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Abstract 

Tree-Mesh Heterogeneous Topology for 

Low-Latency NoC 

SUNGJU HAN 

DEPARTMENT OF ELECTRICAL AND COMPUTER 

ENGINEERING 

COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 

In Network-on-Chip (NoC), topology is one of the most important design choices 

that determine performance and power consumption. Mesh, being the most popular 

NoC topology for many researches and products, is mainly tailored towards high 

throughput. However, many researches show that NoCs rarely operate under heavy 

load and that latency is often much more critical in practice. In this paper, I show that 

by adding a small tree network to assist the baseline mesh network, the zero-load 

latency can be greatly reduced while still maintaining the high throughput. For the 

management of the hybrid network, I propose a novel algorithm to steer each packet 

to different networks based on hop-count gain. The algorithm also includes latency 
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monitoring scheme and contention monitoring scheme in order to prevent tree 

network to get contested too much. Experiments were performed not only on synthetic 

traffics but also on real application workloads to evaluate the performance of the 

proposed design. The results show improvements on zero-load latency, throughput, 

and moreover, energy consumption. 
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Chapter 1 

Introduction 

Since the introduction of NoC [1], its importance has been grown fast and many 

researches in the area have been conducted. The knowledge accumulated on the NoC 

area is now mature in many aspects, and there already are many 

researches/commercial products adopting NoCs as their communication backbone. 

For example, Intel SCC [2] is a research prototype of a many-core architecture based 

on a mesh network. Also, many companies are integrating NoCs for their commercial 

products [3, 4, 5] based on their own NoC architectures or using commercial synthesis 

tools [6, 7].  

One important issue of NoC is that it consumes a substantial amount of energy 

and latency. According to literature, NoCs account for 20-40% of total system power 

consumption, and a big portion of execution time comes from network traversal and 
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queuing delay. The number of cores integrated in a system is likely to grow 

continuously in the future, and thus designing an efficient NoC will be a more 

challenging task than ever. 

Typically, NoCs are tailored towards throughput-oriented designs. For example, 

mesh, the most popular NoC topology, has high bisection bandwidth as well as rich 

set of path diversity to relay many communication transactions at once. On the other 

hand, the downside of the mesh topology is at its long end-to-end diameter. This often 

results in a long latency [8] and also unfairness among the cores on different locations 

[9]. In many cases, however, the applications running on the system do not require 

very high network demands. In such cases, latency under low load, namely zero-load 

latency, is more important than high-throughput [10, 11].  

One way of achieving low latency in NoC design is through reducing number of 

pipeline stages. Express virtual channel [11], for example, places shortcuts between 

routers, and lets packets skip some pipeline stages. This results in latency savings, but 

increases router complexity and cannot overcome the limitation of underlying 

topology. Another way is to use a low-latency topology. High-radix topologies such 

as dragonfly [12] or hypercube reduces hop-counts, but the cost of high-radix crossbar 

is very high and such topologies make wiring very difficult. Trees, on the other hand, 

have low cost, while having low hop counts since their diameter is a logarithmic 

function of the number of nodes. On the negative side, the traffics of trees are 
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concentrated at the root router, and therefore very vulnerable to heavy loads. 

In this paper, I propose the idea of supplementing a mesh with a low-overhead 

tree to reduce the zero-load latency while maintaining the throughput of the network. 

It can also be seen as a heterogeneous-topology NoC using both tree network and 

mesh network simultaneously. Both topologies are very popular and simple, and have 

their own obvious pros and cons. A tree network has low zero-load latency but also 

very low throughput, whereas a mesh network has high throughput but relatively high 

latency. So the desired effect I expect from using both networks together is to achieve 

low zero-load latency of tree network and high throughput of mesh network. 

However, exploiting only the benefits of both networks is not so easy. Basically, 

I can use a tree when the network load is low and use both when the load is high. 

