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Abstract 

The Effect of Pine Nut Oil  

on Intestinal and Hepatic Lipid Metabolism  

in High-Fat Diet-Induced Obese Mice 
 

Shuang Zhu 

Department of Food and Nutrition 

The Graduate School 

Seoul National University 

 

Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate 

hepatic steatosis in mice fed with high fat diet (HFD). In this study, we aimed to 

explore the effects of PNO on both intestinal and hepatic lipid metabolism in mice 

fed a HFD. Five-week-old C57BL/6 mice were fed control diets containing 10% 

energy fat from either soybean Oil (SBO) or PNO (SC or PC groups), or HFD (45% 

energy from fat) containing 15% energy fat from lard and 30% energy fat from 

SBO or PNO (SHF or PHF groups) for 12 weeks. Expression of genes related to 

intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intes-

tinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and chan-

neling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TG) lipolysis and FA 

oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipo-
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protein (VLDL) assembly (ApoB100) were determined by real-time PCR. Overall, 

replacement of SBO with PNO resulted in significantly less body weight gain 

(P<0.05) and less white adipose tissue weight (P<0.05). Serum non-esterified fatty 

acid (NEFA) concentration was significantly higher in mice with PNO consump-

tion. In intestine, PNO-fed mice had significantly lower Cd36 mRNA expression 

(P<0.05). ApoA4 mRNA levels were significantly lower in PHF compared with 

SHF (P<0.05). In addition, PNO consumption tended to result in higher hepatic 

mRNA levels of Atgl (P=0.08) and Cpt1a (P=0.05). The mRNA levels of Acadl 

and ApoB100 were significantly higher in mice fed PNO diet (P<0.05). Together, 

lower Cd36 and ApoA4 mRNA expression in PNO consumption groups suggest 

that PNO may decrease activities of intestinal FA uptake and chylomicron assem-

bly in intestine. The tendency of higher Atgl and Cpt1a mRNA expression, together 

with the significantly higher Acadl and ApoB100 mRNA expression in PNO-fed 

group may imply that PNO could increase hepatic TG lipolysis; mitochondrial fatty 

acid oxidation and VLDL assembly. In conclusion, PNO replacement may function 

to prevent excessive lipid uptake by intestine as well as improve hepatic lipid me-

tabolism in HFD fed mice. Our findings may indicate PNO as potential dietary 

supplement for preventing metabolic dysregulations of lipids in intestine and liver 

seen with obesity.  

Keywords: Pine nut oil, Intestine, Liver, Lipid metabolism, High-fat diet 

Student Number : 2014-22177 
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I. Introduction 

  A dietary pattern characterized by high fat is considered to be a major contribu-

tor to the development of obesity, which is an increased risk factor for many dis-

eases such as dyslipidemia, metabolic syndrome and steatohepatitis (de Wit N et al., 

2012). It is well known that small intestine and liver play pivotal roles in the regu-

lation of lipid metabolism (Abumrad and Davidson, 2012; de Wit N et al., 2012; 

Kim et al., 2004; Nguyen et al., 2008). The small intestine is considered to be the 

first interface between body and dietary lipid for its essential role on lipid digestion 

and absorption and determines the amount and type of lipid entering body. Entero-

cytes on gut can also sense the luminal contents which provokes changes in intesti-

nal metabolism and further lead to more systemic effects by sending signaling mol-

ecules such as gut hormones to liver, muscle or brain which can respond to sustain 

homeostatic control (de Wit N et al., 2012). Liver, as it is a major organ that per-

forms a diverse range of functions necessary for whole-body metabolic homeosta-

sis (Fabbrini et al., 2010), plays an important role in systemic lipid homeostasis 

through its ability to take in triacylglycerol (TG), synthesis and store fatty acid (FA) 

as TG and to secret TG in the form of very low-density lipoprotein (VLDL) 

(Turpin et al., 2011). It has been suggested that the changes in the amount as well 

as composition of dietary fat contribute to the alterations in hepatic lipid metabo-

lism and hepatic lipid accumulation (Fabbrini et al., 2010; Green and Hodson, 

2014). 
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  Korean pine (Pinus koraiensis) nuts have been used in Asia for various dishes. 

The oil extracted from it, also known as Korean pine nut oil, is the only conifer nut 

oil rich in pinolenic acid (18:3Δ5,9,12), which is an unsaturated polymethylene-

interrupted fatty acid (UPIFA) with a cis-5 ethylenic bond. Besides the high content 

of Δ-UPIFA (17.7%), of which pinolenic acid (14.9%) is a major component, the 

other main FA of PNO are linoleic acid (18:2Δ9,12, 48.4%), and oleic acid (18:1Δ9, 

25.5%) (Lee et al., 2004). 

