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ABSTRACT 

 

Background: The ATP-sensitive potassium (KATP) channel, an inwardly rectifying K+ 

channel that consists of pore-forming Kir6.2 and regulatory sulfonylurea receptor 1 

(SUR1) subunit, in pancreatic β-cells is regarded as a metabolic sensor that couples 

blood glucose level to insulin secretion.  It is generally accepted that closing of KATP 

channels by the increase of intracellular ATP is responsible for membrane depolarization 

in response to high glucose stimulation to pancreatic β-cells. But there is a growing 

body of evidence that the whole cell conductance mediated by KATP channels is 

determined not only by channel open probability but also by the available channel 

numbers. So in this study, I asked whether high glucose can induce the reduction of the 

KATP channel density in the plasma membrane, and if so, whether this endocytosis 

mechanism contributes to glucose-induced depolarization of the β-cell membrane 

potentials.  

 

Methods: INS-1 cells were culture in RPMI media. Resting membrane potentials were 

recorded by perforated patch recording using nystatin. Changes in subcellular 

localization of KATP channels were monitored by immunocytochemistry analysis using 

anti-Kir6.2 antibody. Activation of phospholipase C was monitored by imaging 

translocation of fluorescence signals from the plasma membrane to the cytosol in INS-1 
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cells transfected with GFP-labeled PLCδ-pleckstrin homology domain (PHδ-GFP). 

 

Results: The resting membrane potential of INS-1 cells that were incubated in 0 mM 

glucose for 2 hr was - 64.4 ± 1.5 mV (n = 12). Application of high glucose (17 mM) 

induced gradual depolarization followed by action potential firing within about 5 min. 

Immunocytochemistry analysis showed that Kir6.2 signals were translocated into the 

intracellular compartment by 17 mM glucose. When endocytosis was inhibited by 

dynasore, a dynamin inhibitor, or transfecting cells with dominant-negative mutant of 

dynamin, the high glucose-induced action potential firing was abolished, indicating the 

significant contribution of endocytosis to the cellular response to high glucose.  I 

discovered that 17 mM glucose activated phospholipase C in INS-1 cells, and that PKC 

inhibitor suppressed action potential firing and endocytosis of Kir6.2 induced by 17 mM 

glucose. However, receptor-mediated activation of PKC using carbachol or chemical 

activation of PKC using PMA did not induce action potential firing or endocytosis of 

Kir6.2.  

 

Conclusions: High glucose induces endocytosis of KATP channel into the β-cell cytosol 

compartment and this phenomenon is crucial for depolarization of β-cell membrane. 

Involvement of PKC pathway in high glucose-induced endocytosis is suggested.  
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 INTRODUCTION 
 

The ATP-sensitive potassium (KATP) channel, an inwardly rectifying K+ channel that 

consists of pore-forming Kir6.2 and regulatory sulfonylurea receptor 1 (SUR1) subunit 

(Tucker et al., 1997), is involved in the electrical activity and numerous physiological 

processes including the regulation of insulin secretion and the protection of neuronal 

and cardiovascular cells during periods of metabolic stress (Huopio et al., 2002; Seino 

and Miki, 2003; Ashcroft, 2005) A mechanism underlying these roles is their ability to 

couple the metabolic state (ATP/ADP ratio) of the cell to its membrane potential. This 

ability is conferred by the unique property of KATP channels: they are inhibited by ATP 

and activated by ADP. The role of these channels in the regulation of glucose-stimulated 

insulin secretion has been the subject of intense research (Hupio et al., 2002; Seino and 

Miki, 2003; Dunne et al., 2004; Ashcroft, 2005; Haider et al., 2005).  A rise in blood 

glucose increases metabolism of glucose in pancreatic β-cells, leading to an increase of 

ATP, which triggers a cascade of events: KATP channels close leading to membrane 

depolarization, activation of voltage-dependent Ca2+ channels and influx of Ca2+ into the 

cytosol (Ashcroft and Rosman, 1989). This Ca2+ rise in the β-cell stimulates insulin 

secretion (Grodsky and Bennett, 1966; Milner and Hales, 1967; Dean and Matthews 

1968).                                                               

ATP is well known to induce KATP channel closure by binding to the pore-forming 

subunit Kir6.2, whereas ADP binding reduces the ATP sensitivity of channel inhibition 
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to cause an increase in KATP channel opening (Tucker et al., 1997). This energy-

dependent regulation of KATP channel has been regarded to be sufficient to explain the 

contribution of KATP channels to the glucose-dependent regulation of the β-cells 

membrane potentials (Tarasov et al., 2006). But there is a growing body of evidence 

that the currents though KATP channels are determined not only by the open probability 

of the channels but also by the number of available channels on the plasma membrane. 

Recently, trafficking of KATP channels to the plasma membrane was highlighted as 

another important mechanism for regulating KATP channel activity. It was shown that a 

PKC activator facilitated endocytic trafficking of KATP channels, resulting in decreased 

KATP currents (Hu et al., 2003), whereas glucose deprivation state regulates KATP 

channel trafficking to the plasma membrane via AMP-activated protein kinase (AMPK) 

in pancreatic β-cells (Lim et al., 2009). More recently, leptin was shown to activate 

AMPK signaling in β-cell to promote membrane trafficking of KATP channels and 

induce membrane hyperpolarization (Park et al., 2013). They provide strong evidence 

supporting that the β-cell membrane potential is strongly dependent on phosphorylated 

AMPK level which is determined not only by glucose concentrations but also by 

metabolic hormones such as leptin. Taken all together, I can conjecture that not only the 

modulation of KATP channel trafficking to the plasma membrane but also the 

endocytosis may play some pivotal roles in the regulation of β-cell excitability.  