However, the measure of network load requires global information, which cannot be 

obtained easily in a distributed architecture. Also, a naïve approach like dividing 

traffic into the two networks by a certain constant ratio only results in deterioration of 

both latency and throughput. Such a phenomenon results from different characteristics 

of the two topologies. Some source-destination pairs may be located at the direct 

neighbors in the mesh network, while they are located end-to-end in the tree network, 

and vice versa. Furthermore, since a tree network is easily saturated, delicate control 

is indispensable on packet steering not to cause congestion. In order to conquer these 

challenges well and manage the two networks harmoniously, I propose novel 
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algorithms to efficiently inject packets into appropriate networks. Our contributions 

in this regard can be listed as follows: 

I propose supplementing a mesh network with a tree network, to help reduce the 

zero-load latency of the network, and also increase throughput and energy efficiency 

compared to equally-sized mesh network. 

 Packet steering algorithm based on the hop count gain and local congestion 

information is proposed. 

 I reveal that congestion of a tree network mainly occurs at intermediate nodes. 

Also, I show that there are under-utilized resources in the tree network and 

propose local congestion monitoring algorithm using those resources. 

 A thorough evaluations of our approach on synthetic traffics as well as a 

selected set of parallel applications from Splash-2 and Parsec are presented. 
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Chapter 2 

Related Work 

For more than ten years, there have been active researches in the area of NoC, and 

there is now fertile knowledge on designing a NoC. Also, the advances in NoC 

technology now result in considerably complex designs. For example, router pipelines 

have evolved from a simple stage-by-stage organization to a set of prediction and 

speculation techniques to reduce the latency of packets [11, 13, 14]. Regarding routing 

algorithms, while XY routing for mesh topology is often used for its simplicity, many 

other kinds of routing algorithms exist for various purposes. DyXY [15] is an adaptive 

routing algorithm designed for meshes, and adaptive XYZ [16] is another adaptive 

routing for 3D NoCs. Use of deflection routing [10, 17] is also proposed to reduce 

energy consumption at the expense of a small performance loss. 

There is a stream of researches on the use of hybrid networks. [18] shows that 
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connecting small buses with mesh topology can be effective when it is to be used 

under traffic with mostly locally-destined packets. [19] uses mesh and ring together 

to separate control and data packets. Dejavu switching [20] has similar idea, but it 

utilizes circuit-switching and packet-switching together in a multi-plane NoC to 

separate control and data packets. Also, [21] exploits heterogeneous wires to transfer 

critical packets on low-latency wires. [22] claims that using multiple mesh network 

of different configuration can be beneficial. They classify applications into critical 

and non-critical ones and steer packets to appropriate network. The technique is 

effective when the workload is equally mixed with memory-latency-critical and non-

critical applications. 

There also are hybrid network approaches that use nanophotonics or RF 

techniques, to provide a shortcut to long-distance communication. Firefly [23] is a 

hierarchical network architecture where long, inter-cluster communication use high-

speed nanophotonic channels. In [24], multi-band RF interconnects are used as 

shortcuts on a mesh architecture.  

However, none of these focus on leveraging the combination of multiple 

electrically-signaling networks of different topologies together. By combining 

different topologies having their own pros and cons, an efficient communication 

medium can be created in terms of latency, throughput, and energy consumption. In 

this work, I choose mesh and tree networks as representatives of throughput-oriented 
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and latency-oriented topology, respectively, and show that when used properly, they 

can cooperate with each other in order to efficiently forward packets to their 

destinations. 
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Chapter 3 

Motivation 

Mesh is probably the most commonly used topology for NoC, having advantage in its 

intuitivity and ease of physical placement. For a k-ary 2 mesh (i.e. k x k 2D mesh), its 

bisection bandwidth is k, and the diameter (distance between the farthest source-

destination pair) is 2(k-1). These values imply that mesh is mainly a bandwidth-

oriented topology. As the network size increases, its bisection bandwidth and diameter 

both scale proportionally to the square root of the number of nodes (k2). On the 

contrary, m-ary tree is a latency-optimized topology. Its diameter is 2logmN (N is the 

number of nodes), which scales proportionally to the log of N. However, its bisection 

bandwidth is only m/2, which is significantly smaller than that of mesh network (note 

that m/2 is constant regardless of the size of the network). This is why ordinary tree 

topology is seldom used and its variants such as fat-tree or butterfly are often used 
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instead for NoCs. To be short, tree network has extremely low zero-load latency but 

also low throughput and mesh network has pretty high throughput but not good latency. 

