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Abstract 

 
 This paper will be focused on applying machine learning to predict 

the possibilities for firms to default. The data selected for this modeling are 

firms from United States between 2008 and 2012. We will use logistic 

regression and support vector machines, two major classification model from 

machine learning to forecast the risk of default. The result will be compared 

when different features are selected. Furthermore, we will discuss the strength 

of each method by comparing the result. 

 

 

 

 

 

 

 

 

 

 

 

Key components: default risk prediction, machine learning, logistic 

regression, support vector machines, stock prices 

Student Number: 2012-23906 



ii 
 

 

Contents 

 

 

Abstract         i 

Chapter 1 Introduction        1 

Chapter 2 Machine Learning Methods     3 

  2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . .  4 

  2.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . .  8 

Chapter 3 Data and method apply              13 

  3.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

  3.1 Feature selection  . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

  3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Chapter 4 Results and analysis               17 

4.1 General result and analysis . . . . . . . . . . . . . . . . . . . 17 

4.2 Practical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Chapter 5 Conclusion                23 

Bibliography                  24 

Acknowledgement                 25



1 
 

 

 

Chapter 1 

Introduction 

The financial crisis that first broke out in the US around the summer 

of 2007 and crested around the autumn of 2008 had destroyed $34.4 trillion 

of wealth globally by March 2009. The lost wealth, $34.4 trillion, is more 

than the 2008 annual gross domestic product (GDP) of the US, the European 

Union and Japan combined. This wealth deficit effect would take at least a 

decade to replenish even if these advanced economies were to grow at mid-

single digit rate after inflation and only if no double dip materializes in the 

markets.  At an optimistic compounded annual growth rate of 5%, it would 

take over 10 years to replenish the lost wealth in the US economy. 

Therefore, if there is a method that can provide a more accurate 

forecast of the bankruptcy of those companies, then hundreds of billions 

dollars can be saved from such tragedy. This study was conducted for the 
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purpose of applying machine learning methods to forecast the risk of default 

targeted the stock listed companies in United States. 

The core of machine learning deals with representation and 

generalization. Representation of data instances and functions evaluated on 

these instances are part of all machine learning systems. Generalization is the 

property that the system will perform well on unseen data instances; the 

conditions under which this can be guaranteed are a key object of study in the 

subfield of computational learning theory. This paper will be focus on 

applying machine learning to default risk of firms. 
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Chapter 2 

Machine Learning Methods 

Machine learning is a branch of artificial intelligent. Concerns the 

construct data and study of system that can learn from data. From the most 

commonly used field such as distinguish spam and non-spam emails. Up to 

glut and productive capacities in varies industries. Such as ship building, semi 

conduct, petro chemical and etc.  

 In this Chapter, we will introduce the methods selected from machine 

learning: logistic regression and support vector machines (SVM). Furthermore, we 

will explain the detail methodology of how patterns are recognized, then applied 

them to the test data. 
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2.1 Logistic regression 

 Logistic regression is a type of probabilistic statistical classification model. 

It is used for predicting the outcome of a categorical dependent variable (i.e., a class 

label) based on one or more predictor variables (features). The probabilities 

describing the possible outcomes of a single trial are modeled, as a function of the 

explanatory (predictor) variables, using a logistic function. "Logistic regression" is 

used to refer specifically to the problem in which the dependent variable is binary.  

 First, we set the classification variable y to be either 0 or 1 due to the binary 

classification nature of logistic regression. Then x is selected to denote a feature 

vector. Next, the training sample is defined to be 𝐷 =  {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1,⋯,𝑛. Given 

any 𝐷 =  {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1,⋯,𝑛   logistic regression will construct the classification 

model and predicts the y to be either 0 or 1. In order to do so, we assume there exists 

a weighted vector 𝑤 = (𝑤0, 𝑤1, ⋯ , 𝑤𝑑)𝑡 and a function ℎ𝑤(𝑥) such that 

ℎ𝑤(𝑥) = 𝑃 ( 𝑦 = 1| 𝑥;  𝑤) 

The key to logistic regression is to define the logistic function 𝑔(𝑡) to be 

𝑔(𝑡) =
1

1 + 𝑒−𝑡
 

The image below shows a graph of 𝑔(𝑡). As we can see from the graph that 𝑔(𝑡) is 

has the domain range of (0, 1). 
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Next, we apply weighted vector and x into 𝑔(𝑡) and obtain 