Although some of the key molecular are found, the involvement of energy-dependent 



 

 ３ 

signaling mechanisms in the regulation of KATP channels has not been fully studied. In 

the mechanism of insulin secretion, as has been noted earlier, it is generally known that 

the secretion of insulin in response to glucose from the β-cells results from 

depolarization of the cell membrane by closing KATP channel with ATP (Boyd 3rd, 1988; 

Ashcroft and Rorsman, 1989). In this scheme, regulation of the open probability of the 

KATP channel by intracellular ATP is only taken into account, but the possibility of the 

changes in surface channel number by glucose has not been considered. So, what I try to 

do in this paper is to elucidate whether high glucose can induce the reduction of the 

KATP channel density in the plasma membrane, and if so, whether this endocytosis 

mechanism contributes to glucose-induced depolarization of the β-cell membrane 

potentials. Additionally, I tried to identify signaling mechanism activated by high 

glucose to induce endocytosis of KATP channels. 
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Materials and Methods 
 

INS-1 cells culture  

INS-1 cells, the pancreatic β-cells, were cultured (passage 10-50) in RPMI 1640 

medium (Sigma) containing 11.1 mmol/l D-glucose supplemented with 10% heat-

inactivated FBS, 10 mmol/l HEPES, 100 unit/ml penicillin, 100 mg/ml streptomycin, 1 

mmol/l sodium pyruvate, and 50 µmol/l β-mercaptoethanol at 37˚C in a humidified 

incubator containing 5% CO. Cells were grown in 12-well plates for electrophysiology 

and on 12 -mm poly-L-lysine-coated coverslips for immunocytochemistry.  

                            

Electrophysiology  

Resting membrane potential (RMP) was measured at room temperature using a 

standard perforated patch clamp technique with an EPC-8 amplifier and Pulse software 

(version 8.67; Heka Electronik) and analyzed using IGOR software. During recordings, 

the holding membrane potential was −70 mV and all RMP data was obtained in current 

clamp mode. Patch electrodes were pulled from borosilicate glass capillaries to make 

the resistance range between 3 and 5 MΩ when filled with the pipette solution. The 

internal solution contained the following (in millimolars): 30 KCl, 110 K-aspartate, 2.6 

CaCl2, 10 HEPES (pH 7.2 with KOH), 0.5 EGTA, 5 EDTA and 200 μM Nystatin is 

specially added for perforated patch recordings. The bath solution (Normal Tyrode’s 

solution) was composed of the following (in millimolars): 150 NaCl, 5 KCl, 10 Hepes 
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(pH 7.4 with NaOH), 0.5 MgCl2, and 1.8 CaCl2. The glucose concentration during 

incubations and experiments was 0 mM (glucose deprivation) or 17 mM (high glucose 

condition).  

 

Drug treatment  

Dynasore, tolbutamide, carbamoylcholin chloride (carbachol) and rapamycin were 

purchased from Sigma, and GF-109203X and bisindolylmaleimide V (inactive analogue 

of GF-109203X) were purchased from Santa Cruz Biotechnology. Phobol-12-myristate-

13-acetate (PMA) and compound C were each purchased from Abcam and Calbiochem. 

And BAPTA-AM was purchased from Invitrogen.  

Dynasore, tolbutamide and BAPTA-AM were made up as a 100 mM stock solution, 

and PMA, compound C and rapamycin were made up as a 20 mM stock solution, and 

GF-109203X, bisindolylmaleimide V, and carbacol were made up as a 10mM stock 

solution. All drugs were dissolved in DMSO and stored at -20 ˚C. 

25 μM dynasore, 5 μM GF-109203X, 5 μM bisindolylmaleimide V, 100 μM BAPTA-

AM, 20 μM PMA and 20 μM rapamycin were treated before and during RMP 

recordings. 20 μM carbacol, and 20 μM compound C were treated during experiments 

and 100 μM tolbutamide was finally perfused during recordings. Cells were treated with 

DMSO (0.1 %) as a control. These drugs were diluted in either RPMI for 

immunocytochemistry or extracellular solution (NT solution) for patch clamp 

http://www.google.co.kr/url?url=http://www.allacronyms.com/_medical/PMA/phobol-12-myristate-13-acetate&rct=j&frm=1&q=&esrc=s&sa=U&ei=8YZwVLeyKMLAmwWnuYDIDg&ved=0CB8QFjAC&usg=AFQjCNFoC4rDvfvGU6Dl4XMPqBKTJCffRQ
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recordings. Unless otherwise stated, INS-1 cells were pretreated with these drugs for 30 

min prior to or throughout experimentations.  

 

DNA transfection  

After plating onto 12mm coverslips at a density of 1.5 × 10⁵ cells/ml, INS-1 cells 

were transiently transfected with 2 µg of plasmid DNA; DYN1-K44A (a dominant-

negative mutant of dynamin-1, which was created by replacing the lysine residue with 

alanine at the amino acid position 44, cloned into pEGFP-C1), DYN1-WT (wild-type 

dynamin-1 cloned into pEGFP-C1), and GFP-PLCδ-PH (Pleckstrin homology) domain 

fusion DNA with Lipofectamine 2000 (Invitrogen) in the ratio DNA: Lipofectamine® 

2000 1 : 2.5 (according to the manufacturer’s protocol) and further cultured for 48 hours. 