While the bandwidth is usually the first requirement to be met in designing NoCs, 

the network actually runs under low-to-medium load for most of the time. 

Furthermore zero-load latency can be as important as throughput and it often decides 

the system performance [7, 8]. Therefore, our idea is to attach a tree network on top 

of a mesh, which acts as a low-cost auxiliary communication medium to enhance the 

zero-load latency.  

Figure 3.1 shows the latency and throughput properties of tree and mesh 

networks. The desired performance that I expect from the collaboration of the two 

networks would present the zero-load latency of the tree, and throughput of the sum 

of a mesh and a tree, represented by the undermost curve in the graph, drawn in dotted 

blue line. 1  However, naively duct-taping the two networks can only result in 

combining only the disadvantages of the two networks. As a naïve approach, I tested 

some simple algorithms. The simplest method would be to blindly distribute packets 

through the tree and mesh networks in a 1:1 ratio. Although the zero-load latency is 

slightly lower than that of the basic mesh network, it shows higher latency compared 

to the basic tree network. Also, the throughput is significantly lower than that of the 

                                            

 
1  The curve for the expected performance is not actually measured, but is a conceptual 

drawing. 
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mesh network. Meanwhile, a better approach would be to adjust the distribution ratio 

according to the bisection bandwidth of the two networks. The bisection bandwidth 

of the mesh network used in this study is four times larger than that of the tree network 

(see section 4 for detailed architecture of the tree and the mesh). Therefore, I perform 

experiments with the distribution ratio of 4:1, and disappointingly, it only pushes the 

curve more towards that of mesh, and the benefit in zero-load latency is reduced, 

resulting in no noticeable improvement over the basic mesh network.  

As shown in the above examples, exploiting characteristics and drawing 

 

Figure 3.1 Average latency of tree network, mesh network, two naive tree-mesh 

network, and expected curve using mesh and tree networks together with uniform 

random traffic. 
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advantages of both networks are not as simple as they seem. It is required to drive just 

the adequate amount of packets into the tree network in order that tree network may 

not be congested and create a synergistic effect under various traffic conditions. Also, 

only the carefully chosen packets need to be steered into the tree network to realize 

the hop-count benefit. In order to orchestrate the networks harmonically, I propose a 

novel algorithm to intelligently utilize the unique property of the networks. 
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Chapter 4 

Design Details 

Figure 4.1 shows our tree-mesh heterogeneous topology explored in this paper. As in 

the figure, 64 nodes are connected by a mesh and a tree. The configuration of mesh 

network is straightforward 8x8 configuration and this is a common practice unless 

there is a specific reason for not using a square topology. For the tree, I used 4-ary tree 

structure. Compared to binary trees, 4-ary tree has the benefit on number of hops. I 

wanted to design the tree network to be latency-oriented, and if binary tree was used, 

it would have no advantage over mesh in terms of the diameter (with 64 nodes). 

Furthermore, 4-ary tree requires radix-5 routers and this makes fair comparison with 

meshes easier. Please refer to section 5.1 for detailed configurations. Basically, the 

tree network and the mesh network run completely independently. Every packet is 

injected into one of the networks at each node and the decision is made by the network 



 

 １３ 

interface according to destination of the packet and status of networks. Once a packet 

is injected into a network, it is transported through that network until it reaches the 

destination. While one could also think of tree and mesh being combined by multiple 

bridges, it would complicate the network too much (e.g., number of ports of a router) 

and I think it is beyond the scope of this paper. Packets cannot escape from the 

network that they are injected into, even if the network is much more congested than 

the other. Therefore injection choices must be made very carefully in order to take 

 

Mesh Routers

PEs

Tree Routers

Network Interface

Figure 4.1 Overall architecture of heterogeneous topology. 
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advantages of both networks and utilize resources as much as possible. Sending a 

packet through the tree network often results in a shorter transfer path. However, most 

packets injected into the tree network would pass through the root of the tree. It is 

obvious that the tree network would easily get saturated and adversely affect the 

performance of the NoC. To manage these problems effectively and make the two 

networks cooperate harmoniously, I consider three techniques: hop-count based 

injecting algorithm, latency monitoring scheme, and contention monitoring scheme.  