The effects of PNO on weight control and lipid metabolism have been studied 

for years. Ferramosca et al. (Ferramosca et al., 2008) showed that mice fed with 

PNO-containing diet resulted in lower body weight gain, liver weights, and total 

serum cholesterol and TG levels in comparison with mice fed with maize oil-

contained diet. Consumption of a diet containing PNO in mice also resulted in low-

er serum TG and VLDL-TG levels compared with mice fed diets containing other 

oils such as sunflower or linseed oils (Asset et al., 1999).  

Previously studies have compared the effects of PNO with soybean oil (SBO) 

on the factors involved in body fat accumulation as well as development of hepatic 

steatosis in HFD induced obese mice. In a study where HFD containing 45% kcal 

fat from 10% PNO and 35% lard compared with similar HFD with 10% SBO in-

stead, PNO groups had significantly lower body weight and white adipose tissue 

weight, lower serum cholesterol concentration, higher fecal NEFA content and 
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lower hepatic TG level, which all indicated that PNO may contribute to less lipid 

accumulation in HFD fed mice.  

High pinolenic acid containing fatty acid extracts has reported to have influence 

on lipid metabolism such as lowering cholesterol level in comparison to low pino-

lenic acid contatining fatty acid extract in HepG2 cells (Heath et al., 2003). Higher 

content of PNO may exert greater influence on health modulation. In a study by Le 

et al. (Le et al., 2012), mice fed a HFD with 15% energy from lard and 30% energy 

form either SBO or PNO, enhanced mitochondrial FA oxidative metabolism in 

skeletal muscle and brown adipose tissue was afterwards observed in obese mice 

with PNO consumption evidenced by higher expression of genes related to FA oxi-

dation such as Ppara, Cpt1 and Acadl.  

However, the effects of higher PNO content on intestinal and hepatic lipid me-

tabolism in mice fed with HFD haven’t been studied. Therefore the current study 

aims to investigate the role of higher PNO content in HFD (PNO contributes 30% 

kcal in a total 45% kcal fat contained HFD) on body weight loss, serum lipid con-

tent as well as intestinal and hepatic lipid metabolism.   
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II. Literature Review  

1. Intestinal fatty acid absorption and chylomicron secretion 

Over consumption of dietary lipid is generally considered to be the major causa-

tive factor of obesity. The absorption of dietary lipid by the small intestine is highly 

efficient (>95%) and virtually doesn’t depend on the amount of fat consumed 

(Shim et al., 2009). In view of current pandemic of obesity and the increased con-

sumption of fat in average diet, limiting intestinal lipid absorption as a means of 

reducing calorie intake has appealed considerable attention (Abumrad and 

Davidson, 2012).  

 

Cellular long-chain fatty acid uptake 

Long chain fatty acid (LCFA), which is generated by lingual and pancreatic li-

pases from dietary triglycerides, is predominantly absorbed in jejunum (Stahl et al., 

2001). There are two mechanisms that have been suggested for the absorption of 

fatty acid by small intestinal cells: a protein-independent passive diffusion model 

and a protein-dependent active transport model, which uses fatty acid transport pro-

tein (FATP) (Iqbal and Hussain, 2009). Among all proteins that have been proposed 

to take part in intestinal lipid absorption mechanisms, cluster of differentiation 

(CD36) and FATP4 are well presented to be the main uptake proteins. Besides the 

effective role in facilitating tissue FA uptake, CD36, which is highly expressed in 
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the intestine on the apical side of enterocytes and on endothelial and immune cells 

throughout the organ, is also reported to be involved in directing the FA to chylo-

micron formation (Nassir et al., 2007). For FATP4, as its special location is near to 

endoplasmic reticulum (ER) and subapical membranes, it not only strictly partici-

pates in FA uptake process, but also has endogenous acyl-CoA synthetase (ACS) 

activities (Abumrad and Davidson, 2012). It is reported that animals which experi-

ence long episodes of fasting regulate digestive performance widely with feeding 

and fasting while animals that feed relatively frequently, short term fasting (less 

than 2 days) doesn’t exhibit big changes in absorptive performance (Secor, 2005). 

Fasting process in our study is regarded to exert little influence on intestinal ab-

sorptive capacity.  

