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Abstract      

 

Artificial neural networks (ANNs) have become a popular tool as the efficient 

model for prediction and forecast in various areas. Despite a great number of 

application in numerous researches, ANNs are hardly recognized as a generalized 

tool because of its characteristics. The back propagation (BP) algorithm helps to 

find the optimal values of the weights and biases of the neural networks that 

correspond to the minimum value of a performance function usually defined as the 

root-mean squared error between output variable and target variable. However, the 

BP is based on the gradient descent method which can give the local minimum 

value of a specified function and which is sensitive to the initial values of the 

weights and biases. To search for the global minimum of the performance function, 

the Monte-Carlo simulation generating a number of ANNs having different initial 

weights and biases has been suggested to search the global minimum of the 

performance function. However, it is not efficient and it takes a long time.  

In this study, an ANN model is developed to predict the stability number of 

breakwater armor stones based on the experimental data reported by Van der Meer 

in 1988. To resolve the fundamental problems in neural networks due to local 

minimization, the harmony search (HS) algorithm is used. Firstly, the HS algorithm 

would find the weights which have the near-global minimum of the performance 

function. The optimized weights found by HS are then used as the initial weights 

for the ANNs and further modified by the BP algorithm. The BP training based on 

the gradient descent method would allow fine adjustment of the weights.  
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To assess the reliability of the ANN model with BP training and the ANN-HS 

model, both models were run 50 times and the statistical analysis was conducted 

for the model results. Each of harmony memory considering rate (HMCR) and 

pitch adjustment rate (PAR) of HS has five different values varying from 0.1 to 0.9 

at an interval of 0.2. The correlation coefficient ( r ) and index of agreement ( aI ) 

between model output values and target values in the validation data were used to 

evaluate the performance of the models. It was shown that the ANN-HS models 

with HMCR=0.9 and PAR=0.1 and HMCR=0.7 and PAR=0.5 give more accurate 

and consistent prediction ability than the general ANN model trained by BP 

algorithm. 

  

keywords: armor stone, artificial neural network model, harmony search algorithm, 

stability number  

Student Number: 2014-20546  
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CHPTER 1. INTRODUCTION 

1.1 Background 

 

Artificial neural networks (ANNs) have become a popular tool as the efficient 

model for prediction and forecast in various areas, including finance, medicine, 

power generation, water resources and environmental science. Although the basic 

concept of artificial neurons was first proposed in 1943 (McCulloch and Pitts, 

1943), applications of ANNs have blossomed after the introduction of the 

backpropagation training algorithm for feedforward ANNs in 1986, and the 

improvement of calculation ability accelerated the employment of ANNs 

(Rumelhart et al., 1986).  

Since the 1990s, ANNs have been utilized in coastal and nearshore researches 

(Mase et al., 1995; Tsai and Lee, 1999; Cox et al., 2002; Kim and Park, 2005; Van 

Gent et al., 2007; Browne et al., 2007; Yoon et al., 2013). In the early years 

(1992~1998), ANNs were believed as a novel model which is applicable to various 

kinds of problems, and researches were conducted to examine their practicability as 

an alternative model. Despite a great number of applications in numerous 

researches, ANNs are hardly recognized as a mature modeling approach as other 

numerical and statistical modeling methods because of its characteristics. The back 

propagation (BP) algorithm helps to find the optimal values of the weights and 

biases of the neural networks that correspond to the minimum value of a 
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performance function usually defined as root-mean squared error. However, the BP 

with the gradient descent method can give the local minimum values of a specified 

function and it is sensitive to the initial values of weight and bias. To search for the 

global minimum of the performance function, Monte-Carlo simulation generating a 

number of ANNs having different initial weights and biases is suggested, but it is 

not efficient and it takes a long time. Moreover, best fitting ANNs from the 

simulation could not or would not be accepted to have a global minimum of the 

performance function. Even if we find the global optimal weights of ANNs by 

training, they cannot be reproduced by the general users of the ANN model. 

Accordingly, the development of robust ANN model is needed to alleviate the local 

minimization problem of the BP training algorithm. 

   

 

  



 

3 

1.2 Previous Studies 

 

1.2.1 Generalization of ANN model 

A proper neural network model should provide high prediction accuracy for the 

test and validation data set as well as for the training data. However, the 

performance of the general ANN model is very sensitive to the initial weights, 

thereby not giving the stable results in the test data. The erratic output obtained 

from ANN model forces the modelers to choose the best model result without any 

explanation of setting the optimal initial weights. Consequently, it is difficult to use 

the ANN model as a robust and generalized prediction model.  

Many researchers have shown that the BP algorithm is greatly dependent on the 

initial weights, and they implemented various methods to solve this problem. 

Kolen and Pollack (1990) demonstrated that the BP training algorithm has a large 

dependence on the initial weights by performing a Monte-Carlo simulation. On the 

other hand, Yam and Chow (1995) proposed an algorithm based on least-squares 

methods to determine the optimal initial weights. The algorithm showed that the 

model’s dependence on the initial weights can be reduced. In addition, genetic 

algorithm (GA) has been applied to search for the optimal initial weights of ANNs 

and had improved the model accuracy (Venkatesan et al., 2009; Chang et al., 2012; 

Mulia et al., 2013). Furthermore, ensemble methods have been implemented to 

enhance the accuracy of the model. They also overcome the dependence of the 

ANN model not only on the initial weights but also on training algorithms and data 

structure (Krogh and Velelsby, 1995; Boucher et al., 2009; Zamani et al., 2009; 

Kim 2014).  
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The problem of BP can be resolved by applying the methods mentioned above. 

In particular, the genetic algorithm finds near-global optimal initial weights of 

ANN (Montana, 2005). This method is relatively efficient and effective in making 

the result of ANN stable. In this study, the harmony search algorithm, a music-

inspired metaheuristic optimization algorithm, is used to find the near-global 

optimal initial weights of ANNs, thereby enhancing the accuracy and stability of 

ANN model. The structure of the HS algorithm is much simpler than other 

metaheuristic algorithms. In addition, the intensification procedure conducted by 

HS algorithm encourages to speed up the convergence by exploiting the history and 

experience in the search process. Thus, the HS is expected to find the near-global 

optimal initial weights of the ANN. 

 

1.2.2 Stability number of armor stones 

To determine the optimum weight of armor stones for sloping revetments and 

breakwaters, the Hudson (1959) formula has been widely used probably because of 

its simplicity. However, it has been found to have a lot of shortcomings. It does not 

include, for example, the influence of wave period and does not take into account 

random waves. To solve the shortcomings in the Hudson formula, Van der Meer 

(1987, 1988) proposed a new design formula, based on a series of more than 250 

model tests of Van der Meer (1988), which includes the influence of wave period, 

number of waves, armor grading, wave spectrum shape, groupiness of waves and 

the permeability of the core.  

The model test data of Van der Meer (1988) have been used by many researchers 

in different types of research. Yoo et al. (2001) used the data to develop a new 
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design formula, which is simpler than and comparable in accuracy to the Van der 

Meer formula (see Suh and Yoo 2003). The data have also been used in the 

development of artificial neural network (ANN) model (Mase et al. 1995; Kim and 

Park 2005; Balas et al. 2010), fuzzy model (Erdik 2009), or M5' model tree 

(Etemad-Shahidi and Bonakdar 2009) to predict the damage level or stability 

number of rock armors.  

