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Abstract

Successfully automated curve fitting is greatly challenged when applied
to large data set. In this paper, we described a algorithm for fitting dose
response curves, by estimating four parameters (floor, window, shift, and
slope), together with the detection of outliers. Especially, We are proposing
an improvement for curve fitting over current methods. That is the detec-
tion of outliers which is performed at the initialization step with correspon-
dent adjustments of the derivative and error estimation functions. Automatic
curve fitting of 19,236 experimental dose response experiments shows that
our approach outperformed the current fitting methods provided by Matlab
nlinfit function.

Key words: dose response curve, high content screening, curve fitting, ro-
bust weighting function, outlier detection
Student Number: 2011-23206
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Chapter 1

Introduction

In recent years, the need of automatic analysis mechanism for biologi-
cal images has unsurprisingly emerged, and a technique called high content
screening (HCS) [1] was introduced to the field of drug discovery. Based on
the HCS technique, Institut Pasteur Korea (IPK) have developed the high
content silencing RNA screening[2, 3] and hence we can assess all genes in
human genome for their role in specific experiments. Among all the genes
which expression to chemical compounds can be mathematically represented
by dose response curves (DRC) [4], a few of them might be the new targets of
interest, for diagnostic, or genetic. In drug discovery, a great number of DRCs
are characteristically extracted and fitted in a typical screening process.

Fitting, outlier detection, and data point weighting for thousands of
curves are an immense challenge. Many solutions [4, 5, 6, 7, 8, 9] have been
proposed to deal with the problems of curve fitting. One of widely used
nonlinear curve fitting algorithms was introduced by Levenberg–Marquardt
(LM) in [5, 6]. This method belongs to the gradient–descent family; however,
due to sensitivity of the method to data quality and initial guess, it easily
gets trapped in local minimum. In order to obtain good fitting results, there
is a need of automatic outlier handling, usage of predefined initial curves, and
adaptive weighting for data points [10, 11]. All of these demands are with-
out doubts applicable to the case of HCS data. Nonlinear and noniterative
least squares regression analysis was presented in [7] for robust logistic curve
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CHAPTER 1. INTRODUCTION

fitting with detection of possible outliers. This noniterative algorithm was
implemented in a microcomputer and assessed using different biological and
medical data. A review of popular fitting models using linear and nonlinear
regression is given in [4].

In this paper, robust fitting and automatic outlier detection based on
Tukey biweight function are introduced. As mentioned, it is challenging to
automate nonlinear fitting for a large scale study comprising thousands of
DRCs in the presence of noisy measurements. Therefore, we present a method
for automated detection of outliers and robust initialization of fitting curves.
By experimentally comparing our results to those estimated by Matlab 2013a,
we found that the proposed approach yielded satisfactory estimation of curves
with a quality comparable to that of outperformed Matlab.

This paper is organized as follows. Background of dose response curve
fitting and our method are described in the next chapter. Here, we show an
improvement for curve fitting via describing Levenberg–Marquardt method.
Chapter 4 presents the experimental results with the comparison of our
method to the existing ones and draws to conclusion.
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Chapter 2

Background and Basic Method

2.1 Background
In drug discovery, analysis of dose response curve (DRC) is one of the

most important tools to evaluate the effect of a drug on a disease. The DRC
can be used to plot the results of many kinds of assays; and its X–axis
corresponds to the concentrations of a drug (in log scale) and the Y –axis
corresponds to the drug responses. The function of DRC can be varied with
different number of parameters, but the most common is the four parameter
model:

f(x,β) = β1 +
β2

1 + exp
(
−β3−x

β4

) (2.1.1)

where x is the dose or concentration of a data point; β represents the four
parameters β1, β2, β3, and β4; β1 is the floor, the efficacy which shows the
biological activity without a chemical compound; β2 is the window, the effi-
cacy which shows the maximum saturated activity at high concentration; β3
is the shift, the potency of the DRC; and β4 is the slope, the kinetics. Figure
2.1 shows an illustration of a response curve and its four parameters.

3



CHAPTER 2. BACKGROUND AND BASIC METHOD

Figure 2.1: A four–parameter dose response curve. β1, β2, β3, and β4 are the
floor, the window, the shift, and the slope, respectively.

