the application code. As results show, in
our customized kernel&Glibc the runtime of quicksort reduces by 12-29% along with
energy reduction by 33-42% compared with the default kernel&Glibc. The runtime
of the mergesort reduces by 16-35% along with energy reduction by 34-54%. PCM
has a much much slower write latency than DRAM, so we can get more performance
improvement from the mergesort since the mergesort has a higher ratio of write oper-

ations than the quicksort.

0.5.3 The Ibm performance

We evaluated the “Ibm” workload in the SPEC benchmarks as an example of write
intensive workloads and the result is shown in Figure 8. We modified memory alloca-
tion interfaces from malloc to hmalloc where the space of cells were allocated. This
workload takes too long time to get the whole trace so we limit the read/write oper-
ations to 2 million. The X axis represents the cell size of the “lbm” workload. The
write ratio in this workload is relatively stable and we get runtime reduction of 40-
45% along with energy reduction by 66-70% compared with the default kernel&Glibc

in our customized kernel&Glibc.

12

;H "‘: 1_'_” 'aj}

TU

0.5.4 Data structure overhead of glibc and kernels

We compare the performances of hmalloc and malloc in Figure 9. We measure
the malloc performance from a default Glibc2.12 and hmalloc in our own modified

Glibc2.12. We designed four kinds of tests as below.

(1) ’small size’: allocate 1e6 times of small range: [1, 512] bytes, then free it all as

Figure 9(a).

(2) ’large size’: allocate 1e6 times of memory of large sizes, range:[1, 524287]

bytes, then free it all as Figure 9(b).

(3) ’hybrid-non-free loop’: allocate 1e4 times of memory of different sizes, range:[1,
524287] bytes, free all of it, repeat this loop 10 times, then free all spaces finally
as Figure 9(c).

(4) ’hybrid-half-free loop’: allocate 1e4 times of memory of different sizes, range:[1,
524287] bytes, free half of it (e.g. the even allocations), repeat this loop 10 times,

then free all spaces finally as Figure 9(d).

As we know, we keep the original malloc path, add another list of arenas and only mod-
ify one parameter of the mmap function. The results shows that the hmalloc performs
even better than the malloc in many cases(’-" means runtime reduction of hmalloc

compared with malloc) so we implement the hmalloc with low overhead.

0.6 Limitations

Our approach makes it possible to place variables in dynamically allocated area
and process segments into separate DRAM and PCM areas. However, it is still not
possible to handle variables in the stack on hybrid memory systems. One possible

approach named distributed stack involves compiler modification and have to solve the

13

A& st

virtual memory space layer problem since physical main memories are not visible to
CPUs on modern computers unlike embedded systems [Avissar et al]. Today’s modern
computers even mobile devices have a level of gigabytes of the main memories but the
default stack size of programs in the Linux kernels is only 8 megabytes. Moreover,
the last level cache size has reached megabyte level so variable accesses in the stack
will hit the cache especially those iterators in loops so these variables in the stack are
not critical to the performance of processes. So we remain it as a future work when

necessary.

0.7 Conclusions and Future Work

We have proposed static memory allocation methodologies where no page mi-
grations will happen assuming programmers know which part of variables are write
intensive. Dominating memory consuming variables are made up of two kinds, one is
the global data whose memory ranges are fixed after compilation, another is dynam-
icly allocated variables whose values are determined during the runtime of programs.
We make use of the __attribute__ feature with some kernel modification to make global
variables’ addresses optional between PCM and DRAM main memories. For dynam-
icly allocated memory variables, we implement a hybrid memory allocation interface
called hmalloc by kernel and Glibc modifications. Compared with the interface mal-
loc, hmalloc needs not only the requesting memory size but also the flag indicating
PCM or DRAM, where the allocated memory space should be located in. Because
the process layout in 64bit systems allow us to use a huge virtual memory space, by
segmenting the process layout carefully, we can define the mapping rules according to
the ranges of each area in the layout. We implemented a new memory allocation in-
terface in PCM+DRAM hybrid memory systems with low overhead only by software

approaches.