 

Cellular Long-chain fatty acid channeling 

Once entering the enterocyte, intracellular LCFAs are rapidly be coupled to co-

enzyme A (CoA) by long-chain fatty acyl-CoA synthetases (ACSLs), stopping their 

flowing out, with Acyl-CoA binding proteins (ACBPs) functioning to incorporate 

CoA to LCFA forming LCFA-CoA esters. (Stahl et al., 2001) Intestine-specific 

ACSL5 functions to catalyze the metabolism of exogenous fatty acid, to participate 

in the absorption of dietary LCFA as well as to partition FA toward TG synthesis 

(Yan et al., 2015). In addition, ACBP plays an important role in transporting FA-

CoAs to different organelles, ER or nucleus for instance. It might facilitate FA-CoA 
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desorption from Fatp4 and Acsl5, and thus contribute to the lipoprotein synthesis 

(Niot et al., 2009).  
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Figure 1. Intestinal absorption of long-chain fatty acids: a working model1 

(Niot et al., 2009). 

1ACBP, acyl-CoA-binding proteins; CD36, cluster of differentiation; ACS, acyl-

CoA synthetases; CM, chylomicrons; FA-CoA, long-chain acyl-CoA; FAH, proto-

nated long-chain fatty acids; FATP4, fatty acid transport protein 4; I-FABP, intesti-

nal fatty acid-binding protein; LCFA, long-chain fatty acids; L-FABP, liver fatty 

acid-binding protein.  
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Chylomicron assembly and secretion 

Lipids that have been absorbed into the ER are resynthesized and packaged into 

chylomicrons. The surface structural protein, apolipoprotein B48 (ApoB48) is nec-

essary for chylomicron assembly which also accelerate the formation of lipoprotein 

on the ER. Microsomal triglyceride transferase (MTP) supports chylomicron bio-

genesis, functioning as a transporter to shuttle neutral lipid from ER to the acceptor 

ApoB48 molecule (Abumrad and Davidson, 2012). In this way, MTP lapidates the 

newly channeled ApoB-48 to form a primordial chylomicron, which is further lipi-

dated with the addition of core TG and cholesteryl ester by MTP to form a pre- 

chylomicron. Another surface structural protein apolipoprotein A4 (ApoA4), func-

tions as a stabilizer on chylomicron to withhold the chylomicron within the ER, 

allowing the formation of a larger particle by reloading additional core lipidation 

(Black, 2007). Pre-chylomicrons are transferred from ER to the Golgi apparatus in 

which the final maturation of chylomicron takes place. Chylomicrons move from 

the intestinal mucosa into the lymphatic system, and further enter the blood. 
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Figure 2. Enterocyte chylomicron assembly and trafficking1 (Black, 2007). 

1FFA, free fatty acids; MAG, mono-acylglycerides; ER, endoplasmic reticulum; 

FABP, fatty acid binding proteins; TG, triacylglycerol; MGAT, acyl-

CoA:monoacylglycerol acyltransferase; DGAT, acyl-CoA:diacylglycerol acyltrans-

ferase; ApoB48, translated apolipoprotein B-48; MTP, microsomal triglyceride 

transferase; CE, cholesteryl; Apo A-IV, translated apolipoprotein A-IV; PCTV, pre-

CM transport vesicle; COPII, coating protein II; SNARE, soluble N-

ethylmaleimide-sensitive factor attachment protein receptor. 
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2. Hepatic lipid uptake 

The liver plays a unique, central role in regulating lipid metabolism. However 

outpouring lipid intake or any changes in specific pathways of FA metabolism 

could significantly influence the hepatic function and diseases. Besides, it could 

also interfere the metabolism of other nutrients, cause extra-hepatic physiology, 

and even lead to the development of metabolic diseases (Mashek, 2013). It is re-

ported that liver lipid accumulation happens when the amount of TG resulted from 

hepatic FA and chylomicron remnant taken from plasma and de novo lipogenesis 

overwhelms the amount of TG used for lipolysis and FA oxidation as well as for 

export with VLDL (Fabbrini et al., 2010). 

 

Hepatic chylomicron remnant clearance 

Chylomicrons are formed in the intestine and transport dietary TG to peripheral 

tissues. On the way to liver, plasma lipoprotein lipase hydrolyzes chylomicron TG 

allowing the delivery of free FA to muscle and adipose tissue. As a result, a new 

particle called a chylomicron remnant is formed. It is reported that excessive chy-

lomicron remnants concentration in plasma is a risk factor for the development of 

cardiovascular disease whereas liver plays an important role on rapid chylomicron 

remnant clearance. Besides this hepatic clearance can be down-regulated by high 

fat diet (HFD) (Mortimer et al., 1995).  
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The lipolysis-produced CR can be rapidly cleared by liver via an apolipoprotein 