The hop-count based injecting algorithm is designed to exploit low hop-count of 

the tree network. The algorithm is simple but very effective if applied with proper 

monitoring of the tree network. I propose two monitoring schemes to prevent tree 

network to get congested too much. One is latency monitoring of delivered packets 

and the other is contention monitoring of routers at the levels just below the root router.  

4.1 Hop-Count Based Injecting Algorithm 

To start with, I should pay attention to hop-count differences depending on what kind 

of network is used and depending on the locations of the source and destination of the 

packet. In mesh topology, intuitively it is proportional to the physical Manhattan 

distance. However in tree topology, some source-destination pairs have high hop-

count even though they seem very closely located, and vice versa. Figure 4.2 shows 

an example of hop-counts of each network when the source node is at the position 

marked ‘S’ and the destination node is at one of the remaining positions. The hop-
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counts are calculated by the number of routers (including the links to the routers) on 

the path.2 If node ‘A’ shown in Figure 4.2(c) is the destination, a packet goes through 

1 hop in the tree network and 2 hops in the mesh topology. But if node ‘B’ is the 

destination, a packet should pass along 5 hops in the tree network because the only 

common parent router of source and the destination is the root. Still, in many cases, I 

can get hop-count gain of the tree network over the mesh network. It is shown in 

Figure 4.2(c), and the numbers represent the hop-count gain of using tree instead of 

mesh.  

Based on the observation, a naïve approach would be to inject packets with 

                                            

 
2 According to our observation, the length of a link does not affect the number of cycles for 

the link traversal for a reasonably sized network since it is not on the critical path. However, 

depending on the implementation and size of the H-tree network, the traversal of a long link 

may require multiple cycles. 

   

(a) Tree            (b) Mesh           (c) Hop-count gain 

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

1 1 3 3 5 5 5 5

S 1 3 3 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9

S 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

1 2 3 4 3 4 5 6

0 1 2 3 2 3 4 5

A 2 1 2 1 2 3 4

S 1 0 1 0 1 2 3

B -2 -1 0 1 2 3 4

-2 -1 0 1 2 3 4 5

-1 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

Figure 4.2 Hop-count of tree and mesh network, and hop-count gain 

 using tree over mesh. 
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positive gain into the tree network and others into a mesh network. However, since 

tree network easily gets congested, I do not want too many packets to be injected into 

the tree network. For this, only the packets with large gains are injected into the tree. 

The mechanism is explained in the following section. 

4.2 Latency Monitoring Scheme 

The main drawback of using tree topology is that it gets congested so easily around 

the root as the traffic increases. Therefore it is essential to limit the traffic of the tree 

network to a certain level. For the purpose of managing traffic density of the tree 

network, I avoid packets with small hop-count gains to be injected into the network. 

To do this, I set a threshold by monitoring the latencies of packets delivered to each 

node. When a packet arrives at a node, the network interface checks the latency of the 

packet. If the latency observed is above α * zero-load latency, the threshold is 

incremented by one, thereby injecting more packets into the mesh network. Also, 

when the latency observed is below β * zero-load latency, the interface assumes that 

the network load is low and decrement the threshold by one. The values of α and β are 

determined empirically (in our experiments, I set the values to 1.5 and 1, respectively). 

By this scheme I can control the amount of packets injected into the tree network 

while obtaining higher hop-count gains. Note that the threshold is maintained at each 

network interface to capture different local congestions. 
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4.3 Contention Monitoring Scheme 

According to our experiments, latency monitoring scheme functions successfully with 

uniform random traffic. However, it doesn’t work well with certain traffic patterns 

such as tornado and bit-complement. This is because of the inherent limitation of the 

latency monitoring scheme, where the threshold is adjusted not at the sender node but 

at the receiver node. Thus, when a node wants to send a packet to a long distance node, 

it cannot gather congestion information along the path to the destination. In order to 

solve this problem, I adopt a new scheme named contention monitoring. This scheme 

can reduce the number of packets concentrated at particular nodes. It is based on the 

following two observations: 