ℎ𝑤(𝑥) =  𝑔( 𝑤𝑇 ∙ 𝑥 ) =
1

1 + 𝑒− 𝑤𝑇∙ 𝑥
 

 With the data 𝐷 =  {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1,⋯,𝑛 given, we need to find 𝒘 that is able 

to minimize the following cost function: 

𝐽 (𝑤) =  ∑(𝑦(𝑖) − ℎ𝑤(𝑥(𝑖)))2

𝑛

𝑖=1

 

Through the basic definition of likelihood, by maximizing the likelihood of 

following function 𝐿(𝑤) will obtain the optimal parameter 𝒘  

𝐿 (𝑤) =  ∏ 𝑝( 𝑦(𝑖)| 𝑥(𝑖);  𝑤 )

𝑛

𝑖=1

 

Since the regression coefficients are usually estimated using maximum likelihood 

estimation. Therefore, the function above will be used to calculate the parameter 𝒘. 

 Formally, the outcomes y are described as being Bernoulli-distributed data, 

where each outcome is determined by an unobserved probability that is specific to 

the outcome at hand, but related to the explanatory variables. Therefore, we assume 
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𝑝( 𝑦 = 1 |  𝑥; 𝑤) =  ℎ𝑤(𝑥) =  𝑔( 𝑤𝑇 ∙ 𝑥 ) 

𝑝( 𝑦 = 0 |  𝑥; 𝑤) = 1 −  ℎ𝑤(𝑥) = 1 −  𝑔( 𝑤𝑇 ∙ 𝑥 ) 

Which can be converted into 

𝑝( 𝑦 |  𝑥; 𝑤) =  ℎ𝑤(𝑥)𝑦 ∙ ( 1 −  ℎ𝑤(𝑥))1−𝑦  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (ℎ𝑤(𝑥)) 

Applying the function above back to the likelihood function and we can obtain 

𝐿 (𝑤) = ∏  ℎ𝑤(𝑥(𝑖))
𝑦(𝑖)

∙ ( 1 −  ℎ𝑤(𝑥(𝑖)))1−𝑦(𝑖)

𝑛

𝑖=1

 

Now, in order to simplify the calculation, we apply the log likelihood to the equation 

above and result in 

          𝑙 (𝑤) =  𝑙𝑜𝑔 𝐿 (𝑤) 

= ∏ { 𝑦(𝑖) 𝑙𝑜𝑔 ℎ𝑤(𝑥(𝑖)) + (1 − 𝑦(𝑖)) log (1 − ℎ𝑤(𝑥(𝑖)))}

𝑛

𝑖=1

 

  = ∏{𝑦(𝑖) log 𝑔( 𝑤𝑇 ∙ 𝑥 ) + (1 − 𝑦(𝑖)) log(1 − 𝑔( 𝑤𝑇 ∙ 𝑥 ))}

𝑛

𝑖=1

 

Then we take the derivative of 𝑙 (𝑤) and we will obtain. 

𝜕𝑙 (𝑤)

𝜕𝑤𝑘
=  ∑ {𝑦(𝑖)

𝑔′( 𝑤𝑇 ∙ 𝑥(𝑖) )

𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) )
𝑥𝑘

(𝑖) + (1 − 𝑦(𝑖))
𝑔′( 𝑤𝑇 ∙ 𝑥(𝑖) )

1 − 𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) )
𝑥𝑘

(𝑖) }

𝑛

𝑖=1

 

                  =  ∑ {𝑦(𝑖) (1 − 𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) )) + (1 − 𝑦(𝑖))𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) ) }

𝑛

𝑖=1

𝑥𝑘
(𝑖) 
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                  =  ∑{𝑦(𝑖) − 𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) ) }

𝑛

𝑖=1

𝑥𝑘
(𝑖) 

And the second derivative of l (w) is 

𝜕2𝑙 (𝑤)

𝜕𝑤𝑘𝜕𝑤𝑟
= − ∑ 𝑔′( 𝑤𝑇 ∙ 𝑥(𝑖) )

𝑛

𝑖=1

𝑥𝑘
(𝑖)𝑥𝑟

(𝑖) 

Due to the nature of logistic regression, iterative methods such as gradient 

descent algorithm is used to find w. Gradient descent algorithm constructs a loop that 

is able to update parameter to achieve optimal value. 