E (ApoE)-mediated process. There are two candidates for a remnant receptor on 

liver, low density lipoprotein (LDL) receptor and LDL receptor-related protein 

(LRP) but LRP is verified to particularly have high affinity of ApoE binding 

(Beisiegel et al., 1991; Cooper, 1997). In addition, both lipoprotein lipase and he-

patic lipase, which are involved in the uptake and metabolism of chylomicron in 

liver, have been described as binding to LRP to mediate the transferring lipoprotein 

into cells (Krapp et al., 1996). 
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Figure 3. Chylomicron clearance by liver1 (Tomkin and Owens, 2012) 

1Apo C111, Apoliprotein C111; Apo B48, Apoliprotein B48; Apo E, Apoliprotein E; 

LPL, lipoprotein lipase; GIHBP1, glycosylphosphatidyl inositol anchored high-

density lipoprotein binding protein 1; LRP, LDL receptor-related protein; BE re-

ceptor, low density lipoprotein B/E receptor. 
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Hepatic fatty acid uptake and channeling 

The liver uptakes exogenous FAs from two sources: chylomicron remnant up-

take and free fatty acid (FFA) uptake from the blood. Several studies show that up-

take of exogenous FFA is the single largest source of FA in stored hepatic TG 

which further may be one chief cause of liver fat accumulation. Under normal con-

ditions, the majority of plasma FFA, which is mainly resulted from adipose tissue 

lipolysis, is bound to albumin. Traversing FFA through plasma membrane into 

hepatocyte is manly regulated by a protein mediated mechanism (Doege and Stahl, 

2006). For hepatic FA uptake, CD36 is verified not to be required under normal 

conditions, while instead, liver specific Fatp5 plays the main role (Mashek, 2013). 

FATP5 deletion could significantly reduce the hepatic LCFA uptake (Nassir and 

Ibdah, 2014). While inside the cell, FFAs are rapidly coupled to CoA by the regula-

tion of ACSLs or by the FATPs itself (Doege and Stahl, 2006). Further, highly con-

served cytosolic protein, ACBP which shows high affinity binding to long-chain 

acyl-CoA esters, further transports acyl-CoA to mitochondria for beta-

oxidation(Rasmussen et al., 1994). In addition, ACBP also plays an important role 

in hepatic steatosis as its transgenic overexpression resulted in increased accumula-

tion of lipid and increased hepatic TG (Hardwick et al., 2013).    
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Figure 4. Free fatty acid uptake and channeling in hepatocyte1 (Doege and 

Stahl, 2006). 

1CD36, cluster of differentiation; FFA, free fatty acid; FATP, fatty acid transport 

protein;  GPR40, G protein–coupled receptor 40; LpL, lipoprotein lipase; FABPs, 

Fatty acid binding proteins, ACBPs, acyl-CoA binding proteins; ACSLs, long-chain 

fatty acyl-CoA synthetases, TLRs, toll-like receptors; AgRP, Agouti-related protein; 

NPY, neuropeptide Y. 
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3. Hepatic lipid metabolism 

Hepatic steatosis arises from imbalance in TG acquisition and removal. There-

fore, except the process of plasma chylomicron remnant and FFA uptake, regula-

tion of intracellular TG lipolysis, FA oxidation, de novo TG synthesis and regula-

tion of TG secretion with VLDL also play important roles on determining liver fat 

accumulation (Cahova et al., 2012). It is reported that not only amount but also fat-

ty acid composition may influence liver TG accumulation (Green and Hodson, 

2014). For instance, mono-unsaturated fatty acid and/or n-6 unusual polyunsaturat-

ed fatty acids (PUFA) are preferentially partitioned toward oxidation pathways 

compared to saturated FA (Moussavi et al., 2008); PUFAs could suppress the ex-

pression of lipogenic genes and further lower liver TG accumulation (Green and 

Hodson, 2014).   
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Figure 5. Metabolism of triacylglycerol in the liver1 (Jonathan C. Cohen, 2011). 

1Chylo, chylomicron; ATGL, adipocyte triacylglycerol hydrolase; DGAT, diglycer-

ide acyltransferase; FFA, free fatty acid; β-OX, beta-oxidation; ChREBP, carbohy-

drate responsive element-binding protein; TCA, tricarboxylic acid; VLDL, very-

low-density lipoproteins; ApoB-100, apolipoprotein B-100. 
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TG lipolysis and FA beta-oxidation  

Adipocyte TG hydrolase (ATGL) is a critical regulator of TG hydrolysis in liver. 

Many studies indicate that besides the function of TG breakdown, ATGL also se-

lectively channels hydrolyzes FAs to beta-oxidation and activates peroxisome pro-

liferater-activated receptors alpha (PPARa), which is a critical transcriptional regu-

lator of genes encoding fatty acid oxidation enzymes in liver, without affecting he-

patic VLDL secretion (Ong et al., 2011; Turpin et al., 2011). Therefore, any altera-

tions in hepatic ATGL expression or activity could result in a metabolic diseases 

including non-alcoholic fatty liver disease. 