1. Second level routers are the main source of the congestion. Contrary to intuition, 

not the root but the second level routers are where the congestions occur in the 

tree network. Due to the nature of tree network and latency monitoring scheme, 

packets likely to have very high hop-count gain are injected into the network. It 

means the most packets in the tree pass through the root router of the network 

(see Figure 4.2(c)). In the most congested scenario, the root router will have 

packets coming from four input ports connected to its children, which are headed 

towards the four output ports. It can convey all flits from its children to other 

children at a cycle as if there is no contention between the four flits. However at 

the second level router, as shown in Figure 4.3, there are also four input packets 

coming from its children, all headed through the link to the root. On the other 
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hand, only one packet coming from the root is headed towards one of its children. 

As a result, most packets are queued at the second level router and it becomes 

the main congestion source. 

2. There are many idle resources at the downstream links. As mentioned above, 

most of the packets are stuck on the way up to the root. Thus, even in existence 

of congestion, the resources (links and crossbars) on the path from the root to the 

leaves are mostly idle, and it can be utilized for contention monitoring without 

causing any performance drop on the network. 

From the above observations, I propose a contention monitoring scheme that 

informs the leaf nodes about the status of the second level routers. To implement this 

 

Second Level 
Router

Root Router

Contention

Figure 4.3 A scenario of contention at second level router in tree network. 



 

 １９ 

scheme, every second level router periodically checks utilization of buffers. After 

checking, the router downward-broadcasts the information to its children. Network 

interfaces of nodes which received this downward-broadcasted packets sets a filtering 

ratio. If the filtering ratio is 4, for example, then only one-fourth of the packets to be 

steered to the tree are actually injected, and the rest are passed to the mesh instead. 

The filtering ratio of each node is initialized to 1 (no filtering) and it doubles every 

time the node gets a high-utilization message, Similarly in case of low utilization, the 

interval is decreased to put more packets into the tree network. The filtering is ignored 

for high priority packets so that they can be delivered through the low latency tree 

network. 

There may be concerns that the downward-broadcasting uses too many resources 

in the network and may cause slowdown to useful packets. However, our scheme 

rarely causes performance degradation because it broadcasts only to the links that are 

not being used (the downward broadcasted packet is dropped if it encounters a busy 

link). As explained, the second level router is connected to only one parent (the root), 

but to four children. This means that the second level router will be receiving and 

transmitting only one packet per cycle and most of the links will be idle even at a high 

injection rate. Those idle down links are used for downward-broadcasting. 
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Chapter 5 

Experimental Results 

5.1 Experimental Setup 

To evaluate the performance of our network, I use an in-house cycle-accurate 

simulator. Our proposed design combines all the three aforementioned techniques. To 

show the excellence of our design, I compare it with four different designs: a simple 

mesh network as a baseline, a naïve approach using both tree and mesh networks with 

the distribution ratio of 4:1, a network using only the injecting algorithm by hop-count 

gain, and a network using the algorithm with hop-count gain and latency monitoring. 

For fair comparisons, the buffer sizes of the basic mesh network are made bigger than 

those of mesh network of heterogeneous network to equalize the total router areas of 

the two kinds of NoC (there can be other ways of doing fair comparison, but the results 

will be similar). I use an 8 x 8 mesh architecture for every mesh network and 4-ary 
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tree network with depth 3 for the tree network. XY routing is used as routing algorithm 

of the mesh network. The routers of both the tree network and the mesh network have 

radix of five. The link width is set to 128 bits throughout all networks. Except the 

buffer depth, all routers are designed to have the same microarchitecture. 