The stability number is a dimensionless number which measures the stability of 

the armor layer of a rubble mound structure. It is defined as  

 

50

s
s

n

H
N

D
º
D

          (1.1) 

 

where sH  is the significant wave height in front of the structure, / 1s wr rD = -  

is the relative mass density, sr  and wr  are the mass densities of armor unit and 

water, respectively, and 50nD  is the nominal size of the armor unit (Van der Meer, 

1988). Fig. 1.1 shows the cross section of typical emerged rubble mound 

breakwater.  

 

 

Figure 1.1 Cross section of emerged rubble mound breakwater 
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To estimate the stability number, it is required to determine the relationship 

between the stability number and other variables which would describe the 

characteristics of waves and structure. Unfortunately, the physical mechanism of 

displacement of armor units due to waves is so complicated that the analytic 

solution is hardly found. For this reason, plenty of experiments which include 

various physical factors of waves and structure were conducted to propose 

empirical formulas explaining the relationship. Hudson (1959) suggested an 

empirical formula: 

 

1/3( cot )s DN K a=                                          (1.2) 

 

where a  is the angle structure slope shown in Fig. 1.1 and DK  is the stability 

coefficient which depends on the shape of the armor unit, placement method, the 

location at the structure (i.e. trunk or head), and whether the structure is subject to 

breaking wave or non-breaking wave. Even though it is very simple, the Hudson 

formula has been found to have a lot of shortcomings.  

To solve the main shortcomings of the Hudson formula, Van der Meer (1988) 

conducted an extensive series of tests including the parameters which are 

considered to have significant effects on armor stability, and the empirical formula 

based on the experimental data was proposed by Van der Meer (1987, 1988) as 

follows.  
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where 2tan / 2 /m s mH gTx a p=  is the surf similarity parameter based on the 

average wave period mT , and ( )
( )1/ 0.5

0.316.2 tan
P

c Px a
+

=  is the critical surf 

similarity parameter indicating the transition from plunging waves to surging 

waves. 

On the other hand, with the recent developments in computational intelligence, 

particularly in the area of machine learning, various data-driven models have been 

developed, based on the extensive experimental data of Van der Meer (1988), as 

described in the Introduction. A brief summary is given here only for the ANN 

models. Mase et al. (1995) constructed an ANN by the randomly selected 100 

experimental data set of Van der Meer (1988) and by 5,000 epoch, which means the 

number of modification of the weights and biases. They used 579 experimental 

data excluding the data of low-crested structures. They employed six input 

variables: , , , , /w m sP N S h Hx , and the spectral parameter, where h  is the water 

depth in front of the structure. Kim and Park (2005) followed the Mase et al.’s 

(1995) approach, but they used 641 data including low-crested structures. 

Believing that the predictability of a neural network increases as the input 

dimension increases, they split the surf similarity parameter into wave steepness 

and structure slope, and further the wave steepness into wave height and period. 
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They showed that the ANN gives better performance as the input dimension 

increases. It is known that in general the bias error and variance error decreases and 

increases, respectively, with the increase of input dimension. If the decreasing rate 

of bias error is greater than the increasing rate of variance error, the overall error 

decreases, and vice versa (Geman et al. 1992). It seems that the former is true for 

the Van der Meer’s (1988) data. On the other hand, Balas et al. (2010) developed 

hybrid ANN models with PCA based on 554 data of Van der Meer (1988). They 

developed four different models by systematically reducing the data from 554 to 

166 by using PCA or by using the PCs as the input variables of the ANN. Table 1.2 

shows the correlation coefficients of different studies, which will be compared with 

that of the present study later. 
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Table 1.1 Correlation coefficients of different empirical formula or ANN 
models. 

 

Author 
Correlation 

coefficient 
Remarks 

Van der Meer (1987) 0.92 Empirical formula, Eq. (1.3)  

Mase et al. (1995) 0.91 
Including data of Smith et al. 

(1992) 

Kim and Park (2005) 
0.902  

to 0.952 

Including data of low-crested 
structures 

Balas et al. (2010) 
0.906  

to 0.936 
ANN-PCA hybrid models 

 

  



 

10 

1.3 Research Objective and Thesis Overview 

 

 The methodological issues on the proper selection and preprocessing of the 

input and output variables and the choice of the structure of the ANNs have been 

evaluated traditionally. Especially, this study focuses on the problem of the choice 

of an optimal ANN initial weights to resolve the issues on the generalization of 

ANN model by implementing the harmony search (HS) algorithm. 

In this study, an ANN model is developed to predict the stability number of 

breakwater armor stones based on the experimental data reported by Van der Meer 

in 1988. To resolve the fundamental problems in neural networks due to local 

minimization, HS algorithm is used. Firstly, the HS algorithm would find the 

weights which have the near-global minimum value of the performance function. 

The optimized weights found by HS are then used as the initial weights for the 

ANNs and further modified by the BP algorithm. The BP training based on the 

gradient descent method would allow fine adjustment of the weights.  

To assess the reliability of the ANN model with BP training and the ANN-HS 

model, both models are run 50 times and the statistical analysis is conducted for the 

model results. The correlation coefficient(r) and index of agreement( aI ) between 

model output values and target values in the validation data are used to evaluate the 

performance of the models. 
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CHAPTER 2. THEORETICAL BACKGROUNDS 

2.1 Artificial Neural Networks (ANNs) 

 

An ANN model is a powerful data-driven model aiming to mimic the systematic 

relationship between input and output data by training the network based on a large 

amount of data. Training is to modify the weights that connect the input and output 

variables so that the output values calculated by the model are as close as possible 

to the target (observed) values. An ANN model is composed of the information-

processing units called neurons, which are fully connected with different weights 

indicating the strength of the relationships between input and output data.  

 

2.1.1 Structure of ANNs 

An ANN contains supervised learning such as pattern recognition and multi-

layer perceptron and unsupervised learning such as self-organized map. Especially 

the multi-layer perceptron is considered as an alternative of empirical formulas 

because it takes into account the nonlinear relationship among input variables in a 

more effective and simpler way than other nonlinear regression methods by 

training or revising the weight matrix that links the input and output data. In this 

study, a two-layer perceptron model with the input layer and one hidden layer is 

developed as shown in Figure 2.1.  
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Figure 2.1 General structure of ANN 

 

Here, i is the number of input variables. Firstly, for each of the input and output 

variables, the data are normalized so that the whole data are distributed in the range 

of [min,max] [ 1,1]= - . This can be done by subtracting the average from the data 

values and rescaling the resulting values in such a way that the smallest and largest 

values become -1 and 1, respectively. Secondly, the initial weights in the hidden 

layer are set to have random values between -1 and 1, and the initial biases are all 

set to zero. The next step is to multiply the weight matrix by the input data, p, and 

add the bias so that 

 

1

, 1 to
R

h h h
k kj j k

j

n w p b k S
=

= + =å                                (2.1) 
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where R and S are the numbers of input variables and hidden neurons, respectively, 

and p, hb , and hw  are the input variable, and bias and weight in the hidden 

layer, respectively. The subscripts of the weight 
h
kjw  are written in such a manner 

that the first subscript denotes the neuron in question and the second one indicates 

the input variable to which the weight refers. The h
kn  calculated by Eq. (2.1) is fed 

into an activation function, hf , to calculate h
ka . Hyperbolic tangent sigmoid 

function is used as the activation function so that 

 

h h
k k

h h
k k

n n
h
k n n

e e
a

e e

-

-

-
=

+
                                           (2.2) 

 

In the output layer, the same procedure as that in the hidden layer is used except 

that only one neuron is used so that 

 

1 1 1
1

S
o o h o

j j
j

n w a b
=

= +å                                          (2.3) 

 

and the linear activation function is used to calculate 1
oa  so that 

 

1 1
o oa n=                                                  (2.4) 

 

2.1.2 Training algorithm 

With the randomly selected initial weights and biases, the neural network cannot 
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accurately estimate the required output. The weights and biases are continuously 

modified by the so-called training so that the difference between the model output 

and target (observed) value becomes small. To train the network, the error function 

is defined as the sum of square of the difference, i.e. 