And GFP was used as indicator for screening. 

 

Immunocytochemistry  

For Immunofluorescence experiments, INS-1 cells were fixed with 4% 

paraformaldehyde in PBS for 15min. and next, for KATP channel staining, cells were 

permeabilized with 0.25% Triton X-100 in PBS for 10min, blocked with 2% donkey 

serum in PBS for 30min at room temperature, and incubated with rabbit anti-Kir6.2 (1 : 

50, Santa Cruz Biotechnology) antibodies overnight at 4˚C. As the secondary antibody, 

donkey anti-rabbit Alexa 488 was used. Finally, confocal images were obtained using a 
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Fluo View-1000 confocal microscope (Olympus). 
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Results 
 

High glucose induces membrane depolarization and endocytosis of KATP channels 

According to the previous studies, the surface levels of KATP channels increase in 

pancreatic β-cells under fasting conditions in vitro (Lim et al., 2009). In the present 

study, I have focused on the reduction of surface KATP channel number by 17 mM high 

glucose and aimed to elucidate whether this endocytic process contributes to glucose-

induced depolarization. 

Firstly, resting membrane potential (RMP) was measured in INS-1 cells after glucose 

deprivation treatment (GD) for 2 h using the perforated patch clamp recording. Under 

this condition, resting membrane potential (RMP) was mean - 64.4 ± 1.5 mV (n = 12), 

which is similar to what was reported in the previous study (Park et al., 2012). 

When 17 mM glucose solution was perfused, RMP began to depolarize after 1-3 min. 

Depolarization is preceded gradually and finally reached the threshold of action 

potential (AP) after 3 - 5 min in 17 mM glucose (Fig. 1A). Action potential threshold 

was - 38.0 ± 1.2 mV (n = 9) and repetitive AP firing lasted for several minutes of 

recording period in 13 among 17 cells.  

Next immunocytochemistry experiment was performed using specific antibody 

against Kir6.2 to compare the distribution of KATP channels in the INS-1 cells (Fig. 1B). 

In GD-treated cell, a distinctive staining pattern representing the translocation of the 

KATP channels toward the cell periphery was observed, which is also similar to what was 
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reported in the previous study (Lim et al., 2009). In 17 mM glucose solution treatment 

(5 min, 20 min), however, Kir6.2 was localized mostly to intracellular compartments 

and uniformly distributed throughout the cytoplasm of cells. Each image was also 

analyzed by using line scan analysis (along a line drawn across the cell membrane) (Fig. 

1B, bottom) and these results were statistically tabulated in Figure 1 B right (GD 49. 

64 %, n = 6; 17 mM 5 min, 10.71 %, n = 7).  

RMP data (hyperpolarization) and immunocytochemistry data (surface trafficking) 

were reproduced in GD state following previous studies (Lim et al., 2009; Park et al., 

2012) and it was observed that KATP channels anchored near the plasma membrane in 

GD condition could be translocated to cytosol compartments by 17 mM high glucose 

with RMP depolarization. 

 

Dynamin inhibition suppresses high glucose-induced depolarization of INS-1 cell 

membrane and endocytosis 

Next I tested the functional significance of the endocytosis-dependent modulation of 

KATP channels. Previous studies have reported that KATP channel endocytosis is 

dependent on the large GTPase dynamin (Hu et al., 2003). I first examined if dynamin 

is involved in 17mM glucose-induced membrane depolarization. After pretreatment 

with dynasore (inhibitor of the GTPase dynamin, 25 μM) for 30 min at GD state (-65.7 

± 0.9 mV, n = 8), subsequent perfusion with 17mM glucose elicited diminished 
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membrane depolarization (-57.4 ± 1.6 mV, n = 8) and failed to generate action potential 

as compared with in the absence of dynasore, which was reversed by tolbutamide 

(selective KATP channel blocker, 100 μM) (Fig. 2A and C).   

I next conducted RMP recordings after 60 minutes long incubations in dynasore and 

17 mM glucose together. It was to inspect solely KATP channel’s closing effect on RMP 

change only by increase of ATP/ADP ratio, assuming that dynasore completely get rid 

of the possibility of KATP channel’s endocytosis. And 60 minutes after incubation in 

dynasore and 17 mM glucose, then I observed that there were still no glucose responses. 

RMP was a mean value of -53.9 ± 1.9 mV (n = 4) (Fig. 2B). 

Previous studies have reported that a form of dynamin-1 containing a lysine to 

alanine mutation at position 44 in the GTPase domain, DYN1-K44A, showed dominant-

negative inhibition of endocytosis (Lee et al., 1999). I also tested whether dynamin 

affects glucose-induced depolarization using a dominant-negative mutant of dynamin-1 

(DYN1-K44A) (Fig. 3). The cells expressing DYN1-K44A showed no response to 17 

mM glucose and stably maintained hyperpolarization state (Fig. 3B and C, - 60.1 ± 1.6 

mV, n = 5) compared to the cell expressing wild-type dynamin-1, DYN1-WT which 

showed that the 17 mM glucose response normally occurred and action potential 

threshold was - 40.0 ± 0.8 mV (n = 4) and repetitive AP firing lasted for several minutes 

of recording (Fig. 3A and C). Although a slight variation exists, the inhibition effects of 

dynasore and dynamin-mutant were same results. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10074457
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I also tested the KATP channel distribution pattern at the same conditions by 

immunocytochemistry. Kir6.2 remained still near the cell periphery when cell were 

pretreated with dynasore or co-pretreated with dynasore and tolbutamide (Fig. 2D). 