To test the networks under synthetic traffic patterns, I measure the performance 

of networks with four different traffic patterns. First, a uniform random traffic pattern 

where all nodes generate packets to all other nodes with the same probability is used 

as the basic traffic. Hotspot random traffic is similar but 10% of total packets head for 

a “hotspot” node of the network. The other two traffic patterns are permutation traffics 

which create packets proceeding to a fixed node for each starting node instead of 

Core model In-order x86 

L1 Cache Private, 16KB 4-way I-Cache and 16KB 8-way D-Cache 

L2 Cache Shared, prefect, S-NUCA 

Networks 

Mesh 8 x 8 Mesh, 128-bit flit width, 1-cycle link latency 

Tree-Mesh 
8 x 8 Mesh + 4-ary Tree, depth 3, 128-bit flit width, 1-

cycle link latency 

Routers 

Mesh 
4 VCs, buffer bypass, buffer depth 10, 2-cycle pipeline 

latency 

Mesh router in 

Tree-Mesh 

4 VCs, buffer bypass, buffer depth 8, 2-cycle pipeline 

latency 

Tree router in 

Tree-Mesh 

4 VCs, buffer bypass, buffer depth 2, 2-cycle pipeline 

latency 

 

Table 5.1 System Parameters 
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random nodes. Bit complementary and tornado traffic patterns are used as the 

permutation traffics to test the networks in various conditions. 

To obtain experimental results for real application workload, memory access 

traces of 17 applications from SPLASH-2 [25] and PARSEC [26] benchmarks are 

used. Memory traces of each application obtained from Sniper multi-core simulator 

[27] are inserted into the network simulator. To obtain energy consumption results, I 

modify DSENT [28] and integrate it in our simulator. The design parameters of each 

network and its router for real benchmarks are shown in Table I. Each node has an in-

order core, 16KB private L1 I-cache and D-cache, and a slice of L2 cache. The L2 

cache is configured as an S-NUCA [29], with directory-based cache coherence 

protocol. The L2 cache is assumed to be perfect. 

5.2 Synthetic Traffic 

Figure 5.1-5.4 show the graphs for experimental results for synthetic traffic patterns. 

MESH, Naïve, TM-H, TM-HL, TM-HLC in the legend mean basic mesh network, 

naïve combination of tree and mesh network with 4:1 distribution, heterogeneous 

network with injection algorithm using only hop-count gain, with latency monitoring, 

and the proposed design with all of the three techniques, respectively. All traffic 

patterns are tested with each packet consisting of four flits. 

Figure 5.1-5.4 show that the naïve approach gives little improvement of latency 

compared to the basic mesh network. Although the naïve implementation gives best 
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Figure 5.2 Average latency under Hotspot Random Traffic.

 

Figure 5.1 Average latency under Uniform Random Traffic. 
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Figure 5.3 Average latency under Bit Complementary Traffic.

 

Figure 5.4 Average latency under Tornado Traffic. 
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throughput except for the uniform random traffic, it does not well take advantage of 

the tree topology. TM-H using injection policy based on hop-count gain which is 

devised in order to draw the benefit of tree has the lowest zero-load latency, but the 

throughput is the lowest. Because too many packets are steered to the tree network, 

the tree network gets saturated too early and limits the throughput. Latency monitoring 

scheme is applied to solve this problem by limiting the number of packets to be 

injected into the tree. TM-HL using this scheme shows both low zero-load latency and 

high throughput, but shows unstable characteristics with very high latencies, 

especially on permutation traffic patterns. As mentioned in Section 4, the latency 

monitoring scheme has vulnerability on imbalanced traffics. Finally, TM-HLC tries 

to mitigate this behavior using local downward broadcasting of second level router 

conditions. With the combination of all the proposed techniques, TM-HLC shows 

excellent zero-load latency as well as better throughput than the basic mesh network 

having the same area.  

5.3 Real Application Benchmarks 

Figure 5.5 shows the execution time of each network under each benchmark. As 

expected, the naïve approach does not show much benefit over the baseline mesh. Its 

execution time in geometric mean is reduced by 5.20% compared to the baseline. 

Because TM-H steers all packets that have hop-count gain into the tree network, the 

tree network of TM-H is too much congested, and the improvement in execution time 
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Figure 5.5 Execution Time under application benchmarks. 