 

2

1
oe = -τ a                                              (2.5) 

 

where  indicates a norm, and τ is the target value vector to be sought.  

In neural networks system, many kinds of gradient-based methods are frequently 

used: Steepest descent gradient algorithm, Newton’s method, Conjugate gradient 

algorithm, Quasi-Newton algorithm and Levenberg-Marquardt algorithm. The 

gradient descent method means that it always heads towards a solution by 

lowering the error of the network – it has a direction. Considering the fact that the 

final goal of back-propagation training in ANN is to minimize the error function, 

we can say that the procedure of finding out the optimal weights and biases of 

ANNs is exactly the same as solving an optimization problem whose objective 

function is the error function. The subject of the optimization is the weights and 

biases of ANNs.  

Generally, Levenberg-Marquardt algorithm, one of the gradient descent methods 

is widely used to train the networks. However it has a problem of local 

minimization. Figure2.2 illustrates the possible situation of local minimization. 

The value of the error function varies with different weights and biases. If the 

initial weights and biases are fortunately close enough to the values that have 

global minimum in the error function, the gradient method would reach the global 
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minimum by following the slope of the error function. On the other hand, as 

expected in most cases, if they are chosen to be far from the optimal values as 

shown by the green dot in the figure, their final destination would be the local 

minimum which is indicated as the red dot. As a consequence of local 

minimization, most of ANN models provide erroneous result. This unstable 

characteristic of local minimization prevents ANNs to be utilized as prediction 

model. In order to find a global minimum, optimal points from a number of ANN 

models having different initial weight and bias are calculated and the point which 

has the minimal error function among them would be designated as the global 

minimum optimal point. In this study, the Harmony Search algorithm is used to 

find the global minimum point easily.  

 

Figure 2.2 Local minimization problem 
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2.2 Harmony Search (HS) Algorithm 

 

 The HS algorithm is a music-based metaheuristic optimization algorithm 

(Geem et al., 2001). It was first developed by Geem et al. in 2001 and has been 

vigorously applied to many different optimization problems such as function 

optimization, design of water distribution networks, engineering optimization, 

groundwater modeling, model parameter calibration, etc. The objective of this 

algorithm is to find a perfect state of harmony, and the effort to search the harmony 

in music is similar to finding the optimality in an optimization process. In other 

words, both of them are looking for an optimal state. The HS algorithm consists of 

five steps as follows (Lee and Geem, 2004).  

Step 1. Initialization of the algorithm parameters 

Generally, the problem of global optimization can be written as 

 

Minimize ( )

subject to , 1, 2, ...,i i

f

x i NÎ =

x

X
                           (2.6) 

 

where ( )f x  is an objective function; x  is the set of each decision variable; and 

iX  is the set of possible range of values for each decision variable which can be 

denoted as 2{ (1), (2), ..., ( )}i i ix x x K=X  for discrete decision variables satisfying 

2(1) (2) ( )i ix x x K< < <L  or L i i U ix x£ £X  for continuous decision variables. In 

addition, N  is the number of decision variables and K  is the number of 

possible values for the discrete variables. Also, there exists HS algorithm 

parameters which are required to solve the optimization problems: harmony 
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memory size (HMS, number of solution vectors), harmony memory considering 

rate (HMCR), pitch adjusting rate (PAR) and termination criterion (maximum 

number of improvisation). HMCR and PAR are the parameters used to improve the 

solution vector. 

Step 2. Initialization of harmony memory 

As shown in Eq. 2.7, the harmony memory (HM) matrix is composed with as 

many randomly generated solution vectors as the size of the HM. And they are 

stored with the values of the objective function, ( )f x , ascendingly. 

 

1

2

HM

HMS

é ù
ê ú
ê ú=
ê ú
ê ú
ê úë û

x

x

x

M
                                            (2.7) 

 

Step 3. Improvise a new harmony from the HM 

A new harmony vector, ( )1 2, , ..., Nx x x¢ ¢ ¢ ¢=x , is created from the HM based on 

assigned HMCR, PAR, and randomization. For example, the value of the first 

decision variable ( )1x¢  for the new vector can be selected from any value in the 

designated HM range, 1 HMS
1 1~x x . In the same way, the values of other decision 

variables can be selected. The HMCR parameter, which varies between 0 and 1, is 

a possibility that the new value is selected from HM as follows: 

 

{ }1 2 HMS, , ..., w.p. HMCR

w.p. (1 HMCR)

i i i i

i

i i

x x x x
x

x

ì ¢Îï
¢ ¬ í

¢Î -ïî X
                  (2.8) 
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The HMCR is the probability of selecting one value from the historic values 

stored in the HM, and (1-HMCR) is the probability of randomly taking one value 

from the possible range of values. This procedure is analogous to the mutation 

operator in genetic algorithms. For instance, if a HMCR is 0.95, the HS algorithm 

would pick the decision variable value from the HM including historically stored 

values with a 95% of probability. Otherwise, with a 5% of probability, it takes the 

value from the entire possible range. A low memory considering rate selects only 

few best harmonies and it may converge too slowly. If this rate is near 1, most of 

the pitches in the harmony memory are used, and other ones are not exploited well, 

not leading into good solutions. Therefore, typically HMCR 0.7~0.95=  are 

recommended. 

On the other hand, the HS algorithm would examine every component of the 

new harmony vector, ( )1 2, , ..., Nx x x¢ ¢ ¢ ¢=x , to decide whether it has to be pitch-

adjusted or not. In this procedure, the PAR parameter which sets the probability of 

adjustment for the pitch from the HM is used as follows: 

 

Yes w.p. PAR
Pitch adjusting decision for 

No w.p. (1- PAR)ix
ì

¢ ¬í
î

           (2.9) 

 

The pitch adjusting procedure is conducted only after a value is selected from 

the HM. The value (1-PAR) is the probability of doing nothing. To be specific, if 

the value of PAR is 0.1, the algorithm will take a neighboring value with 

0.1 HMCR´ probability. For example, if the decision for ix¢  in the pitch 

adjustment process is Yes, and ix¢  is considered to be ( )ix k , then the kth element 
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in iX , or the pitch-adjusted value of ( )ix k  is changed into 

 

( ) for discrete decision variables

for continuous decision variables

i i

i i

x x k m

x x a

¢ ¬ +

¢ ¢¬ +
               (2.10) 

 

where m is the neighboring index, { }..., 2, 1, 1, 2, ...mÎ - - ; a  is the value of 

( 1,1)bw u´ - ; bw  is an arbitrary chosen distance bandwidth or fret width for the 

continuous variable; and ( 1, 1)u -  is a random number from uniform distribution 

with the range of [ 1, 1]- . If this rate is very low, because of the limitation in the 

exploration of a small subspace of the whole search space, it slows down the 

convergence of HS. If a pitch-adjusting rate is very high, it may cause the solution 

to scatter around some potential optima. Therefore, PAR 0.1~ 0.5=  are used in 

most applications. The parameters HMCR and PAR help the HS algorithm to find 

globally and locally to improve the solution, respectively. 