2.2 Basic computation of curve fitting
The goal of a curve fitting algorithm is solving a statistically optimized

model which fits best to the data set. Since the DRC function is nonlinear, an
iterative method is considered to optimize parameters. In this section, a basic
view point is presented to approach the proposed ideas in our method. First,
let χ be the function of the fitting parameter β which will be determined via
function minimization:

χ(β) =
1

2

N∑
i

(yi − f(xi,β))2 (2.2.1)

where N is the number of data points and β is M-vector.
Then finding a problem for consider minimum of χ(β) by using Newton’s

method on the equation ∇χ(β) = 0. Near the current point βt, we have
second order taylor series of (2.2.1)

χ(β) = χ(βt) + (β − βt) · ▽χ(βt) +
1

2
(β − βt) ·D · (β − βt) (2.2.2)

4



CHAPTER 2. BACKGROUND AND BASIC METHOD

By calculation,
▽ χ(β) = ▽χ(βt) +D · (β − βt) (2.2.3)

so we get next iteration.

βt+1 = βt +D−1[−∇χ(βt)] (2.2.4)

Hence, we need to find the gradient and the Hessian matrix D of χ. The
gradient of χ with respect to β = {β1, · · · , βM}, which will be zero at the
minimum point for χ, is computed as

∂χ

∂βk
= −

N∑
i

ri
∂f(xi,β)

∂βk
, for k = 1, 2, ...,m (2.2.5)

where ri = (yi–f(xi,β)).
The Hessian matrix is calculated using

∂2χ

∂βk∂βl
=

N∑
i

(
∂f(xi,β)

∂βk

∂f(xi,β)

∂βl
− ri

∂2f(xi,β)

∂βk∂βl
) (2.2.6)

In equation (2.2.6), second derivative term can be dismissed when it is zero,
or small enough to be negligible when compared to the first derivative term.
Thus we define,

akl =
∂2χ

∂βk∂βl
and bk =

∂χ

∂βk
(2.2.7)

where akl and bk are elements of matrices A and b, respectively; then instead
of directly inverting the Hessian, (2.2.4) can be rewritten as a set of linear
equations:

M∑
l=1

aklδβl = bk, (2.2.8)

where δβl is changed at every iteration.

5



CHAPTER 2. BACKGROUND AND BASIC METHOD

2.3 Levenberg-Marquardt Method
In the previous section, (2.2.4) is convegence rapidly but the rate of

convergence is sensitive to the starting location. So Levenberg–Marquardt
(LM) method [5, 6, 12] proposed an algorithm based on this observation,
whose update rule is a blend of the (2.1.1)

a′kk = akk(1 + λ) and a′kl = akl (k ̸= l). (2.3.1)

Then (2.2.4) changes

βt+1 = βt − (A′)−1[∇χ(βt)] (2.3.2)

where A′ = A+ λdiag[A].
So (2.2.8) changes as follows by using (2.3.1)

M∑
l=1

a′klδβl = bk, (2.3.3)

Since the Hessian matrix A is proportional to the curvature of χ(β),
(2.3.2) implies a large step in the direction with low curvature and a small
step in the direction with high curvature. If λ is very large, the matrix A′

goes diagonally dominant. On the other hand, as λ goes zero, A′ conveges to
A.

Iteration steps of the LM method can be summarized as follows:

1. Evaluate χ(β) and define a modest value for λ, i.e. λ = 0.001;

2. Solve (2.3.3) for δβ , and evaluate χ(β + δβ);

3. If χ(β + δβ) ⩾ χ(β), increase λ by a factor of 10, else decrease λ by a
factor of 10 and update β ← β + δβ;

4. Repeat steps 2 and 3 until χ(β) converges, and return the fitting pa-
rameter β.

Figure 2.2 is a good results of LM method, but Figure 2.3 is a bad results
due to the existence of outliers; the first three curves of Figure 2.3 has three

6



CHAPTER 2. BACKGROUND AND BASIC METHOD

Figure 2.2: Results of LM mehtod when data has no outliers

Figure 2.3: Results of LM method when data has outliers

7



CHAPTER 2. BACKGROUND AND BASIC METHOD

outliers and last of figure has one or two outliers. Futhermore, when the DRC
becomes steep slope, the outlier sometimes cause the shift ambiguity, i.e.
ambiguity for determining β3. These show that the LM method is unstable
if there are outliers in data. We need to remove the outliers or at least to
lose the influence of outliers.