𝑤 (𝑛𝑒𝑤) = 𝑤 (𝑜𝑙𝑑) +  𝛼 ∇ 𝑙(𝑤)|𝑤=𝑤(𝑜𝑙𝑑) 

The key to obtain w in this equation is 𝛼, the learning rate. Small 𝛼 will cause the 

algorithm converge too slowly. On the other hand, if 𝛼 is too large, it may result in 

not converge and oscillate. 

 Applying the derivative of log likelihood to w (new) and we will obtain 

𝑤 (𝑛𝑒𝑤) = 𝑤 (𝑜𝑙𝑑) + 𝛼 ∑{𝑦(𝑖) − 𝑔( 𝑤𝑇(𝑜𝑙𝑑) ∙ 𝑥(𝑖) ) }

𝑛

𝑖=1

𝑥𝑘
(𝑖) 

Since the Hessian matrix H (w) is given by 

𝐻 (𝑤) =  − ∑ 𝑔′( 𝑤𝑇 ∙ 𝑥(𝑖) )

𝑛

𝑖=1

𝑥(𝑖)(𝑥(𝑖))𝑇   

For any v ∈  ℝ𝒅, 

𝐯𝑻 𝑥(𝑖)(𝑥(𝑖))𝑇  𝐯 = ‖(𝑥(𝑖))𝑇  𝐯 ‖
𝟐

 ≥ 0 
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Since 𝑔′(𝑡) =  
𝑒−𝑡

(1+𝑒−𝑡)2 > 0, − 𝐻 (𝑤) is positive semi-definite, the log likelihood 

function 𝑙(𝑤) is a concave function, which means there exit a maximum. Through 

the gradient descent algorithm we are able to compute the maximum, which is the 

optimal parameter that minimizes the cost function. 

 

 For 𝑖 = 1 , 2 , ⋯ , 𝑛. we are able to forecast the classification vector y to be 

𝑦(𝑖) = {
1  if 𝑔( 𝑤𝑇 ∙ 𝑥(𝑖) ) ≥ 0.5 

0  otherwise                      
 

 

2.2 Support Vector Machines 

 Support vector machines (SVMs) are supervised learning models with 

associated learning algorithms that analyze data and recognize patterns, used for 

classification analysis. Given a set of training data, each is classified as category one 

or two, a SVM training algorithm constructs a model that assigns new data into one 

category or the other, making it a non-probabilistic binary linear classifier. A SVM 

model is a representation of the data as points in space, mapped so that the data of 

the separate categories are separated by a clear gap that is as wide as possible. New 

data are then mapped into that same space and classified to a category based on 

which side of the gap they fall on. 
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 For given data 𝐷 =  {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1,⋯,𝑛  where the  𝑦(𝑖) is either 1 or −1, 

indicating the class 𝑥(𝑖) belongs. We aim to find the maximum-margin hyperplane 

that separates the points within class 𝑦(𝑖) = 1 from those within class 𝑦(𝑖) = −1. 

Any hyperplane can be written as the set of points 𝑥(𝑖) satisfying 𝑤 ∙ 𝑥 − 𝑏 = 0. The 

parameter 
𝑏

‖𝑤‖
 determines the offset of the hyperplane from the origin along the 

normal vector 𝒘.  

 When the training data are linearly separable, we select two hyperplanes that 

separate the data with no points between them, and then try to maximize the gap in 

between. The region bounded by the hyperplanes is called "the margin". These 

hyperplanes can be described by 𝑤 ∙ 𝑥 − 𝑏 = 1 or  𝑤 ∙ 𝑥 − 𝑏 = −1. 