Step 4. Update the HM 

If the new harmony vector gives better performance than the worst harmony in 

the HM, evaluated in terms of the value of objective function, the new harmony 

would be included in the harmony memory and the existing worst harmony is 

eliminated from the harmony memory.  

Step 5. Repeat Steps 3 and 4 until the termination criterion is satisfied. 

The iterations are terminated if the stop criterion is satisfied. If not, Steps 3 and 4 

would be repeated.  

The HS algorithm can be summarized as the pseudo code shown in Figure 2.3. 

The presented pseudo code can be also expressed as the flow chart in Fig. 2.4. 
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Start

Initialize the optimization problem and 
algorithm parameters

HMCR

PAR

Evaluate New Harmony

Is the new harmony better?

Update the HM

Improvise a new harmony 
from harmony memory

based on memory considerations, 
pitch adjustments, and randomization

Yes

Termination criteria
satisfied?

Stop

Yes

Initialize the harmony memory (HM)
Generate initial harmony

No

No

Step 1

Step 2

Step 3

Step 4

Step 5

 

Figure 2.4 Flow chart of original HS algorithm (Lee and Geem, 2004) 
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CHAPTER 3. METHODOLOGY 

 

 

3.1 Sampling for Training Data 

 

Since training a network model is aiming to fit the system of ANNs to the 

training dataset, the whole dataset should be divided into two parts: one for 

learning and the other for validation, or test. The selected, or sampled dataset for 

training is important and has to include the characteristic of population since the 

training stage determines the feature of the networks. Otherwise, data-driven model 

cannot appropriately predict the data that had not been used in the learning process. 

For example, if the training data consists of only relatively small values, ANNs 

would estimate the small values well but not the large values because they do not 

learn the distinctive systematic relationship made in larger values and vice versa. 

To avoid this problem, the stratified sampling method can be used which makes the 

probability mass/density function (PMF/PDF) of sampled dataset be similar to that 

of population dataset. Unfortunately, because each case of the experimental data is 

dependently related with conditions which are the variables of dataset, the training 

data have to be chosen manually. Then, data for training and test are statistically 

analyzed to evaluate whether they have same PMF or not.  

There are two kinds of tests to conduct the PMF analysis: parametric statistical 

test and nonparametric statistical test. In this study, the PMF of each variable in the 

experimental data does not follow the normal distribution, so one of the 
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nonparametric statistical test, Chi-square test is applied. In addition, as done by 

Mase et al. (1995), randomly selected 100 experimental data set was used to train 

the network, and the remaining 479 data were used to test the model. 

The chi-square ( 2c ) test is fundamentally based on the error between the 

assumed and observed PMF/PDF of the distribution (Haldar and Mahadevan, 

2000). In the 2c  goodness-of-fit test, the range of the n observed data is separated 

into m  intervals. Also, the number of frequencies ( in ) of the random variable in 

the ith interval is counted (i = 1 to m). Further, the observed frequencies 

1 2, , ..., mn n n  and the corresponding theoretical frequencies 1 2, , ..., me e e  of an 

assumed distribution are compared. As the total sample points n  tends to ¥ , it 

can be shown (Hoel, 1962) that the quantity 

 

( )
2

1

m
i i

i i

n e

e=

-
å                                              (3.1) 

 

approaches the 2c  distribution with 1f m k= - -  degree of freedom where k 

is the number of parameters in the assumed distribution from the data and m  is 

the number of intervals. The degree of freedom f  is a parameter of the 2c  

distribution. Significance levels, a , between 1% and 10% are commonly used. 

The assumed distribution is acceptable at significance level a  if the value 

calculated from Eq. 3.1 is less than this value. Thus, the observed distribution can 

be considered to follow the assumed distribution with the significance level a  if 
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( )
2

1 ,
1

m
i i

f
i i

n e
c

e
a-

=

-
<å                                        (3.2) 

 

Here, 1 , fc a- indicates the value of the 2c  distribution with f  degree of 

freedom at Cumulative Density Function (CDF) of (1 a- ). In this study, 5% of 

significance level is chosen. Input and output variables in the ANN shown in Table 

3. 1 are tested separately using 2c  test.  

 

Table 3.1 Input parameters of neural network models 

Input parameters Target 
parameters 

, , , cot , , , / ,w s p sP N S H T h H SSa  sN  

 

Previously, Kim and Park (2005) found that the stability number is more 

accurately predicted when using the observation parameters themselves rather than 

using the parameters composed with multiplication of several parameter as input 

variable. To be specific, it is more suitable to use significant wave height ( sH ), 

mean wave period ( mT ), and cota  than using the surf similarity parameter, 

2tan / 2 /m s mH gTx a p=  as input variable. Here, peak period, pT , was used 

instead of mT  because it contains information about spectral shape as well as the 

mean wave period.  

The neural network can deal with qualitative data by assigning the values to 

them. The permeability coefficients of impermeable core, permeable core, and 

homogeneous structure are assigned to 0.1, 0.5, and 0.6, respectively, as done by 

Van der Meer (1987). On the other hand, the spectral shapes of narrowband, 
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medium-band (i.e. Pierson-Moskowitz spectrum), and wideband are assigned to 1.0, 

0.5, and 0, respectively, as done by Mase et al. (1995).  

To perform the chi-square test, firstly, ranges of each variable are defined from 1 

to 10 or 11 as shown in Table 3.2. In the training dataset, the observed frequency 

( 1 2, , ..., mn n n ) of each variable is counted as in Table 3.3. 
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Table 3.3 Frequency analysis of sampled(training) data 

Range Ns P Nw S cota  Hs Tp h/Hs SS 

1 4 56 52 10 40 29 - - 8 

2 15 - - 31 - 66 - 1 - 

3 22 - - 21 37 1 - 18 - 

4 21 - - 12 - 1 13 35 - 

5 16 - - 12 13 1 29 23 87 

6 9 - - 4 - 1 22 15 - 

7 8 - - 3 - 1 11 5 - 

8 2 38 - 3 - - 15 2 - 

9 1 - - 2 - - 5 - - 

10 2 6 48 1 10 - - 1 5 

11 - - - 1 - - 5 - - 

Sum 100 100 100 100 100 100 100 100 100 
 

 
Next, the observed frequencies are compared with the corresponding theoretical 

frequencies 1 2, , ..., me e e  of an assumed distribution which are given in Table 3.4. 

Using Table 3.3 and Table 3.4, we can obtain the residual chart calculated based on 

Eq. (3.1) as in Table 3.5.  

 

Table 3.4 Frequency analysis for population data 

Range Ns P Nw S cota  Hs Tp h/Hs SS 

1 3.45  59.93  50.78  12.26  37.82  30.40  - -  6.56  

2 15.20  - - 30.05  -  65.98  - 3.45  - 

3 22.11  - - 20.55  37.31  0.35  - 17.79  - 

4 20.90  - - 11.74  -  0.69  16.75  32.64  - 

5 16.93  - - 10.88  15.72  1.38  28.84  24.35  86.87  

6 10.02  - - 4.84  -  0.86  21.42  14.51  - 

7 7.43  - - 3.63  -  0.35  11.05  4.49  - 

8 2.42  34.54  - 2.59  -  -  14.51  2.07  - 

9 0.69  -  - 1.04  -  - 3.80  - - 

10 0.86  5.53  49.22  0.52  9.15  - - 0.69  6.56  

11 - - - 1.90  - - 3.63  - - 

Sum 100 100 100 100 100 100 100 100 100 
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Table 3.5 Residual chart 