There were no statistical differences in the ratio of surface to total Kir6.2 signal 

obtained from the line scan data between these two groups. (Fig. 2E, 17 mM + dynasore, 

40.62 %, n=4; 17 mM+ dynasore + tolbutamide, 37.49 %, n=5). Compared with Fig. 1B 

right, although there occured small reduction in the ratio of surface to total Kir6.2, it is 

fairly clear that dynasore inhibit endocytosis of KATP channel. 

These all results indicated that endocytosis of the KATP channel by 17 mM glucose 

was suppressed by dynamin inhibition, and subsequently suppressed RMP 

depolarization of the cell membrane. It means that endocytosis of the KATP Channel 

induced by high glucose is a dynamin-dependent process and is significant in glucose-

induced insulin secretion pathway and also gives a good clue that controlling 

endocytosis of the KATP channel is essential in cellular energy metabolism. 

 

Effects of rapamycin and compound c on resting membrane potential in INS-1 

cells  

It is well known that glucose metabolism affects most major signal pathways in 

pancreatic β-cells (Matschinsky FM, 1990); especially mTOR is participating in many 

vital signals in molecular pathway and recently known as nutrient sensing functions in 

http://diabetes.diabetesjournals.org/search?author1=Franz+M+Matschinsky&sortspec=date&submit=Submit
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pancreatic β-cells with AMPK (Gleason et al., 2007).  

To evaluate the possible association of these proteins in KATP channel regulation, 

RMP recordings were conducted with rapamycin (mTOR inhibitor, 20 μM). Rapamycin 

treatment had no suppression effects in 17 mM glucose (n = 6). AP threshold was - 43.0 

± 1.1 mV and followed by repetitive AP firings (Fig. 4A). 

From the beginning experiments, AMPK signaling was very important because 

AMPK is originally known for the key enzyme regulating energy homeostasis with 

insulin dynamics (Hardie et al., 2003; Hardie., 2007). Especially GD-induced 

hyperpolarization state was very meaningful because it has been reported that RMP 

hyperpolarization by GD is induced by AMPK (AMP-activated protein kinase) 

activation and when AMPK is activated, KATP channel is translocated to the cell surface 

(Lim et al., 2009; Park et al., 2012) and recently it was also known that leptin induced 

signaling promotes KATP channel trafficking via AMPK signaling in pancreatic β-cell, 

suggesting that it is enough to make pancreatic β-cell membrane hyperpolarize only by 

AMPK activation, regardless of glucose concentration (Park et al., 2012).  

So in AMPK activated state (GD), compound C (AMPK inhibition, 20 μM) was 

perfused to INS-1 cells and conducted RMP recordings to inspect only AMPK 

inhibition effect on RMP change except ATP/ADP ratio effects (Fig. 4B). Then RMP 

began to increase slowly and also showed small RMP oscillations. After 10 min, the 

mean value of RMP was reached up to - 50.9 ± 1.1 mV (n = 5).  

http://www.ncbi.nlm.nih.gov/pubmed?term=Gleason%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=17287212
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PKC is involved in high glucose-induced membrane depolarization and 

endocytosis 

It was reported that PKC activation facilitates endocytic trafficking of KATP channels, 

resulting in decreased KATP currents (Hu K et al., 2003) and also well known that 

glucose metabolism activates most multiple protein kinases, including protein kinase C 

(PKC) with various signal pathways in pancreatic β-cells (Tian et al., 1989; Warwar et 

al., 2006).  

To investigate whether PKC mediates 17 mM glucose-induced membrane 

depolarization, I pretreated cells with GF-109203X (inhibitor of PKC, 5 μM) or its 

inactive analogue, bisindolylmaleimide V (5 μM) for 5 min prior to perfusion with 17 

mM glucose solution. In GF-109203X-pretreated cells, membrane depolarization 

induced by 17 mM glucose was not observed (Fig. 5 A and D, GF-109203X + 17 mM, - 

61.8 ± 1.9 mV, n = 6), while bisindolylmaleimide V did not suppress RMP 

depolarization and repetitive AP generation induced by 17 mM glucose (Fig. 5B and D, 

bisindolylmaleimide V + 17 mM AP threshold - 42.0 ± 1.0 mV, n = 5). These results 

indicate that PKC is strongly associated with KATP channel endocytosis induced by high 

glucose. 

Additionally, it is known that pancreatic islet cells contain at least six PKC 

isoenzymes, (Knutson et al., 1994) and their roles in glucose-dependent response are 

http://www.ncbi.nlm.nih.gov/pubmed?term=Warwar%20N%5BAuthor%5D&cauthor=true&cauthor_uid=16505220
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not fully defined yet. Among the PKC isoenzymes, there are calcium- independents 

isozymes (PKC-delta, -epsilon, and -eta) and calcium-dependents isozymes (PKC-alpha, 

-beta, and -gamma) (Yang et al., 2003).  