8



Chapter 3

Robust weighting method and
Outlier detection

3.1 Robust weighting function
Since all fitting parameters of the DRC are very important in under-

standing and assessing the effect of a chemical compound, it is essential to
have a method that in a robust way, i.e. coping with outliers and assign-
ing weights to data points, can estimate the curve. Initially all data points
are supposed to have equal weights. However, this idea does not hold in
many practical occasions. Therefore, a least squares method tends to give
unequal weighting to data points, e.g. points that are closer to the fitted
curve would have higher weighting values. In standard weighting, minimiz-
ing the fitting error (sum–of–squares) of the absolute vertical distances is
not appropriate: Points having high response values tend to have large de-
viations from the curve and so they contribute more to the sum–of–squares
value. This weighting makes sense when the scatter of data is Gaussian and
the standard deviation among replicates is approximately the same at each
concentration. To overcome the situation when data spreads differently at
concentrations, various weighting techniques are considered, including rela-
tive weighting, Poisson weighting, and observed variability based weighting
[4]. The relative weighting extends the idea of standard weighting by dividing
the squared distance to the square of the corresponding response value Y ;

9



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

hence, the relative variability is consistent. Similarly, the Poisson weighting
and the weighting by observed variability use different forms of dividing the
response value Y . Indeed, minimizing the sum–of–squares might yield the
best possible curve when all variations obey a Gaussian distribution (with-
out considering how different the standard deviations at concentrations are).
However, it is usual when one data point is far from the rest (caused by ex-
perimental mistakes), then this point does not belong to the same Gaussian
distribution of the remaining points and it contributes erroneous impact to
the fitting.

Before we define robust weighting function, consider the minimization of
the below equation

N∑
i

ρ (yi − f(xi,β)) (3.1.1)

where ρ is a symmeric, posirive-definite function with a unique minimum at
zero, and is chosen to be less increasing than square[15].
Especailly, equation (2.2.1) in previous section is a special case with

ρ(z) =
1

2
z2 and ψ(z) = z (3.1.2)

Similarly, we let the derivative of (3.1.1) to be zero. Then we have
N∑
i

ψ(yi − f(xi,β))
∂f(xi,β)

∂βk
= 0, for k = 1, 2, ...,m (3.1.3)

where ψ is the derivative of ρ and is called by the influence function.
Now, if we define a weight function

w(z) =
ψ(z)

z
(3.1.4)

then the equation (3.1.3) becomes
N∑
i

wiri
∂f(xi,β)

∂βk
, for k = 1, 2, ...,m (3.1.5)

where wi is the weight at ri.
This is exactly reweighted least-squares problem

1

2

N∑
i

w
(k−1)
i (yi − f(xi,β))2 (3.1.6)

10



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

where w(k−1)
i is the weight computed at (k − 1)th iteration and at ri.

Now, we define the function ρ satisfying three properties.

1. The function ρ has a unique minimum about parameters.

2. The influence function ψ that is the derivative of ρ is bounded.

3. Whenever the Hesian matrix of ρ is singular, then ∇ρ ̸= 0.

There are several choices for robust weighting function satisfying above three
properties. But in this case, we consider two cases of robust weighting func-
tion. First, L1 − L2 is defined as below

ρ(r) = 2(

√
1 +

r2

2
− 1) and ψ(r) =

r√
1 + r2

2

(3.1.7)

Since L1−L2 satisfies robust weighting condition, we can define the weighting
function,

w(r) =
1√

1 + r2

2

(3.1.8)

Second, Tukey biweight function [10] is introduced to reduce the effect
of outliers. This weighting function considers large residuals and treats them
with low weights, or even zero weights, so as to they do not sway the fitting
much. In this section, we present a modification of the Tukey function and
apply it to our fitting. Let ω(r) be the weight of a data point which has a
distance to the curve (residual) r, then the biweight function is defined as

ω(r) =


[
1−

(
r
c

)2]2
, |r| < c

0, |r| > c
(3.1.9)

where c = 6×median
(
{ri}Ni=1

)
whereas 6 is a constant defined by Tukey, and

N is the number of data points. This function totally ignores, or gives zero
weighting, the points having residuals larger than six times of the median
residual. Nevertheless, when the experimental data contains a great deal of
noise, it can fall on a normal distribution easier than when containing few
noise. When our data approaches a normal distribution, mean of residuals is

11



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

a better choice than the median of residuals (median is useful if the data has
extreme scores). In our case, based on experimental situations, we decided
to use c = 6 ×mean