Range Ns P Nw S cota  Hs Tp h/Hs SS 

1 0.09 0.26 0.03 0.42 0.13 0.06 - - 0.31 
2 0.00 - - 0.03 - 0.00 - 1.74 - 
3 0.00 - - 0.01 0.00 1.24 - 0.00 - 
4 0.00 - - 0.01 - 0.14 0.84 0.17 - 
5 0.05 - - 0.12 0.47 0.11 0.00 0.08 0.00 
6 0.10 - - 0.14 - 0.02 0.02 0.02 - 
7 0.04 - - 0.11 - 1.24 0.00 0.06 - 
8 0.07 0.35 - 0.06 - - 0.02 0.00 - 
9 0.14 - - 0.90 - - 0.38 - - 
10 1.50 0.04 0.03 0.45 0.08 - - 0.14 0.37 
11 - - - 0.43 - - 0.52 - - 
Sum 1.99 0.64 0.06 2.67 0.68 2.81 1.77 2.20 0.69 
f 9 2 1 10 3 6 6 7 2 
5%  16.82 5.991 3.841 18.31 7.86 12.59 12.59 14.07 5.99 
 

‘f’ and ‘5%’ denote degree of freedom and 0.95, fc , the value of the 2c  

distribution with f  degree of freedom at CDF of 0.95 . Previously, f  was 

defined as 1m k- - . Here, m  is the number of intervals. Only the intervals that 

have the frequency of at least one are counted. k  is set to 0 for nonnormal 

distribution. As a result, Eq. (3.2) is satisfied for all the variables. Therefore, we 

can conclude that the PMF of training dataset is acceptable within a 5% 

significance level. 

Based on the frequency analysis in Table 3.3 and Table 3.4, the PMFs of each 

variable in sampled and population data can be illustrated as in Figure 3.1 to Figure 

3.9. Comparing the two PMF graphs in each figure, we can visually confirm that 

their distributions are very similar.  
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Figure 3.1 Probability mass function of Ns 
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Figure 3.2 Probability mass function of P 
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Figure 3.3 Probability mass function of Nw 
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Figure 3.4 Probability mass function of S 
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Figure 3.5 Probability mass function of cotα 
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Figure 3.6 Probability mass function of Hs 
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Figure 3.7 Probability mass function of Tp 
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Figure 3.8 Probability mass function of h/Hs 
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Figure 3.9 Probability mass function of SS 
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3.2 Model design 

 

On the basis of the selected experimental data, an ANN model and ANN-HS 

model were constructed. In this research, the condition and parameter of ANNs in 

both models were identical. The following sections explain these settings.  

 

3.2.1 ANN model 

Considering the efficiency of the model, the number of neurons is fixed to have 

four. To minimize the error function, the Levenberg-Marquardt algorithm is used, 

which is the standard algorithm of nonlinear least-squares problems and the 

detailed description of which can be found in Press et al. (1992). Like other 

numeric minimization algorithms, the Levenberg-Marquardt algorithm is an 

iterative procedure. It necessitates a damping parameter m , and a factor q  

which is greater than one.  

In this study, 0.001m =  and 10q =  were used. If the squared error increases, 

then the damping is increased by successive multiplication by q  until the error 

decreases with a new damping parameter of kmq  for some k . If the error 

decreases, the damping parameter is divided by q  in the next step. The training 

was stopped when the epoch reached 50,000 or the damping parameter was too 

large for more training to be performed.  

 

3.2.2 ANN-HS model 

As previously mentioned, since ANN training algorithms are based on BP, they 
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are prone to local minima problems. On the other hand, Evolutionary Algorithms 

(EA) like HS are directed to stochastic. They are not as efficient as BP for training 

neural nets. They start search from random points, and slowly converge to a 

solution. To solve local optimization problems, initial weights of the networks are 

determined by HS as long as the stop condition evaluated by the fitness function 

(i.e. Root Mean Squared Error) is not satisfied. If the stop condition is satisfied, the 

detailed optimization process using back propagation to tune the parameters (i.e. 

weights and biases) would start with the initial condition obtained from the HS 

optimization as illustrated in Figure 3.10.  

First, ANNs are created with the randomly designated initial weights. The ANNs 

calculate the output data and evaluate its fitness function or error function. If 

certain stop condition is not satisfied, the initial weights would follow the HS 

optimization procedure. The HS finally finds new combination harmony which 

would be evaluated again. After going through the optimization process with HS, 

weights of the networks are modified and the output variables of the networks are 

adjusted to be more close to the target variables because its objective is to 

minimize their differences. Finally, the obtained weights are used to set the initial 

condition for the further BP training. 
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Figure 3.10 Flow chart of ANN-HS  
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The number of input variables is eight, hidden neurons are four and the output 

variable is one. Thus, the number of weights to be optimized by HS is 8 4 4´ +

=36 in total. The number of HS memory was 72 because doubled value of the 

number of optimization variables is generally used. Biases were not included in the 

optimization parameters because they could deteriorate the performance of HS 

algorithm by extending the dimension of objective function. Further, they can be 

corrected at the later BP learning process. The maximum number of improvisation 

was set to 100,000 and the optimization range was defined between -20 and 20. 

The interval for searching is 0.04 which is the total range divided by 1,000. Here, 

the parameters which are considered to have the greatest effect on the results and 

the reliability of the HS were selected: Harmony Memory Considering Rate 

(HMCR) and PAR (Pitch Adjusting Rate). Accordingly, the ANN-HS model 

simulations of HMCR and PAR varying from 0.1 to 0.9 at intervals of 0.2 were 

conducted and compared.  
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CHAPTER 4. RESULT AND DISCUSSION 

 

4.1 Assessment of Model Stability 

 

In this chapter, the stability of the two models are compared: one is the ANN 

model with BP training and the other is the ANN-HS model. Both models were run 

50 times and the statistical analysis was conducted for the model results. Each of 

HMCR and PAR of HS has five different values varying from 0.1 to 0.9, so the 

case of ANN-HS includes 5 5´ = 25 models. The correlation coefficient(r) and 

index of agreement( aI ) between model output values and target values in the 

validation data were used to evaluate the performance of the models. The statistical 

indices used in the assessment is the average, standard deviation and the maximum 

and minimum values of r and aI . The average indicates that the higher the value, 

the average predictive power of the model is excellent and vice versa. The low 

standard deviation denotes the stability of the model, that is, the consistency of the 

output results is high. Maximum value indicates the highest value of r and aI  

among 50 model results. The last is the minimum value of r and aI . If this value is 

high, the model has high stability. Also it can be interpreted that the model can be 

used as a suitable model for predicting the future event.  

In particular, the high minimum value and the low standard deviation of r and 

aI  may signify the precision and accuracy (Fig. 4.1). The smaller the standard 

deviation, we expect that the model would produce the results in a range without 

departing significantly form the average. This means that the model is precise. 
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Moreover, the high minimum value suggests that all the models show considerable 

accuracy. This variable also exhibits the worst result of the 50 model results. When 

this value is very low, it also indicates that it is not possible to use the model as a 

predictive model. 

 

Figure 4.1 Accuracy and precision 

 

The correlation coefficient and index of agreement between output variables of 

models and target variables are given in Eq. (4.1) and Eq. (4.2), respectively.  
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where ie  and im  denote the estimated and the measured stability number, e  



 

45 

and m  are the average of estimated and measured stability number. As r and aI  

are close to one, the predicted set agree well to the measured set.  

Table 4.1 and 4.2 show the statistics described above. In the tables, the highest 

value of average, the lowest value of standard deviation, the highest value of 

maximum and the highest value of minimum are colored in blue and the second 

best value colored in orange. In addition, the bold-faced fonts indicate the values 

that are relatively close to the blue-colored ones and the rank is denoted at the right 

upper part of its value. 