 By using geometry, we find the distance between these two hyperplanes is 

 
2

 ‖𝑤‖ 
, therefore, the next step is to minimize ‖ 𝑤 ‖ in order to maximize the gap. To 

prevent data points from falling into the margin, we add the following constraint: for 

each 𝑖  
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{
𝑤 ∙ 𝑥(𝑖)  − 𝑏 ≥ 1      for 𝑥(𝑖) belongs to the first class 

𝑤 ∙ 𝑥(𝑖)  − 𝑏 ≤ −1    for 𝑥(𝑖) belongs to the second      

 

This can be written as  

𝑦(𝑖)(𝑤 ∙ 𝑥(𝑖)  − 𝑏) ≥ 1,   for all 1 ≤ 𝑖 ≤ 𝑛 

The optimization problem is difficult to solve due to the dependence on ‖ 𝑤 ‖, the 

norm of w, which a square root is involved. Fortunately by substituting ‖ 𝑤 ‖ with 

1

2
 ‖ 𝑤 ‖2  the equation is altered without changing the solution. Then it will be a 

quadratic programming optimization problem. More clearly: 

arg min
(𝑤,𝑏)

1

2
 ‖ 𝑤 ‖2   for all 1 ≤ 𝑖 ≤ 𝑛 

The Soft Margin method can be applied when the data cannot be clearly 

categorized. The Soft Margin will choose a hyperplane that splits the data as cleanly 

as possible, while still maximizing the distance to the nearest cleanly split data. There 

exits a slack variables, 𝜉(𝑖) ≥ 0 that measure the degree of misclassification of the 

data 𝑥(𝑖) 

𝑦(𝑖)(𝑤 ∙ 𝑥(𝑖)  − 𝑏) ≥ 1 −  𝜉(𝑖), 1 ≤ 𝑖 ≤ 𝑛                     (2.2.1)  

The objective function is then increased by a function which penalizes non-zero 𝜉(𝑖), 

and tradeoff a large margin with a small error penalty. If the penalty function is linear, 

the optimization problem becomes: 

arg min
𝑤,𝜉,𝑏

{
1
2

 ‖ 𝑤 ‖2 + 𝐶 ∑  𝜉
(𝑖)

𝑛

𝑖=1

} 

For  𝑖 = 1, 2, ⋯ , 𝑛, 𝜉(𝑖)
≥ 0 
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The constraint in (2.2.1) along with the objective of minimizing‖ 𝑤 ‖ can be solved 

through Lagrange multipliers as done above. We has then to solve the following 

problem, with 𝛼(𝑖), 𝛽(𝑖) ≥ 0 

arg min
𝑤,𝜉,𝑏

max
𝛼,𝛽

{
1

2
 ‖ 𝑤 ‖2 + 𝐶 ∑  𝜉(𝑖)

𝑛

𝑖=1

− 𝛼(𝑖)[𝑦(𝑖)(𝑤 ∙ 𝑥(𝑖)  − 𝑏) − 1 +  𝜉(𝑖)] − ∑ 𝛽(𝑖) 𝜉(𝑖)

𝑛

𝑖=1

} 

Through standard quadratic programming techniques and programs the problem can 

now be solved. The "stationary" Karush–Kuhn–Tucker condition implies that the 

solution can be expressed as a linear combination of the training vectors 

𝑤 =  ∑ 𝛼(𝑖)𝑦(𝑖)

𝑛

𝑖=1

𝑥(𝑖) 

The corresponding 𝑥(𝑖) are exactly the support vectors, which lie on the margin and 

satisfy 𝑦(𝑖)(𝑤 ∙ 𝑥(𝑖)  − 𝑏) = 1.  

 With the information obtained, the dual form of the SVM reduces to the 

following optimization problem: 

max
𝛼(𝑖)

𝐿(𝛼) = ∑ 𝛼(𝑖)

𝑛

𝑖=1

−
1

2
∑ 𝛼(𝑖)𝛼(𝑗)𝑦(𝑖)𝑦(𝑗)𝑘(𝑥(𝑖)𝑥(𝑗))

𝑛

𝑖 ,𝑗=1

 

For  𝑖 = 1, 2, ⋯ , 𝑛, 𝛼(𝑖) ≥ 0 and to the constraint from the minimization in b 

∑ 𝛼(𝑖)𝑦(𝑖)

𝑛

𝑖=1

= 0 

The key advantage of Soft Margin is that the slack variables vanish from the 

dual problem, with the constant C appearing only as an additional constraint on the 

Lagrange multipliers. 
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For non-linear classification, we applies kernel function to transform. V. 

Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick 

to maximum-margin hyperplanes in 1992. The resulting algorithm is similar, except 

a nonlinear kernel function 𝑘 is applied rather than dot product. This allows the 

feature mapping 𝜑(𝑥) maps into the feature space. 