So next, I conducted RMP recordings in cells pretreated with BAPTA-AM, cell-

permeant calcium chelator (100 μM, 30 min) to find the specific PKC functional groups 

related with high glucose response. There were no high glucose responses with a mean 

value of - 60.1 ± 1.9 mV in BAPTA-AM- pretreated cells (Fig. 5C and D, n=4). It 

suggests that PKC isozymes in membrane depolarization induced by high glucose are 

modulated by calcium-dependent pathway. 

Next I also conducted immunocytochemistry experiments and line scanning analysis 

(Fig. 5E). Kir6.2 was localized in the inner cell compartment in INS-1 cells exposed in 

17 mM glucose in the inactive analogue pretreatment, but still located to the cell surface 

compartment when cells were exposed in 17 mM glucose in GF-109203X (GF + 17 

mM glucose 48.79 %, n = 6; inactive analogue + 17 mM glucose 12.54 %, n = 5 ) (Fig. 

5F).  

These findings suggested that PKC is involved in KATP channel internalization by 

high glucose response and also suggested that PKC is related in allowing pancreatic 

beta cell’s membrane to depolarize sufficiently with KATP channel endocytosis in 

dynamin-dependent way in high glucose exposure condition such as at postprandial 

glucose level. Finally, these results are well suited to previous study that KATP channel’s 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=12652652
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endocytic trafficking is regulated by PKC activation (Hu K et al, 2003).  

  

PLC activation is induced by high Glucose 

Acetylcholine receptor stimulation by carbamoylcholin chloride (carbachol, 

cholinergic agonist) activates PLC and produces two second messengers, DAG and 

inositol (1,4,5) triphosphate (IP3). And PKC is also activated with them (Chen NG et 

al., 1997; Min et al., 2000). As I have seen, a plausible mechanism for the observed 

reduction in surface KATP channel is through PKC activation.  

So next, to investigate whether high glucose induces PLC activation in INS-1 cells, I 

used green fluorescent protein (GFP)-labeled PLCδ pleckstrin homology domain (PHδ-

GFP) constructs to visualize PLC activation (Gamper et al., 2004; Horowitz et al., 

2005). The PH domain of PLCδ associates with specific phosphoinositides (such as 

Phosphatidylinositol (3,4,5)- trisphosphate and phosphatidylinositol (4,5)-bisphosphate) 

at the inner surface of the plasma membrane in resting cells, and when the PLC is 

stimulated, PIP2 hydrolysis by PLC causes PHδ-GFP to translocate from the plasma 

membrane to the cytosol causing an intracellular redistribution of fluorescence intensity, 

because its affinity is approximately 10 times higher for inositol (1,4,5) triphosphate 

(IP3) than for phosphatidylinositol (4,5)-bisphosphate (PIP2) (Varnai and Balla, 1998). 

I perfused 17 mM high glucose to INS-1 cells in glucose deprivation state and 

performed the experimental analysis by live cell imaging with GFP (Fig. 6 A) and also 

http://en.wikipedia.org/wiki/Acetylcholine_receptor
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20NG%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Min%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=10854271
http://en.wikipedia.org/wiki/Phosphatidylinositol_(3,4,5)-trisphosphate
http://en.wikipedia.org/wiki/Phosphatidylinositol_(4,5)-bisphosphate
http://en.wikipedia.org/wiki/Phosphatidylinositol_(4,5)-bisphosphate
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conducted same experiments to other INS-1 cells with carbachol (muscarinic receptor 

agonist, 20 μM ) (Fig. 6B). 

In the live cell imaging with 17 mM glucose, although the change was not shown 

dramatically, the surface fluorescence slightly decreased and diffused into cytosol 

compartment. This intensity change can be verified more clearly by the cytosol 

scanning analysis (red spot) (Fig. 6A, right). GFP was increased rapidly and slowly 

passed away (wash out) and in carbachol experiment, I also got almost same results (Fig. 

6B, right). It suggests that PLC is sufficiently activated by high glucose in INS-1 cells.  

 

Effects of carbachol and PMA on resting membrane potential in INS-1 cells  

Based on previous result that high glucose can induces PLC activation, I next 

conducted the RMP recordings in carbachol to verify whether carbachol alone induces 

KATP channel endocytosis and membrane depolarization in INS-1 cells. I observed that 

there were no glucose response at all in RMP recordings with carbachol alone (n = 6) 

(Fig. 7A) but when 17 mM glucose is added, RMP started to increase and finally AP 

was fired (AP threshold was - 43.0 ± 1.4 mV, n = 4) (Fig. 7B). It means that carbachol 

alone cannot induce endocytosis of KATP channels and the inhibition effect of KATP 

channel is not directly involved with PLC activation pathway. As a result, carbachol 

cannot simulate glucose-like response by itself in INS-1 cells.  

If so, I need to verify PKC activation alone induce KATP channel endocytosis and 
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membrane depolarization in INS-1 cells. So I infused PMA (PKC activator, 20 μM) to 

INS-1 cells to activate PKC directly (Fig. 7C). RMP slowly increased up to mean value 

of 52.1 ± 1.4 mV (n = 4), but there was no AP firing. When tolbutamide (selective 

KATP channel blocker) was added to directly block KATP channel, action potential firing 

was initiated. All these RMP records are arranged in Figure 7D. 