 

Figure 5.6 Energy-Delay Product (EDP) under application benchmarks. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
b

lk

b
d

y

ca
n

d
e

d

fa
ce fe

r

fl
u

ra
yp st

r

vi
p

b
ar

ch
o ff
t

fm
m lu

rd
x

w
at

ge
o

m
ea

n

Execution Time

MESH Naïve TM-H TM-HL TM-HLC

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

b
lk

b
d

y

ca
n

d
e

d

fa
ce fe

r

fl
u

ra
yp st

r

vi
p

b
ar

ch
o ff
t

fm
m lu

rd
x

w
at

ge
o

m
ea

n
Energy-Delay Product (EDP)

MESH Naïve TM-H TM-HL TM-HLC



 

 ２７ 

is only 3.24% compared to the basis. On the other hand, since TM-HL and TM-HLC 

limit the traffic of the tree network, their execution time is improved by 13.24% and 

13.14%, respectively. In contrast to the result of Subsection 5.2, TM-HL and TM-

HLC do not show much difference. In our opinion, this comes from two reasons. First, 

the S-NUCA distributes L2 cache slices to all over the system. The home node of the 

data, is decided by the address. When appropriate interleaving scheme is used, the 

traffic approaches uniform random traffic, where TM-HL performs almost as well as 

TM-HLC. Second, because in-order cores are used to stress the network, the incurred 

traffic is not very heavy, and it makes TM-HL and TM-HLC operate in a region where 

they show little difference. I expect more difference when they are tested under 

heavier traffic patterns (e.g., by using out-of-order cores). In conclusion, reducing the 

average hop-count alone without managing the two networks harmoniously cannot 

improve the performance much, but with the help of latency and contention 

monitoring schemes, it can be improved significantly. 

Energy-delay product (EDP) is shown in Figure 5.6 to measure the energy 

efficiency of our architecture. EDP of the system using the proposed NoC (TM-HLC) 

is improved by 33.17% compared to the mesh of the same area. The reason why 

energy efficiency is higher than performance improvement in our heterogeneous 

topology is that not only total execution cycles but also average hop-counts are 

reduced. Having lower average hop-count means that a packet goes through less 
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number of routers in the network, and thus energy consumption of each packet having 

hop-count gain is reduced. 
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Chapter 6 

Conclusion 

In this paper, I proposed a heterogeneous topology using a small tree network and 

basic mesh network simultaneously. Distinct advantages such as low zero-load latency 

of tree network and high throughput of mesh network were drawn by our design. To 

achieve this, I devised a novel algorithm using hop-count based injecting algorithm, 

a latency monitoring scheme, and a contention monitoring scheme. By the proposed 

approach, I could achieve both low zero-load latency and high throughput in all kinds 

of traffic patterns. And it was shown that our design could significantly improve the 

energy consumption as well as the performance of the system for real application 

benchmarks. 
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국문 초록 

네트워크-온-칩(NoC) 분야에서, 토폴로지는 성능과 전력 소비를 결정하는 

중요한 설계 요소 중 하나이다. 많은 연구와 제품에 가장 널리 사용되는 NoC 

토폴로지인 메쉬는 빠른 전달 속도보다는 주로 많은 처리량을 얻는 데에 집중된 

구조이다. 그러나, 많은 연구들에 의하면 NoC 가 높은 부하에서 동작하는 일이 

거의 없고 또한 실제로는 지연 시간이 훨씬 더 중요하다는 것이 알려져 있다. 이 

논문에서는 메쉬 네트워크를 기본으로 보조하는 작은 트리 네트워크를 더하여, 

높은 처리량을 유지하면서 zero-load 지연 시간을 획기적으로 줄였다. 또한 

하이브리드 네트워크를 운영하기 위해 홉 수 이득을 기반으로 하는 알고리즘을 

제안하였다. 이 알고리즘에는 트리 네트워크가 혼잡해지는 것을 방지하기 위해 

전송된 패킷의 지연 시간과 라우터 버퍼의 경쟁 상태를 모니터링하는 방법도 

포함되었다. 제안된 구조의 성능을 확인하기 위해 다양한 합성 트래픽 패턴에서 

각각의 방식이 적용되었을 때의 평균 지연 시간을 측정하였고, 실제 

애플리케이션을 수행했을 때의 수행 시간과 에너지 소비도 측정하였다. 실험 

결과 제안한 구조는 지연 시간과 처리량뿐만 아니라 에너지 소비에서도 성능 

향상이 있음을 확인하였다. 

 

주요어 : 네트워크-온-칩, 혼성 네트워크, 토폴로지 

학번 : 2013-20903 
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