 The kernel is related to the transform 𝜑𝑥(𝑖)  by the equation 

 𝑘(𝑥(𝑖), 𝑥(𝑗)) = 𝜑𝑥(𝑖) ∙ 𝜑𝑥(𝑗) 

w will also in the transformed space, with 

𝑤 =  ∑ 𝛼(𝑖)𝑦(𝑖)

𝑛

𝑖=1

𝜑𝑥(𝑖) 

Again, we use the kernel trick instead of dot products with w for classification,  

i. e.            𝑤 ∙ 𝜑(𝑥) =  ∑ 𝛼(𝑖)𝑦(𝑖)

𝑛

𝑖=1

𝑘(𝑥(𝑖), 𝑥) 

 

Kernel machines 
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If we use a Gaussian radial basis function from kernel, the corresponding 

feature space is a Hilbert space of infinite dimensions. Maximum margin classifiers 

are well regularized, so the results do not spoil by the infinite dimensions. There are 

several common kernels such as a homogeneous polynomial kernel function 

 𝑘(𝑥(𝑖), 𝑥(𝑗)) = (𝑥(𝑖) ∙ 𝑥(𝑗))
𝑑

, a Gaussian radial basis kernel function 

 𝑘(𝑥(𝑖), 𝑥(𝑗)) = exp (−𝛾‖𝑥(𝑖) − 𝑥(𝑗)‖
2

) , for  𝛾 > 0 . Sometimes parameterized 

using 𝛾 = 1
2𝜎2⁄ . Finally, we can classify the test examples as 

𝑦(𝑖) = {
1      if  𝑤𝜑(𝑥(𝑖)) − 𝑏 ≥ 1 

−1   otherwise                   

 

For 𝑖 = 1, 2, ⋯ , 𝑛 
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Chapter 3 

Data, Features selection and 

Measurements 

 In this chapter, we will first introduce the detail information on data set and 

features selection. Then we will present the parameters that can help us have a better 

understanding of the analysis. 

 

3.1 Data selection 

The data selected for this analysis are stock listed companies in United States 

during the period of 2008 to 2012. We will examine the results of the analysis in two 

subset, the large data subset and small data subset. The large data subset is a 

combination of 1421 non-defaulted companies from Standard & Poor 1500 and 144 

defaulted companies. Therefore the non-defaulted to defaulted ratio is 10:1. Small 

data subset is a combination of 523 non-defaulted companies from Standard & Poor 
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500 and 144 defaulted companies. Hence, the non-defaulted to defaulted ratio is 

about 4:1. 

 

3.2 Features selection 

 In this study, we will introduce five features for the analysis. Three of them 

are historical quotes related and two are financial ratios during the period from 2008 

to 2012. Furthermore, the study will examine and compare the correlation of each 

feature and varies combination of features to achieve the best way of forecasting the 

default likelihood.   

FEATURES DISCRIPTION 

X1 Stock performance 

X2 Stock performance compare to market performance 

X3 Stock performance compare to index/sector performance 

X4 Current ratio 

X5 Debt to equity ratio 

Table 1. Features selected for the analysis 

Each feature is constructed by 2 sub-features, which is 1 year prior performance and 

2 year prior performance. For example, Franklin Bank defaulted on November 7th, 

2008. For feature X1, we will collect the end of year quote from 2005 to 2007 

Year End of year quote 

2007 4.31 

2006 20.54 

2005 17.99 
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Then the first sub-feature of X1 will be (4.31 − 20.54 ) / 20.54 =  −0.7902, and 

second sub-feature of X1 will be (4.31 − 17.99) / 17.99 =  −0.7604. Similarly, 

the relative performance are applied to the rest of the features. Therefore, a total of 

10 sub-features are used during the analysis. 

 

3.3 Measurements 

 In this study, we first set up following the confusion matrix as the basic 

statistical measurements. 

  True classification 

  0 (negative) 1 (positive) 

Test classification 
0 (negative) TN FN 

1  (positive) FP TP 

    

In the table above, 0 the ‘negative’ is representing non-default and 1 the ‘positive’ 

represent default. Furthermore, TN stands for true negative, which true classification 

matches test classification of being non-default. FN stands for false negative, which 

true classification is defaulted, but test class predicted to be non-defaulted. FP stands 

for false positive, which true classification is non-defaulted, but test class predicted 

to be defaulted. TP stands for true positive, which true classification matches test 

classification of being default.  