14

s A 21| &

TU

Runtime/S
0.05

quicksort runtime

(@)
element: 2710
zone0 read
zone0 write
zonel read
zonel write

element: 2712
zone0 read
zone0 write
zonel read
zonel write

element: 27214
zone0 read
zone0 write
zonel read
zonel write

element: 2716
zoneO read
zone0 write
zonel read
zonel write

element: 2718
zone0 read
zone0 write
zonel read
zonel write

Energy/)

12% 02
2 # default
W custom 015

Element
number

total count - default
7655
598
48656
2434

total count - default
8657
840
55162
7026

total count - default
9717
803
60623
9987

total count - default
10244
1126
71004
18169

total count - default
11687
2022
93692
39656

(©

quicksort energy

33%
p # default

Y
7 sasom
.

Element
number

(b)
total count - custom
33054
2000
23459
770

total count - custom

40619
7274
23614
873

total count - custom

47500
10191
24016

842

total count - custom

59875
19709
24418

848

total count - custom

82611
42763
24730

849

Figure 6 Runtime, Energy and R/W statistics evaluation of quicksort

15

merge sort

Runtime/S
0.06
0.05
0.04
0.03
0.02
0.01

0

30%
18%
i

20%
%
2810 2812

2714 27

(@)
element: 2710
zone0 read
zone0 write
zonel read
zonel write

element: 2712
zone0 read
zone0 write
zonel read
zonel write

element: 27214
zone0 read
zone0 write
zonel read
zonel write

element: 2716
zoneO read
zone0 write
zonel read
zonel write

element: 2718
zone0 read
zone0 write
zonel read
zonel write

Figure 7 Runtime, Energy and R/W statistics

runtime

Energy/)

35% % defautt
™ custom 02

Element
number

total count - default
8347
681
48798
2205

total count - default
8191
710
48791
2308

total count - default
9474
772
61152
11255

total count - default
10989
1418
74679
21130

total count - default
13574
2815
142221
67767

(©

16

merge sort energy

5
9
%
%
i

4%

(b)
total count - custom
33189
1984
23520
880

total count - custom

34605
2354
23649
791

total count - custom

49227
11278
24116

973

total count - custom

68568
28308
24421

755

total count - custom

120093
70171
24791

853

7 default

= custom

Element
number

evaluation mergesort

Ibm runtime Ibm energy

Runtime/S Energy/)
02145% 41% 40% 45% n

7 default
= custom 1

%

D

6% 66% 70%

% 7/ % default
e

7= mm “mm
v v 7

O\
MANNN
M\
M\

7

N\

\\\A\\¥
A\

.

\

100E+00 500E+00 9.00E+00 1.30E+01 Cell number/le5 100E+01 500E+01 900E+01 130E+02 Cell number/les

(@) (b)
Cell number: 1e5 total count - default total count - custom
zone0 read 20351 3074216
zone0 write 12487 1722314
zonel read 2716207 14842
zonel write 1505304 942

Cell number: 5e5
zoneO read
zone0 write
zonel read
zonel write

Cell number: 9e5
zoneO0 read
zone0 write
zonel read
zonel write

Cell number: 13e5
zone0 read
zone0 write
zonel read
zonel write

total count - default total count - custom

38368
31238
2121853
2065232

2202775
2146946
12368
795

total count - default total count - custom

24293
17896
1196122
1139892

1917920
1862727
12388
802

total count - default total count - custom

115522
103023
7158842
7051565

(©

17

7129387
7067711
23887
791

Figure 8 Runtime, Energy and R/W statistics evaluation of Ibm

Small_size performance

30
25 7. malloc
® hmalloc
20
15
107 +3%
Stia% +10% %
o V,
thread-1 thread-2 thread-4 thread-8 thread-16
(@)
Hybrid_non_free loop
performance
Runtime/S
50 3%
% malloc 7