For example, the minimum r value of ANN-HS with HMCR=0.9 and PAR=0.1 

is 0.7976. This means that the model with such condition was run 50 times and the 

lowest correlation coefficient between the output data of those 50 models and 

target data is estimated as 0.7976 whereas the existing ANN model gives -0.0955. 
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Table 4.1 Statistical result analysis, Correlation coefficient (r)  

Average of r 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.8423 0.8828 0.8289 0.8092 0.8585 

0.3 0.8964 0.869 0.8655 0.8747 0.869 

0.5 0.8709 0.8837 0.8833 0.8861 0.8873 

0.7 0.8427 0.8853  0.9027
②

  0.8953
③

  0.8924
⑤

 

0.9  0.9032
①  0.8939

④
 0.87 0.8842 0.8475 

ANN - 0.7622 
Standard Deviation of r 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.1959 0.1272 0.2495 0.2465 0.1516 

0.3 0.1278 0.1664 0.1599 0.1789 0.1877 

0.5 0.1777 0.1028 0.1004 0.0831 0.13 

0.7 0.2020 0.1242  0.0381① 0.0526④  0.0579⑤ 

0.9  0.0397② 0.1043 0.1539 0.0496③
 0.1757 

ANN - 0.3140 
Maximum Value of r 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.9571  0.9709⑤
 0.961  0.9733① 0.9636 

0.3 0.9590 0.9672 0.9701  0.9719③
 0.96 

0.5 0.9614 0.9542 0.9606 0.9572 0.9679 

0.7 0.9676 0.973② 0.9594 0.9669  0.9697⑤
 

0.9 0.9712
④

 0.9702 0.9717 0.9700 0.9595 

ANN - 0.9713 
Minimum Value of r 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.0216 0.2139 -0.1017 0.0313 0.1399 

0.3 0.0606 0.0178 0.0693 -0.0739 -0.0956 

0.5 -0.0900 0.3195 0.3264 0.4094 0.0649 

0.7 0.0327 0.0986  0.7951②  0.7325③  0.6456⑤ 

0.9  0.7976① 0.2515 0.0698  0.6960④
 0.1278 

ANN - -0.0955 
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Figure 4.2 (a) Average and (b) standard deviation of correlation coefficient 
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Figure 4.3 (a) Maximum and (b) minimum of correlation coefficient  
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Table 4.2 Statistical result analysis, Index of agreement ( aI ) 

Average of aI  

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.8853 0.9255 0.8724 0.8428 0.9047 

0.3 0.9343 0.9098 0.9125 0.9136 0.9119 

0.5 0.9133 0.9292 0.9292 0.9339 0.9285 

0.7 0.8813 0.929  0.9482①  0.9435③  0.9402④ 

0.9  0.9481② 0.9351 0.9127 0.937⑤ 0.8918 

ANN - 0.8042 

Standard Deviation of aI  

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.2053 0.1204 0.2445 0.2774 0.1583 

0.3 0.1374 0.1751 0.155 0.1832 0.1889 

0.5 0.1784 0.1006 0.1038 0.0728 0.1378 

0.7 0.2243 0.1301  0.0213①  0.0305③ 0.042⑤ 

0.9  0.0226② 0.1101 0.1684  0.0305④ 0.2001 

ANN - 0.3174 

Maximum Value of aI  

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0.9781 0.9853 0.98  0.9865① 0.9812 

0.3 0.979 0.9833 0.9849  0.9858③ 0.9794 

0.5 0.9803 0.9766 0.9797 0.9782 0.9835 

0.7 0.9836  0.9864② 0.979 0.9831 0.9847 

0.9  0.9854⑤ 0.9849  0.9857④ 0.9848 0.9795 

ANN - 0.9854 

Minimum Value of aI  

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 0 0.2164 0 0 0.0015 

0.3 0.0017 0 0.0289 0.0036 0.0024 

0.5 0.0033 0.3186 0.2538 0.4684 0.0034 

0.7 0.0012 0.0512  0.8889①  0.8524③  0.7099⑤ 

0.9  0.8845② 0.1955 0.0125  0.8012④ 0.0047 

ANN - 0.0004 
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Figure 4.4 (a) Average and (b) standard deviation of index of agreement 
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Figure 4.5 (a) Maximum and (b) minimum of index of agreement 
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As a result, the performance of general ANN and ANN-HS is compared by two 

different criteria, r and aI . Although somewhat different trend is seen, both shows 

that ANN-HS is better than the general ANN model. In the Table 4. 1, the average 

value of r of ANN is 0.7622 while ANN-HS with HMCR=0.9 and PAR=0.1 has 

much higher value, 0.9032. Even though the optimal values of HMCR and PAR 

become different, the maximum average value of aI  of ANN-HS, 0.9482 is again 

much higher than that of ANNs, 0.8042. The standard deviation of r was 0.314 for 

the case of ANN, and the smallest value of r was 0.0381 for ANN-HS model with 

HMCR=0.7 and PAR=0.5. This implies that the initial value setting process of the 

ANN with HS increases the stability of the ANN model and finds near-global 

weights. In other words, HS is such a useful tool for setting the value of the initial 

weights for ANN. In the case of comparison of maximum values of r and aI , the 

result of ANN-HS was only slightly higher than that of ANN. On the other hand, 

the minimum value of r and aI  of ANN-HS model were much higher ANN-HS 

model than that of ANN model. To be specific, ANN model gave -0.0955 of 

correlation coefficient and it signifies why it cannot be used as a predictive model. 

From this analysis, we can propose ANN-HS model as an alternative to the 

general ANN model overcoming the limitation in the existing model. Furthermore, 

by comparing r and aI  of ANN-HS results having different HMCR and PAR, the 

optimal values of parameters could be suggested. However, the conclusions made 

by r and aI  are not exactly the same. The overall tendency is that aI  slightly 

overestimate than aI  values when it is higher than 0.9 or so. On the contrary, the 

value of r was somewhat overestimates than aI  if aI  is lower than the 0.1.  



 

53 

First, looking at the Table 4.1, all the results in the case for HMCR=0.9 and 

PAR=0.1 was evaluated to be good. On the other hands, in the Table 4. 2, we can 

see that the best combination of HMCR and PAR is 0.7 and 0.5.  

The two cases which had been evaluated as outstanding in each evaluation 

criterion would be examined by the different criterion case. First, the case of 

HMCR=0.9, PAR=0.1 which received a good rating in the criterion r was also 

highlighted in the bold face in the criterion aI , which means the prediction ability 

is relatively high. Especially, comparing it with the best case with HMCR=0.7 and 

PAR=0.5, there were only exiguous differences in average, standard deviation, 

maximum and minimum. Also, the case of HMCR=0.7 and PAR=0.5 which is the 

best case under the criterion aI  shows small dissidence with the case of 

HMCR=0.7 and PAR=0.5 in all aspects.  

As a result, both cases of HMCR=0.9, PAR=0.1 and HMCR=0.7, PAR=0.5 were 

evaluated to be excellent in the optimization. The two cases always showed either 

best or second best performance in the criteria of average, standard deviation and 

minimum both in r and aI . The result can be confirmed by Geem (2009) which 

suggests the typical range of HMCR=0.7~0.95 and PAR=0.1~0.5. Although the 

two cases did not always give the highest value of r and aI , the lower value of 

maximum r does not mean that the ability and reliability of HS as a predictive 

model are low. Thus, we can conclude that the two models produce reliable, 

accurate and robust results. 
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4.2 Aspect of Transition of Weights  

 

There are two major components in metaheuristic algorithms: diversification and 

intensification(Geem, 2009). These two components seem to be contradicting each 

other, but balancing their combination is crucial and important to the success of 

metaheuristic algorithm.  