 Next, with the confusion matrix elements we will introduce the following 

statistical measurements in order to have a better understanding of the analysis. 

Accuracy = ( TN + TP ) / ( TN + FN + FP + TP) 

Recall = TP / ( FN + TP ) 



17 
 

Specificity = TN / ( FP + TN ) 

Positive predictive value (precision) = TP / ( FP + TP ) 

Negative predictive value = TN / ( FN + TN ) 

F-measure = ( Recall × Precision × 2 ) / ( Recall + Precision ) 

Type 1 error = 1 - Specificity 

Type 2 error = 1 - Recall 

Accuracy measures the correctness of prediction. Recall is the ratio of 

correctly predicted default companies among all default companies.  

Specificity shows the percentage of correctly predicted non-default 

companies among all non-default companies.  

Positive predictive value is the ratio of correctly predicted default companies 

among all predicted default companies.  

Negative predictive value is the ratio of correctly predicted non-default firms 

among all predicted non-default companies.  

F-measure is the Harmonic mean of Recall and Precision.  

Type 1 error shows the percentage of falsely predicted the non-default 

company as a default company.  

Then most important of all, Type 2 error gives the percentage of falsely 

predicted defaulted companies as non-default company. 
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Chapter 4 

Results and Analysis 

 In this chapter, the empirical results and analysis will be presented. First, we 

will evaluate the results when different features are applied. Then we will divide the 

data into smaller subsets by the defaulting year and apply it to practical annual 

forecasting.  

4.1 General result and analysis 

Features  Accuracy Recall Specificity 
Positive 

predictive value 

X1-X5 0.8981 0.6667 0.9444 0.7059 

X1-X3 0.9352 0.6111 1.0000 1.0000 

X1-X2 0.9722 0.9444 0.9778 0.8947 

  
Negative predictive 

value 
F-measure Type 1 error Type 2 error 

X1-X5 0.9341 0.6857 0.0556 0.3333 

X1-X3 0.9278 0.7586 0.0000 0.3889 

X1-X2 0.9888 0.9189 0.0222 0.0556 

     
Table 1. General analysis of logistic regression 
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Features  Accuracy Recall Specificity 
Positive 

predictive value 

X1-X5 0.8889 0.8333 0.9000 0.6250 

X1-X3 0.9167 0.9444 0.9111 0.6800 

X1-X2 0.8889 1.0000 0.8667 0.6000 

  
Negative predictive 

value 
F-measure Type 1 error Type 2 error 

X1-X5 0.9643 0.7143 0.1000 0.1667 

X1-X3 0.9880 0.7907 0.0889 0.0556 

X1-X2 1.0000 0.7500 0.1333 0.0000 

     

Table 2. General analysis of support vector machines 

 We can see from the tables above that when all the features are included in 

the analysis, both methods shows an accuracy around 0.89. However, the type 2 error 

for logistic regression is 0.33, nearly twice as much as 0.17 from support vector 

machines.  

After both financial ratios features are eliminated from the analysis, the 

accuracy of logistic regression has increased dramatically from 0.90 to 0.94 while 

the type 2 error also increased from 0.33 to 0.39. In the meantime, the accuracy of 

support vector machines also increased from 0.89 to 0.92 with the type 2 error cut to 

only one third amount. 

Finally, when only X1 and X2 are included in the feature, the accuracy of 

logistic regression has reached 0.97 and type 2 error has dropped down to only 0.06. 

The accuracy of support vector machines also moved back to 0.89 while the type 2 

error reached 0. 
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Overall, both methods had forecasted with higher accuracy and lower type 

2 error when only stock performance related features are selected for the analysis. 

 

4.2 Practical Analysis 

 In this section, in order to examine the reliability of stock performance 

related features in the practical, we will apply both methods to both large and small 

data subsets. For example, with the information analysis we have obtained from the 

2008 data, we will try to forecast the risk of default in 2009. Then we compare our 

results with empirical data from 2009 to test the accuracy. 