® hmalloc

thread-1 thread-2 thread-4 thread-8 thread-16

(©)

Large_size performance

% malloc

' hmalloc

50

40

30

20

10 +

thread-1 thread-2 thread-4 thread-8 thread-16

(b)

Hybrid_half_free loop

performance
-29

#% malloc

® hmalloc

thread-8 thread-16

thread-1 thread-2 thread-4

(d)

Figure 9 Glibc and kernel overhead

18

Bibliography

[Lee et al] Lee, Benjamin C and Ipek, Engin and Mutlu, Onur and Burger, Doug.
Architecting phase change memory as a scalable dram alternative. In ACM

SIGARCH Computer Architecture News, 2009.
[matrix] http://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[Quicksort] Stanford. Quicksort benchmark. https://chromium.googlesource.com/native_client/pnacl-

llvm-testsuite/+/master-backup/SingleSource/Benchmarks/Stanford/Quicksort.c.
[mergesort] http://groups.csail.mit.edu/cag/raw/benchmark/suites/mergesort/.

[Rosenfeld et al] Rosenfeld, Paul and Cooper-Balis, Elliott and Jacob, Bruce. Dram-
sim2: A cycle accurate memory system simulator. In IEEE Computer Architec-

ture Letters Computer Architecture News, 2011.

[Patel et al] Patel, Avadh and Afram, Furat and Ghose, Kanad. Marss-x86: A gemu-
based micro-architectural and systems simulator for x86 multicore processors. In

1st International Qemu Users Forum, 2011.

[Qureshi et al] Qureshi, Moinuddin K and Srinivasan, Vijayalakshmi and Rivers, Jude
A. Scalable high performance main memory system using phase-change memory

technology. In ACM SIGARCH Computer Architecture News, 2009.

19

A& st

[Mogul et al] Mogul, Jeffrey C and Argollo, Eduardo and Shah, Mehul A and Fara-
boschi, Paolo. Operating System Support for NVM+ DRAM Hybrid Main Mem-
ory. In HotOS, 2009.

[Avissar et al] Avissar, Oren and Barua, Rajeev and Stewart, Dave. Heterogeneous
memory management for embedded systems. In ACM Proceedings of the 2001
international conference on Compilers, architecture, and synthesis for embedded

systems, 2001.

[Zhang et al] Zhang, Xiao and Dwarkadas, Sandhya and Shen, Kai. Towards practical
page coloring-based multicore cache management. In ACM Proceedings of the

4th ACM European conference on Computer systems, 2001.

[Luk et al] Luk, Chi-Keung and Cohn, Robert and Muth, Robert and Patil, Harish
and Klauser, Artur and Lowney, Geoff and Wallace, Steven and Reddi, Vijay
Janapa and Hazelwood, Kim. Pin: building customized program analysis tools

with dynamic instrumentation. In ACM Sigplan Notices, 2005.

[Wang et al] Wang, Chao and Vazhkudai, Sudharshan S and Ma, Xiaosong and Meng,
Fei and Kim, Youngjae and Engelmann, Christian. Nvmalloc: Exposing an ag-
gregate ssd store as a memory partition in extreme-scale machines. In Parallel
& Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International,
2012

[CMU2008survey] Carnegie Mellon. Phase Change Memory.
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[micron2012mobile] Micron Corporation. Micron Announces
Availability of Phase Change Memory for Mobile
Devices. http://files.shareholder.com/downloads/ABEA-

20

;H "‘: 1_'_” 'aj}

TU

45YX0Q/0x0x583454/d3618e67-4160- 4740-92b5-
9d47531ec598/MU _News_2012_7_17_Product_News.pdf.