(
{ri}Ni=1

)
. Figure 3.1 shows the fitting results of using

median andmean. Of course, the median is more robust estimator than mean
value. But there is no significant outliers and many small values, mean value
of tukey biweight is better in this case. The curve fitting algorithm with the
modified Tukey biweight function and L1 − L2 function can be summarized
as follows:

1. Determine the distance from each data point to the curve, called the
residual r;

2. Calculate the weight of each point using (3.1.8) and (3.1.9);

3. Assign new values to data points based on their weights.

Figure 3.1: Results of median(left) and mean(right) of Tukey biweight

Figure 3.2 shows that difference between non-weighting LM and weighting
LM when outliers exist in data. As you can see from the result, it is important
that what points are outliers. Figure 3.3 shows that comparison of the slope
between nlinfit in Matlab and robust weighting functions. Especially, we
know that our robust weighting functions have smoother slope than nlinfit
in Matlab in the left of Figure 3.3.

12



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

Figure 3.2: Compare with LM(left) and L1-L2(right)

Figure 3.3: Compare with nlinfit in Matlab and Robust weighting functions

Besides, other robust weighting functions can be considered such as An-
drews, Cauchy, Fair, Huber, logistic, Talwar, and Welsch [13, 15]; however,
L1 − L2 and Tukey biweight function are known for its reliability and it is
generally recommended for robust optimization [14, 15].

13



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

3.2 Outlier detection
In most cases, it is difficult to estimate the parameters, either due to

noise in the observations, or due to the fact that the experimental design
might give rise to ambiguities in the parameters of the DRC. There is a
need of outlier detection mechanism to cope with noise before fitting curves.
Figure 3.4 shows the effect of outliers in the data. There are eight different

Figure 3.4: Compare with LM(left) and Outlier detection(right)

concentrations, five replicates at the first concentration, and three replicates
at the remaining concentrations. It easily gets noisy when the number of data
points increases. Three outliers can change fit of the curve. The other points
in the left figure have lower weights than those in the right figure.

In our problem, we initialize the fitting parameters βo (with disregard of
outliers) by finding the best fitted curve using

ρ(z) = |z| and ψ(z) = sign(z) (3.2.1)

instead of (3.1.2) which is used without outlier detection. Herein, we pro-
posed (3.2.1) in order to reduce the impact of outliers on the fitting results
by considering absolute errors and sign–only derivatives. Key difference be-
tween (3.1.2) and (3.2.1) is the derivative function: ψ(z) = sign(z), result-
ing −1 (negative) or 1 (positive), controls the gradient to the direction of
having more number of negatives/positives, whereas ψ(z) = z judges the

14



CHAPTER 3. ROBUST WEIGHTING AND OUTLIER DETECTION

gradient based on the distance between the estimated and actual values.
Therefore, (3.2.1) is able to disregard the points having less number of nega-
tives/positives (see Fig. 3.4, on the left), and (3.1.2) even considers the points
at far distances though these points are given low impact (see Fig. 3.4, on
the right). Levenberg–Marquardt and other conventional nonlinear curve fit-
ting algorithms are based on derivative calculation, and the quality of their
solutions notably depends on data quality (i.e. outliers) and initial guess.
In order to have good fitting, outliers and the initial guess have to be man-
ually detected and defined. Accordingly, these conventional algorithms are
very difficult to automate and to yield good solutions in thousands of DRCs.
Based on (3.2.1), outliers can be effectively weighted and a robust initial
guess is automatically determined at the beginning of the fitting process.

The proposed algorithm is conceptually easy to implement and robust
to outliers. Combining ideas in the aforementioned sections, the algorithm
consists of the following steps:

1. Find the initial curve with outlier detection by executing the Levenberg–
Marquardt (LM) algorithm in Section 2.3 with applying (3.2.1) instead
of (3.1.2) in Section 3.1;

2. Based on the curve obtained in the previous step, calculate robust
weighting of data points using (3.1.8) or (3.1.9) in Section 3.1;

3. Based on the obtained weights in the previous step, execute the LM
algorithm in Section 2.3 with considering weights of data points.

15



Chapter 4

Result

4.1 Results
In our experiments, we used eight different concentrations with five repli-

cates at first concentration and three replicates at the other concentrations.
Hence, there are totally 26 data points. The concentrations were plotted over
X axis in log unit. Y axis shows the drug response which was normalized
in the range of 0 to 100. The initial values of the parameters floor, window,
shift, and slope used in the Matlab nlinfit function were defined based
on values of data points as min(Y ), max(Y )–min(Y ), average(X), and –
0.6, respectively. By default, the algorithm uses bisquare (also known as
Tukey biweight) as the robust weighting function. Indeed, Matlab applied the
Levenberg–Marquardt (LM) algorithm and iterative reweighted least squares
[13] for robust estimation. Accordingly, the nlinfit represents for the case
of using the traditional LM algorithm and Tukey biweight function where
(3.1.9) and median function are utilized.