Train True Accuracy Recall Specificity 
Positive 

predictive value 

2008 2009 0.9148 0.9318 0.9125 0.5942 

2009 2010 0.9707 0.8095 0.9841 0.8095 

2010 2011 0.8049 0.9130 0.7955 0.2800 

2011 2012 0.9586 0.6757 0.9934 0.9259 

  
Negative 

predictive value 
F-measure Type 1 error Type 2 error 

2008 2009 0.9898 0.7257 0.0875 0.0682 

2009 2010 0.9841 0.8095 0.0159 0.1905 

2010 2011 0.9906 0.4286 0.2045 0.0870 

2011 2012 0.9614 0.7813 0.0066 0.3243 

      

Table 3. Logistic regression analysis for large data subset 
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Train True Accuracy Recall Specificity 
Positive 

predictive value 

2008 2009 0.8984 0.8636 0.9031 0.5507 

2009 2010 0.9121 0.9524 0.9087 0.4651 

2010 2011 0.9443 0.9130 0.9470 0.6000 

2011 2012 0.9024 0.9730 0.8937 0.5294 

  
Negative 

predictive value 
F-measure Type 1 error Type 2 error 

2008 2009 0.9797 0.6726 0.0969 0.1364 

2009 2010 0.9957 0.6250 0.0913 0.0476 

2010 2011 0.9921 0.7241 0.0530 0.0870 

2011 2012 0.9963 0.6857 0.1063 0.0270 

      

Table 4. Support vector machines analysis for large data subset 

Train True Accuracy Recall Specificity 
Positive 

predictive value 

2008 2009 0.9266 0.9318 0.9248 0.8039 

2009 2010 0.9634 0.8571 1.0000 1.0000 

2010 2011 0.9468 0.7826 1.0000 1.0000 

2011 2012 0.9315 0.9444 0.9273 0.8095 

    
Negative 

predictive value 
F-measure Type 1 error Type 2 error 

2008 2009 0.9762 0.8632 0.0752 0.0682 

2009 2010 0.9531 0.9231 0.0000 0.1429 

2010 2011 0.9342 0.8780 0.0000 0.2174 

2011 2012 0.9808 0.8718 0.0727 0.0556 

      

Table 5. Logistic regression analysis for small data subset 
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Train True Accuracy Recall Specificity 
Positive 

predictive value 

2008 2009 0.7966 0.9545 0.7444 0.5526 

2009 2010 0.9512 0.9524 0.9508 0.8696 

2010 2011 0.9574 0.8261 1.0000 1.0000 

2011 2012 0.8904 0.9722 0.8636 0.7000 

    
Negative 

predictive value 
F-measure Type 1 error Type 2 error 

2008 2009 0.9802 0.7000 0.2556 0.0455 

2009 2010 0.9831 0.9091 0.0492 0.0476 

2010 2011 0.9467 0.9048 0.0000 0.1739 

2011 2012 0.9896 0.8140 0.1364 0.0278 

      

Table 6. Support vector machines analysis for small data subset 

 Overall, both methods has performed well during this practical experiment. 

Logistic regression has shown a 0.93 accuracy and 0.15 type 2 error. Support vector 

machines method has obtained a 0.91 accuracy and 0.07 type 2 error. 

During the experiment of large data subset, both methods has shown a 0.91 

accuracy. However, the type 2 error from logistic regression is 0.17, more than twice 

of 0.07, the type 2 error obtained from support vector machines. Hence, when large 

amount of data are being analyzed, support vector machines method is able to 

provide lower error while remain the same accuracy. 

 For small data subset, logistic regression method achieved an average 

accuracy of 0.94. It has outperformed support vector machines accuracy by 0.04. 

Also compare to large data subset, logistic regression has lowered the type 2 error to 
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0.12. On the other hand, support vector machines has shown the stability maintaining 

the type 2 error at 0.07. 
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Chapter 5 

Conclusion 

The ultimate goal of this research is to forecasting the risk of default, which 

targeting result with higher accuracy and lower type 2 error. The result has shown 

that support vector machine is able to provide a more stable accuracy regardless the 

size of data or the quantity of features. On the other hand, although logistic regression 

shows higher accuracy, the accuracy varies upon the features selection. Support 

vector machines appears to be more reliable in practical use, since lower type 2 error 

means less risk of investing in a company that will default but was classified as non-

defaulted. 

Furthermore, we can see from the accuracy is higher and type 2 error is lower 

when only stock performance and related comparisons are selected as the features of 

the analysis. This suggested that the stock performance and risk of default has a very 

high correlation. In other words, the financial status of companies in US can be best 

reflected by the stock performance. 
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