I then examined whether PKC activation by carbachol or PMA induces endocytosis 

of KATP channels, and found that Kir6.2 was still localized to the cell surface in 

carbachol and in PMA. Failure of inducing endocytosis by carbchol was well suited to 

RMP recording data. In contrast,PMA failed to induce endocytosis, but induced a 

significant depolarization (Fig. 7E). So I speculated that PMA may directly inhibit KATP 

channel currents, as was shown in the previous study (Bonev et al., 1996). 

 

Activators of protein 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bonev%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=8894979
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Figure. 1. High glucose induces membrane depolarization and endocytosis of KATP 

channels. (A) Perforated patch clamp was used to assess resting membrane potentials 

(RMPs). After 2 h glucose deprivation pretreatment (GD), 17 mM glucose solution was 

perfused in INS-1 cells (WT) (n = 9) (B) Immunofluorescence analysis using antibody 

against Kir6.2 in the glucose deprivation state (GD) and perfused in 17 mM glucose for 

5 min, 20 min (scale bar = 5 µm). The red graph shows line scanning analysis along a 

line drawn across the cell membrane. These mean data are analyzed in the bar graph 

(right). (GD 49. 64 %, n = 6; 17 mM glucose 5 min, 10.71 %, n = 7) ***P < 0.005. 
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Figure. 2. Dynasore suppresses high glucose-induced depolarization and 

endocytosis of KATP channels in INS-1 cells. (A) RMP was recorded from INS-1 cells 

(WT) with dynasore (inhibitor of the GTPase dynamin) pretreatment for 30 min right 

after glucose deprivation (GD) state and perfused 17 mM glucose. Tolbutamide 

(selective KATP channel blocker) was finally perfused (n = 8). (B) RMP recordings of 60 

min after incubation dynasore with 17 mM glucose (n = 4) and these RMP results are 

statistically arranged in (C). (D) KATP channel (Kir6.2) distribution pattern in 

immunocytochemistry at the same conditions in INS-1 cells (scale bar = 5 µm) their 

mean data (line scan) are analyzed in the bar graph (Fig. 2E, 17 mM glucose + dynasore, 

40.62 %, n=4; 17 mM glucose + dynasore + tolbutamide, 37.49 %, n=5) n.s= not 

significant.  
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Figure. 3. Dynamin-mutation suppresses high glucose-induced depolarization of 

INS-1 cells. (A) RMP was recorded from INS-1 cells expressing dynamin1-WT 

(DYN1-WT) (n = 4). (B) Same recording was repeated from INS-1 cells expressing 

dynamin1-mutation (DYN1- K44A) in 17 mM glucose solution (n = 5). And these RMP 

recording data are arranged in (C). 
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Figure. 4. Effects of rapamycin and compound C on resting membrane potential in 

INS-1 cells. (A) In glucose deprivation (GD) state, RMP was recorded with 17 mM 

glucose in rapamycin pretreat (mTOR inhibitor) (n = 6). (B) Compound C (AMPK 

inhibition) was perfused to see how RMP changes in RMP hyperpolarization state (n = 

5). 
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Figure. 5. PKC is involved in high glucose-induced membrane depolarization and 

endocytosis. (A) GF-109203X (PKC inhibitor) was pretreated for 5 min in glucose 

deprivation (GD) state, and 17 mM glucose solution was infused to INS-1 cells (n = 7). 

(B) Same recording was reproduced in Bisindolylmaleimide - V (BIM V) (inactive 

analogue of GF-109203X) (n = 4). (C) After BAPTA-AM pretreatment (30 min), 17 

mM glucose-induced RMP recording was conducted. (E) Immunocytochemistry 

analysis was also conducted in each condition (scale bar = 5 µm). All results (RMP, line 

scan analysis) are statistically arranged in (D, F). (GF-109203X + 17 mM glucose 

48.79 %, n = 6; BIM V + 17 mM glucose 12.54 %, n = 5) ***P < 0.005. 
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Figure. 6. PLC activation is induced by high glucose. Live cell imaging with GFP 

variation in GFP-PLCδ-PH domain expression cell. When PLC pathway is stimulated, 

redistribution of fluorescence intensity was seen in intracellular compartment 

translocating from the plasma membrane into the cytoplasm by the difference of affinity. 

(A) The effect of 17 mM high glucose is analyzed in cytosol compartment of INS-1 cell 

(red spot) through GFP translocation. (B) Same experiments with carbachol (CCh) were 

conducted and its cytosolic compartment variation is also analyzed in right (green). 
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Figure 7. Effects of carbachol and PMA on resting membrane potential in INS-1 

cells. (A) RMP recordings in INS-1 cells with carbachol (CCh) alone (n = 6) (B) In 

carbachol pretreatment, 17 mM glucose was perfused together (n = 3). (C) PMA (PKC 

activator) and tolbutamide (selective KATP channel blocker) were used in RMP 

recordings to reproduce high glucose condition and all RMP results are arranged in (D).  

(E) Immunocytochemistry image shows KATP channel distributions in CCh and PMA 

treatment (5 min). 