Appropriate diversification helps the algorithm to search for an optimal point in 

the solution space exploring as many locations and regions as possible in an 

effective way. If the diversification is too strong, it may wander many locations in a 

stochastic manner and the convergence of the algorithm becomes slow. On the 

contrary, if the diversification is too weak, the solutions are biased and trapped in 

local optima, or even produce meaningless solutions since the solution space to be 

explored is so limited. 

On the other hand, proper intensification aims to exploit the history and 

experience obtained during search process. It intends to ensure to speed up the 

convergence by reducing the randomness and limiting diversification. If the 

intensification is too strong, it could lead the premature convergence, resulting in 

biased local optima or meaningless solutions since the domain of the search space 

is limited; if the intensification is too weak, it slows down the convergence of the 

algorithm 

In the HS algorithm, diversification is controlled by the pitch adjustment and 

randomization. In addition, the intensification is represented by the harmony 

memory considering rate. Therefore, in this section, the results of neural networks 

for training dataset of four different cases would be compared and examined: (1) 
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low HMCR and low PAR, (2) low HMCR and high PAR, (3) high HMCR and low 

PAR, (4) high HMCR and high PAR. High value of HMCR means strong 

intensification and high value of PAR indicates strong diversification. The 

optimization process of HS algorithm regarding the weights of neural network for 

each case of parameter combination is illustrated in the following graphs (Figure 

4.6 ~ 4.9). It is observed that a low memory considering rate selects only a few best 

harmonies and the model converges very slowly and increases the randomness of 

its accuracy whereas a high pitch-adjusting rate causes the solution to scatter 

around some potential optima with high randomness. One of the fifty ANN-HS 

model’s outcomes demonstrated with r and aI  for each case and shown in Table 

4.3. 

 

Table 4.3 r and Ia between the predicted and target data 

Case 1 2 3 4 

HMCR/PAR 0.1/0.1 0.1/0.9 0.9/0.1 0.9/0.9 

Initial weights 
r 0.4662 -0.4838 0.3289 -0.0402 

Ia 0.0352 0.0123 0.0355 0.0191 

After HS  
r -0.0898 0.1473 0.5772 0.9319 

Ia 0.2359 0.3519 0.9166 0.9581 

After HS and BP 
r 0.9719 0.9541 0.9896 0.9863 

Ia 0.9856 0.9761 0.9947 0.9930 
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The correlation coefficient and index of agreement of the model output 

calculated with randomly chosen initial weights are 0.4622 and 0.0362 as 

illustrated in the first graph in Figure 4.6 for the case (1). In figures 4.6 to 4.9, each 

scatter plot indicates the relationship between calculated output values and the 

observed stability number using (a) initial weights, (b) optimized weights after HS 

and (c) further trained weights after BP. The first graph shows that the model 

output ranges from -70 to 70 and are not related to the observed or target variables. 

The second graph is the result of neural networks after conducting HS optimization. 

Although the range of outcomes is reduced to -5 ~ 5, most of output values were 

sorted and converged to two different values. Furthermore, the second graph 

reveals the characteristic of global optimization; it does not make the fine 

adjustments. The third graph is the scatter plot of observed data. Output values 

after back propagation training based on initial weights based on the HS 

optimization results. It shows the advantage of gradient descent method, fine 

tuning. 
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Next, the second case is the ANN-HS model with HMCR=0.1, PAR=0.9. The 

diversification is very strong and the intensification is weak compared to other 

models; the randomness owing to those two parameter setting makes the algorithm 

converge slowly. The scatter plots in Figure 4.7 seem to be quite analogous to those 

of Figure 4.6. The second graph also illustrates the failure of fine adjustment with 

HS optimization converging into only two values. This phenomenon is considered 

to be caused by the small value of HMCR; even if it found the near-optimal 

harmony memories(HMs), it kept searching new HMs. Compared with the first 

case, a quite different value of PAR was used but the trend of scatter plot was 

almost the same. Therefore, this may lead us to the conclusion that HMCR has 

more influence on the HS optimization ability than the PAR. 
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In the third case, both parameters have high values: HMCR=0.9 and PAR=0.9. 

In the Figure 4.8(a), we can see that the calculated model data have no clear 

relationship with observed stability number. After the optimization with HS, 

although the index of agreement between the estimated and observed values is 

somewhat low as 0.5772, the correlation coefficient appears very high as 0.9319. In 

particular, unlike the previous two cases, the optimized results after HS become 

quite accurate. The only difference from the case (1) was the value of HMCR 

compare to the case (1). Therefore, the HMCR can be considered as an important 

factor for the performance of HS. Finally, this case gives 0.9863 of correlation 

coefficient after further training process with back propagation algorithm. 
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The last case has 0.9 of HMCR and 0.1 of PAR. In this case, we can observe that 

the performance of the model using only optimization of HS is not so bad 

compared that of the model using both optimization of HS and training process of 

back propagation. Just like one of the conclusion drawn from the comparison of 

case (1) and case (2), the performance of HS optimization does not considerably 

differ between case (3) and case (4) which have the same value of HMCR but 

different values of PAR. In addition, a comparison between the first two cases and 

the last two cases shows that a large value of HMCR enhances the predicting 

ability of the model, especially when only the optimization of HS is used. However, 

a large value of HMCR not always guarantees the accurate result in HS algorithm. 

For example, we can see that the case of HMCR=0.9 and PAR=0.3 has minr  = 

0.2515, ,minaI  = 0.1955 and 0.1041rs = , 0.1101
aIs = , showing that the model 

gives inaccurate output. Therefore, the use of the parameters of HMCR=0.9 and 

PAR=0.1 is recommended. 

Generally, we can find that the final result of ANN-HS was improved by HS 

optimization. Also, the final result of ANN-HS is dependent on the accurate HS 

optimization result; if the correlation coefficient of calculated and observed values 

after HS optimization is high, it is also high when the weights are further trained by 

back propagation training, vice versa.  
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4.3 Computation Time 

 

Average and standard deviation of computation time of HS and BP are measured 

to give information to potential users(Table 4.4 ~ Table 4.7). The average 

computation time of HS algorithm is 285.51 s and that of BP after the HS 

optimization is 100.34 s. However, the average computation time of BP in general 

ANN model case was 68.57 s. In addition, the average of standard deviation of 

HS computation time is 6.82 s and that of BP is 94.96. Thus, the average 

computation time of ANN-HS model is 385.85 s and that of ANN model is 68.57 

s; the former one was approximately 5 times to the latter one, however the 

absolute difference of those two may be considered to be negligible to the users.  