[Zhou et al] Zhou, Yuanyuan and Philbin, James and Li, Kai. Nvmalloc: Exposing an
aggregate ssd store as a memory partition in extreme-scale machines. In USENIX

Annual Technical Conference, General Track, 2001

[Beloglazov et al] Beloglazov, Anton and Buyya, Rajkumar. Energy efficient resource

management in virtualized cloud data centers. In IEEE Computer Society, 2010.

[Ramos et al] Ramos, Luiz E and Gorbatov, Eugene and Bianchini, Ricardo. Page
placement in hybrid memory systems. In Proceedings of the international con-

ference on Supercomputing, 2011.

[Kim et al] Kim, Hyojun and Seshadri, Sangeetha and Dickey, Clement L and Chiu,
Lawrence. Evaluating phase change memory for enterprise storage systems: a
study of caching and tiering approaches. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14), 2014.

[Lee et al] Lee, Soyoon and Bahn, Hyokyung and Noh, S. CLOCK-DWF: A Write-
History-Aware Page Replacement Algorithm for Hybrid PCM and DRAM Mem-

ory Architectures. In IEEE Computer Society, 2013.

21

;H "‘._; 1_'_” 'aj}

TU

Phase-Change Memory (PCM) & Z}A|t] a2 F2& ¥ty Qltt PCM-&
DRAM3} ¥ a4 2 W8 7127 9 ¥ 9140] 2.2 dieFefoll 4 o7
7F A7) ¢Eck. SHAIRE, PCM 2 B2 AAFpr it = A7 &L 71 74|71 "ot o] &
si8st7] 9iste] AA= PCMY}F DRAM2 &-&5h= slo|He| & w2 e] Al 2|
ost AT AeE T Glch Ao AT e Aol page T919] DRAM
7} POMAF]o] 4 0]5-& A|7]= 7115 A HoISeh. T2l DRAMT} PCMAFo]
AN pagesa o5 Al7IE™E 24249 pageo]l tisiA ¢171/227]7F LAY FA7L
B 51 olel SAS JIAE T O ARFLEL FE0lof Hek. =] 7]
g5l FA vt wiEZst=H ool Al Az EYo]7|Hte]

A
g Ho x| tisfiA FA Alte] o2 ol At & =M E 71E4]

wke] 2
o]
H 1=} -

AE o] A5 &4 5To], M52 DRAM E= PCMof| 25t &

Fool: Aadiety, 7. HFHS o SU=E

S 2012-23962

22

Sk

: 1_-_]'| 'aj} T

	0.1 Introduction
	0.2 Related Work
	0.2.1 Statistics based page replacement
	0.2.2 Process layout for 64bit Linux systems
	0.2.3 Malloc memory allocation interface in Glibc
	0.2.4 Physical memory managements in Linux kernels

	0.3 Motivations
	0.4 Design and Implementations
	0.4.1 Modifications in Glibc
	0.4.2 New design of process layout and handling page faults

	0.5 Evaluation
	0.5.1 Experimental environment
	0.5.2 Quick Sort and Merge Sort performance
	0.5.3 The lbm performance
	0.5.4 Data structure overhead of glibc and kernels

	0.6 Limitations
	0.7 Conclusions and Future Work
	Bibliography
	요약

<startpage>9
0.1 Introduction 1
0.2 Related Work 2
 0.2.1 Statistics based page replacement 2
 0.2.2 Process layout for 64bit Linux systems 3
 0.2.3 Malloc memory allocation interface in Glibc 5
 0.2.4 Physical memory managements in Linux kernels 6
0.3 Motivations 7
0.4 Design and Implementations 7
 0.4.1 Modifications in Glibc 7
 0.4.2 New design of process layout and handling page faults 8
0.5 Evaluation 10
 0.5.1 Experimental environment 10
 0.5.2 Quick Sort and Merge Sort performance 12
 0.5.3 The lbm performance 12
 0.5.4 Data structure overhead of glibc and kernels 13
0.6 Limitations 13
0.7 Conclusions and Future Work 14
Bibliography 19
¿ä¾à 22
</body>