 

 



 

 ２５ 

 

 

Figure 8. Schematic diagram for the signaling pathway involved in high glucose-

induced KATP channel endocytosis. High glucose-induced KATP channel endocytosis is 

regulated in PKC induced down-regulation pathway. KATP channel regulation by 

endocytic trafficking and channel closing associates with membrane depolarization and 

insulin secretion in pancreatic β-cells. 
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DISCUSSION 
 

The KATP channel couples blood glucose level to insulin secretion in pancreatic β-

cells, which is attributable to its property to be activated at low glucose levels and 

inhibited at high glucose levels. It has been generally accepted that the change in 

intracellular ATP concentrations in response to glucose concentrations is responsible for 

activating or inhibiting KATP currents (Tarasov et al., 2006). However, recent studies 

have shown that KATP channel activation in response to glucose deprivation and leptin 

shares the same mechanism, which is the activation of AMPK, and that the membrane 

potential of β-cells is closely related with pAMPK level, rather than glucose level itself 

(Lim et al., 2009: Park et al., 2013). Furthermore, they showed that the main action of 

AMPK is to promote KATP channel trafficking to the plasma membrane, arguing against 

the current concept about the mechanism of how KATP channel acts as a metabolic 

sensor. They showed that the increase in KATP channel density is a key mechanism for 

activating KATP currents at low glucose levels, but in pancreatic β-cells, the mechanism 

of KATP current inhibition at high glucose levels would be more important. Therefore, 

the first question I asked in this thesis is the contribution of the decrease in channel 

density by endocytosis to the inhibition of KATP currents in response to high glucose 

stimulation in pancreatic β-cells. The results that high glucose-induced depolarization is 

inhibited by dymanin inhibition indicate that the reduction of channel density by 

endocytosis is crucial for reduction of KATP currents that leads to membrane 
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depolarization (Fig. 2). The observation that 1 hr incubation in 17G in the presence of 

dynasore does not induce further depolarization (Fig. 2C) strongly suggests that channel 

blockade by the increase in intracellular ATP concentrations in high glucose conditions 

does not sufficiently reduce KATP currents when the surface channel density remains 

unchanged. However, my study does not entirely exclude the possibility that the 

increase in intracellular ATP concentrations in response to high glucose stimulation also 

contributes to the reduction of KATP currents. In order to investigate this issue, 

quantitative analysis of intracellular ATP concentration changes in response to high 

glucose stimulation will be required. 

The second question I asked was the signaling mechanism of how high glucose 

facilitates KATP channel endocytosis. Considering that the surface density of a 

membrane protein is determined by the balance between the rate of forward trafficking 

and the rate of endocytosis, and that AMPK signaling promotes KATP channel trafficking 

to the plasma membrane (Lim et al., 2009; Park et al., 2013), inhibition of AMPK at 

high glucose stimulation may result in the increase in surface channel density. To test 

this possibility, I conducted RMP recordings with compound C, AMPK inhibitor, and I 

observed that AMPK inhibition alone does not induce membrane depolarization in a 

short time (Fig. 4B), suggesting that AMPK inhibition is not enough but high glucose 

may activate another signal pathway to facilitate endocytosis of KATP channels rapidly. 

As a possibility, I first examined mTOR signaling, but mTOR inhibitor rapamycin did 
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not affect β-cell response to high glucose (Fig. 4A). I then tested the involvement of 

PKC in high glucose-induced endocytosis of KATP channels. 

As I mentioned earlier, roles of PKC in the regulation of KATP currents have been 

intensively investigated, but results are rather complicated. Acute application of PMA, a 

PKC activator, was shown to increase KATP currents by increasing the open probability 

of the channels by decreasing ATP sensitivity (Light et al., 2000), whereas prolonged 

incubation in PMA induces decrease in KATP current by promoting channel endocytosis 

(Hu K et al, 2003; Aziz et al., 2011). Inhibition of KATP currents by acute application of 

PMA was also reported, but it was observed in vascular smooth muscles (Bonev and 

Nelson, 1996). My results indicated that the PKC plays crucial roles in promoting 

endocytosis of KATP channels and depolarization in response to high glucose stimulation. 

In spite that the involvement of PKC in KATP channel endocytosis was reported in 

previous studies using ventricular myocytes or heterologous expression systems (Hu K 

et al, 2003; Aziz et al., 2011), PMA or carbachol does not induce endocytosis of 

endogenous KATP channels or depolarization in INS-1 cells at least within 1 hr (Fig. 7). I 

do not have a clear idea to explain the specific nature of PKC signaling activated by 

high glucose. Considering the diversity of PKC isoforms, high glucose may possibly 

activate a specific isoform of PKC in β-cells, which is distinguished from PKC isoforms 

activated by carbachol or PMA. Such possibility needs to be investigated in future 

studies.  



 

 ２９ 

 

Actually, while I asked which signaling pathway is involved in high glucose-induced 

endocytic trafficking of KATP channels in INS-1 cells, I firstly examined PLC inhibitor 

(U73122). But U73122 depolarized RMP by itself before applying high glucose 

solutions. Thus, I could not investigate effect of PLC inhibition on high glucose-induced 

depolarization anymore. Based on the previous report that U73122 inhibits 

acetylcholine-activate K+ currents by inhibiting PIP2-channel interaction independently 

of PLC inhibiting effects (Cho et al., 2001), and that KATP channels are also PIP2-

dependent channels, it is likely that U73122 inhibits KATP channels by the same 

mechanism. However, this possibility needs to be investigated in future studies.  