For our three algorithms, we defined the initial DRC parameters in the
first step (outlier detection) as same as in nlinfit, then those parameters
were corrected using the outlier detection step and used for the consequent
fitting steps. According to algorithm of section 3.2, number of iterations was
predefined as 50 and the error tolerance for convergence was 0.0001.

Figure 4.1 shows example of fitting when data points do not include
outliers and the results of four fitting algorithms are acceptable. Plotting

16



CHAPTER 4. RESULT

Figure 4.1: Results of no outliers

results are shown from left to right: Matlab nlinfit, L1 − L2, Tukey and
Double Tukey, respectively. In the results, all 26 data points are plotted
together with the fitted curve. Figure 4.2 illustrates the cases of presence of
outliers. At point −4.5 (log unit), the variation of measurements is high. In
this figure, the first result of Matlab nlinfit demonstrate an ambiguity of
the shift parameter: log of IC50 should be shifted to the right so as to cross
the mean point in the middle of the plot. Also the slope is ambiguous. Second
result is not bad but the remaining two results is better than L1−L2. Figure
4.3 shows that Double is better than others. In this figure, curve other than
Dobule shows too steep slope and an ambiguity of shift parameters.

In drug discovery and genome–wide data analysis, curve parameters, es-
pecially the shift, act as a crucial factor in determining the target candidates.
Therefore, poor outcomes of the DRC fitting algorithm might affect greatly

17



CHAPTER 4. RESULT

Figure 4.2: Results when data has Outliers

the analysis of the whole genome, which leads to the difficulty in finding the
targets. In order to evaluate the performance of different DRC fitting algo-
rithms on a large–scale, we assessed 19,236 curves which were obtained from
five microarray slides. We have a lot of curves but we do not have criterion
of what figure is better than others at same data.

In summary, experimental comparisons show that our method, which pro-
poses automatic initialization of DRC parameters and modification of Tukey
biweight function, yields a satisfactory fitting of curves. Moreover, better
performance of Double compared to the Matlab nlinfit, L1−L2 and Tukey
implies that the automatic initialization of DRC parameters meaningfully
improves the fitting process.

18
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Figure 4.3: Results of outliers and bad fitting.

4.2 Conclusion
This paper provided an accurate initialization of DRC parameters with

the use of outlier detection, which was a main issue of DRC fitting. Figure
4.4 and 4.5 show that the correlation between standard robust weighting
method and robust weighting method with outlier detection. Two results
show that standard robust weighting method can be improved by applying
outlier detection. Traditionally, it is very difficult to automate and to yield
good solutions for thousands of DRCs without the use of automatic outlier
detection and initialization of curves. Our method presents a routine to detect
outliers and define the initial curve automatically. In addition, a Matlab
implementation of our method is provided together with the sample data
and results.
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CHAPTER 4. RESULT

By experimentally comparing the results of our method to those calcu-
lated by the nlinfit function in Matlab 2013a, we found that the proposed
approach yielded a satisfactory estimation of curves.

Figure 4.4: Correlation between Double L1-L2 and L1-L2

Figure 4.5: Correlation between Double Tukey and Tukey
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국문초록

대용량 데이터에서 성공적으로 자동화 곡선 최적화를 하는 것은 어려운 일
이다. 본 논문에서는약물반응곡선의네가지변수를측정하여곡선의최적화
방법과 이상치 감지를 하는것에 대해 다루었다. 특히, 이 논문에서는 약물
반응 곡선 최적화에 대해서 개선점을 제시하였다. 그것은 첫 단계에서 오차
함수와미분성분을이용하여이상치를검증을하는것이다.마지막으로 19,236
개의 약물 반응의 실험 결과들을 통해 이 논문에서 접근한 방법이 매트랩의
내장함수 (nlinfit)보다 더 좋은 결과를 보여주고 있음을 알 수 있다.

주요어휘: 약물 반응 곡선, 고함량 검사, 곡선 최적화, 강건한 가중치 함수,
이상치 감지
학번: 2011-23206
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