Also, we could observe that there are no significant differences among the model 

results from various values of HMCR and PAR. This is because the maximum 

number of improvisation was set to 100,000. In the same manner, the maximum 

number of training, maximum epoch, of the general ANN model with only BP 

training algorithm was also set to 50,000. However, there were other stopping 

criteria such as maximum value of m  and maximum validation checks. This led 

to relatively large standard deviation of the average time spent on conducting 

ANN training. 
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Table 4.4 Average of HS computation time   

Average of HS computation time (s) 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 284.66 285.01 285.31 285.08 284.91 

0.3 285.14 284.33 284.57 285.28 285.31 

0.5 285.59 285.67 286.16 286.21 286.04 

0.7 286.10 286.19 285.59 285.23 285.70 

0.9 285.70 285.76 285.83 286.42 285.91 
 

Table 4.5 Standard deviation of HS computation time 

Standard deviation of HS computation time (s) 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 

0.1 6.28 6.03 6.60 7.04 6.38 

0.3 6.29 5.61 5.56 6.27 6.84 

0.5 7.09 7.42 6.86 7.39 8.00 

0.7 8.58 9.08 7.80 7.50 6.84 

0.9 6.50 6.66 6.00 6.27 6.54 
 

Table 4.6 Average of BP computation time 

Average of BP computation time (s) 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 
0.1 91.28 93.28 94.02 95.53 92.57 

0.3 97.19 108.42 96.10 108.41 102.06 

0.5 86.97 100.08 103.57 104.79 107.55 

0.7 109.91 87.47 102.92 110.80 96.85 

0.9 102.75 105.71 107.72 103.94 98.61 

ANN - 68.57 
 

Table 4.7 Standard deviation of BP computation time 

Standard deviation of BP computation time (s) 

ANN-
HS 

HMCR\PAR 0.1 0.3 0.5 0.7 0.9 
0.1 57.08 59.00 59.48 60.25 61.39 

0.3 55.87 54.53 58.72 55.16 56.52 

0.5 59.74 57.94 56.01 58.06 56.37 

0.7 53.36 62.72 55.17 54.43 59.60 

0.9 57.59 58.16 54.06 58.57 62.26 

ANN - 94.96 
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CHAPTER 5. CONCLUSIONS 

 

In this study, a ANN-HS model is developed to predict the stability number of 

breakwater armor stones based on the experimental data of Van der Meer (1988). It 

is composed of two steps of optimization. Firstly, the harmony search optimization 

algorithm is used to set initial weights of neural networks. Then, the back 

propagation training further modifies the weights and biases of the network in the 

direction of minimizing the errors between model output and target values.  

To compare the reliability of the ANN model using only BP training and the 

ANN-HS model, both models were run 50 times and the statistical analysis was 

conducted for the model results. Each of HMCR and PAR of HS has five different 

values varying from 0.1 to 0.9 at intervals of 0.2. The correlation coefficient (r) and 

index of agreement ( aI ) between model output values and target values in the 

validation data were used to evaluate the performance of the models. 

As a result, the prediction abilities of 50 ANN models were quite different from 

each other. The average of r is 0.7622 and the standard deviation is 0.3140. On the 

contrary, the average value of r was 0.9032 and the standard deviation is 0.0391 in 

ANN-HS models with HMCR=0.9 and PAR=0.1. This result indicates that both the 

prediction accuracy and stability of ANN-HS model are much higher than those of 

ANN model.  

In addition, analyzing the results of ANN-HS models, we could conclude that the 

cases of HMCR=0.9, PAR=0.1 and HMCR=0.7, PAR=0.5 showed best 

performance and a sense of reliability. Those two models give significantly 
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improved performance indicating low level of standard deviation and high level of 

minimum both in r and aI  . The result can be confirmed by Geem (2009) who 

suggests the typical range of HMCR=0.7~0.95 and PAR=0.1~0.5.  

Furthermore, the results of ANN model and ANN-HS model could be assessed 

whether they are different or not by using t-test. Besides, the performance of ANN-

HS model can be compared to that of GA-ANN model to evaluate their relative 

ability to find the initial weights of ANN. 

Ultimately, we hope to assist engineers and researches not only engaged in 

coastal engineering but also in various fields of study which need a robust and 

reliable alternative prediction model by proposing ANN-HS model through this 

study. 
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국문초록 

 
하모니 서치 알고리즘을 이용한  

인공신경망 근사 전역 최적 초기 가중치 설정: 

방파제 피복석에의 적용 
 
 
 

서울대학교 대학원 
 

건설환경공학부 
 

이 안 지 
 
 

인공신경망은 다양한 분야에서 예보 및 예측을 위한 유용한 도구로 자

리매김하고 있다. 다양한 연구 분야에 적용된 수 많은 사례에도 불구하

고, 인공신경망은 여전히 일반화된 도구로 여겨지지 못하고 있다. 역전파 

알고리즘은 주로 출력 변수와 타겟 변수의 평균 제곱근 오차(Root Mean 

Square Error, RMSE)로 정의되는 성능함수(performance function)를 최소로 

하는 신경망의 가중치(weights)와 바이어스(bias)를 찾도록 하지만, 이는 

기울기 하강 방법(Gradient descent method)을 사용하기 때문에 성능함수의 

값을 국소 최솟값 (local minimum)에 머무르게 하며 초기 가중치와 바이

어스에 따른 높은 민감도를 갖게 한다. 이러한 문제를 해결하기 위해 서

로 다른 초기 가중치를 갖는 다수의 인공 신경망을 생성하는 몬테-카를

로 시뮬레이션을 통해 전역 최솟값(global minimum)을 갖는 가중치와 바

이어스를 탐색하는 방법이 상당수 제안되었지만, 이는 비효율적이고 시

간이 상당히 많이 소요된다는 단점을 갖는다. 또한 이 시뮬레이션을 통
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해 얻은 최적합 신경망이 전역 최솟값을 갖는다는 것을 보장할 수 없으

며, 만약 이 신경망이 전역 최솟값을 갖는다 하더라도 이를 추후에 재현

할 수 없다는 문제점이 있다. 

본 연구에서는 1988년에 수행된 Van der Meer의 실험 자료를 바탕으로 

방파제 사석의 안정수를 예측하는 인공신경망 모형을 구현하였다. 역전

파 알고리즘의 근본적인 문제인 국소 최솟값 탐색을 해결하기 위해 전역 

최솟값 탐색 방법 중 하나인 하모니 서치 최적화 알고리즘을 이용하였다. 

먼저, HS 알고리즘을 통해 성능함수의 근사 전역 최소값을 찾는다. HS를 

통해 최적화된 가중치 값들은 인공신경망의 초기 가중치로 사용되고 추

후 역전파 알고리즘으로 학습된다. 역전파 학습 알고리즘으로는 기울기 

하강 방법을 사용하여 가중치를 더욱 미세하게 수정한다. 

역전파 학습 방법으로만 최적 가중치 값을 탐색한 인공신경망 모형

(ANN)과 HS 알고리즘을 이용하여 초기 가중치를 설정한 후 역전파 학

습을 수행한 인공신경망 모형(ANN-HS)의 신뢰도와 안정성을 평가하기 

위해서 두 모형을 각 50번씩 수행한 결과를 통계적으로 분석하였다. 

ANN-HS 모형은 하모니 메모리 채택 비(Harmony memory considering ratio, 

HMCR)와 피치 조정비(Pitch adjusting ratio, PAR)는 각각 0.1 부터 0.2 간격

으로 0.9 까지 변화시켜가며 수행하였다. 인공신경망 모형의 성능을 평가

하기 위해 두 모형의 출력 값과 목표 값 사이의 상관계수(Correlation 

coefficient, r)와 일치도(Index of agreement, aI )를 계산하였다. 결과적으로 

HMCR=0.9와 PAR=0.1 인 경우, 그리고 HMCR=0.7 와 PAR=0.5 인 경우
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의 ANN-HS 모형이 역전파 알고리즘으로만 학습한 ANN 모형보다 더욱 

정확하고 일관된 예측 능력을 보였다.  

 

keywords: 피복석, 인공신경망 모형, 하모니 서치 알고리즘, 안정수  

학번: 2014-20546 
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