My study contradicts to the previous report showing that 17 mM glucose recruits the 

KATP channels to the plasma membrane and increase KATP currents in a Ca2+ and PKA-

dependent manner (Yang et al, 2007). It is well known that β-cells, when subjected to 

initial glucose stimulation long enough to lead second-phase insulin secretion, release 

more insulin when re-exposed to glucose. Such glucose sensitization is referred to as ‘β-

cell memory’ to glucose stimulation (Grill et al., 1978; Grodsky, 1972; Nesher and 

Cerasi, 2002; Straub and Sharp, 2002; Zawalich and Zawalich, 1996). So, Yang et al 

(2007) proposed that  recruitment of KATP channels by high glucose may increase the 

β-cell responsiveness to next glucose stimulation and thereby contribute to ‘β-cell 

memory’ (Nesher et al, 1989). Since treatment time in 17G in their experiments was 1 

http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib14
http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib15
http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib30
http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib30
http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib38
http://www.sciencedirect.com/science/article/pii/S1550413107002240#bib45
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hr, I wondered whether long-term effect was different from the acute effect of high 

glucose stimulation. So, I increased exposure time in 17G from 5 min to 1 h and 

performed immunocytochemistry after cell fixation. But I didn’t see the clear recruit 

phenomenon on the surface even after 1 hr treatment with 17G (data no shown). At this 

moment, I do not have a clue to explain the discrepancy between two studies.  

In addition, I investigated the involvement of cytoskeletons and microtubules in the 

endocytosis of KATP channels. I observed that pretreatment of INS-1 cells with taxol 

(microtubule stabilizer) and phalloidin (microfilament stabilizer) inhibited high glucose-

induced depolarization (data not shown), but I could not confirm whether these 

compounds indeed inhibit KATP channel endocytosis. It requires more detailed 

examination. 

I also tested whether released insulin particles cause endogenous KATP channel 

regulation and P2Y1 receptor is involved in PKC-mediated 17 mM glucose response, as 

was previously suggested (Wuttke et al, 2013). To this end, I conducted the RMP 

recording with MRS 2179 (P2Y1 receptor blocker) pretreatment in INS-1 cell, and I 

could not find special association with P2Y1 receptor in 17 mM glucose response (data 

not shown).  

Taken together, my study reveals that the glucose-stimulated depolarization of β-cell 

membrane potential, which is an initial step of glucose-stimulated insulin secretion, is 

driven by endocytosis of KATP channels. Contribution of channel inhibition by 

intracellular ATP to the glucose-stimulated depolarization needs to be re-evaluated. 
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Molecular mechanisms underlying glucose-stimulated endocytosis of KATP channels are 

not fully elucidated, but the involvement of PKC is suggested. To further explore the 

mechanism for PKC-induced channel endocytosis and its regulation, intensive 

experiments will be required to demonstrate directly the contribution of this mechanism 

to β-cell function in physiological and pathological contexts. Possibly, dysregulation of 

PKC pathway may alter endocytic trafficking of KATP channels to cause dysregulation 

of insulin secretion. I think my study lays the foundation for future work on KATP 

channel regulation in pancreatic β-cells.  
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ABSTRACT in KOREAN 
 

췌장베타 세포에 있는 ATP 민감성 포타슘 (KATP channel) 이온 통로는 인슐

린 분비 조절을 비롯하여 포도당과 에너지 공급 등 대사 과정의 중추적인 

역할을 맡고 있다. 나는 이번 연구에서 세포 굶김 상태 (glucose deprivation) 

가 AMP 활성단백질 인산화 효소 (AMPK)를 통해 췌장세포막을 과분극 

(hyperpolarization) 상태로 만들며 ATP 민감성 포타슘 이온통로들이 세포막에 

모이도록 한다는 사실을 재현하였고, 이 상태를 나의 실험 초기 조건으로 삼

아 연구를 진행하였다. 그리고 고농도의 포도당 (17 mM) 이 유입되면 이전까

지 알려진 바와는 달리 ATP 민감성 포타슘 이온통로의 채널 막힘 현상이 아

닌, 세포 내부로 이동하는 현상이 포도당 유도성 인슐린 분비현상 (GSIS – 

glucose stimulate insulin secretion) 에 더욱 중요하게 작용한다는 새로운 사실을 

발견하였다. 이 이온통로의 억제현상은 세포막의 탈분극 (depolarization) 을 

유도, 일련의 과정들을 거쳐 인슐린 분비가 일어나게 되는데 이는 포유류 생

체내의 에너지 대사에 매우 중요한 역할을 한다. 

나는 고농도의 포도당을 신호로, ATP 민감성 포타슘 이온통로가 세포막 함

입과정 (endocytosis) 을 거쳐 세포 내부로 들어오는 데에 다이나민 (dynamin)

단백질이 관여하고 있다는 사실을 알게 되었고 무엇보다도 이 세포막 함입

과정에 PKC (Protein Kinase C) 가 핵심 역할을 담당하고 있음을 증명하였다.   

그리고 포도당 유래 ATP 유도성 채널억제현상과 채널의 세포 내 합임현상 

두 가지 가능성을 함께 염두 해두고 관련 실험들을 계속 진행하였다.  
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중심 단어: ATP 민감성 포타슘 이온통로 (KATP channel), 췌장베타세포, AMP 활성 단

백질 인산화 효소 (AMPK), 포도당 (glucose), 탈분극 (depolarization), 과분극 

(hyperpolarization), 세포막 함입과정 (endocytosis), 세포 굶김 (glucose deprivation), 

다이나민 (dynamin), PKC (protein kinase C), 세포골격 (cytoskeleton) 
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