Hepatic fatty acid oxidation is primarily generated within mitochondria matrix 

and to a much lesser extent by peroxisomes and microsomes. The transportation of 

FA into the mitochondrial matrix for beta-oxidation is an enzyme-dependent pro-

cess. Carnitine palmitoyltransferase (CPT1), which locates on the outer mitochon-

drial membrane, is the main regulator in this FA transportation, and is also the rate-

limiting enzyme for FA oxidation (Ryu and Cha, 2003). Mitochondrial beta-

oxidation is a process where FA acyl-CoA loses two carbon units at each cycle, 

released as acyl-CoA. This process undergoes dehydrogenation, hydration, and 

cleavage reactions which need a membrane-bound and soluble enzymes (Fabbrini 

et al., 2010). Acyl-CoA Dehydrogenase, Long Chain (ACADL), Enoyl-CoA, Hy-

dratase/3-Hydroxyacyl CoA Dehydrogenase (EHHADH) and Acetyl-CoA Acyl-

transferase 1 (ACAA1) are three marker enzymes in mitochondrial beta-oxiation 
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(Guo et al., 2007; van der Leij et al., 2007). ACADL functions in the first step to 

shorten long-chain FA acyl-CoA. EHHADH catalyzes the second and third steps of 

mitochondrial beta-oxidation, hydration and dehydrogenation of enoyl-CoAesters 

to ketoacyl-CoA. While ACAA1 catalyzes the last step in the cycle by cleaving 3-

oxoacyl-CoA to acetyl-CoA (Cahova et al., 2012).   
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Figure 6. The mitochondrial fatty acid oxidation (FAO) pathway1 (Shekhawat 

et al., 2003). 

1FAT, fatty acid transporter; FABP, fatty acid-binding protein; TG, triglycerol; 

VLDL, very low-density lipoprotein; ACADM, medium-chain acyl-CoA dehydro-

genase; ACADL, long-chain acyl-CoA dehydrogenase; Ehhadh, Enoyl-CoA, Hy-

dratase/3-Hydroxyacyl CoA Dehydrogenase; Acaa1, Acetyl-CoA Acyltransferase 1. 
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Hepatic TG synthesis 

Diacylglycerol acyltransferases (DGAT) transfers FA-acyl-CoA to DG to form 

TG, which is the terminal step in TG synthesis. There are mainly two DGAT en-

zymes exist in a wide variety of eukaryotes, DGAT1 and DGAT2, while DGAT2 is 

a more potent DGAT with a higher affinity for its substrates than DGAT1, and ap-

pears to be the dominant DGAT enzyme controlling TG homeostasis in vivo (Yen 

et al., 2008). It is verified that the overexpression of DGAT in liver led to increased 

hepatic TG synthesis without changing VLDL production (Millar et al., 2006).   

 

Hepatic VLDL secretion 

Very-low-density lipoproteins (VLDL) assembly in liver involves the fusion of 

TG and a newly synthesized apolipoprotein B-100 (ApoB-100) by aid of MTP. 

Each VLDL particle contains a single molecule of ApoB100 so apoB100 is regard-

ed as an indispensable structural protein in VLDL assembly. The formation of 

VLDL particles in the liver is an important process because it converts the lipo-

soluble TG into a hydrosoluble form that can be transported from the liver to pe-

ripheral tissues (Fabbrini et al., 2010). Besides rapid incorporation of dietary FA 

into VLDL formation also enables dietary FAA to be recycled for further uptake by 

extrahepatic tissue (Heath et al., 2003).  



21 

4. Characteristics of pine nut oil 

Vegetable oils from the seeds of some conifers, such as Pinus pinaster and Pi-

nus koraiensis, are used for a long time in the feed industry or as dietary supple-

ments (Imbsa et al., 1998; Lee et al., 2004). For instance, the oil produced from the 

seeds of some European and American pine varieties is mostly used for culinary, 

medicine and other purposes (Östlund et al., 2009; Svanberg et al., 2012).  

These vegetable oils are reported to be special because to a certain degree, it 

contains some PUFA which are typified by poly-methylene interrupted double 

bonds. Many studies have shown that PUFA has numerous favorable effects such 

as influencing many parameters of the immune functions (Erickson et al., 1983; 

Matsuo et al., 1996), or reducing plasma lipid levels (Lee et al., 2004).  

However, among all kinds of PUFA contained nuts, only a few of them can ex-

ert biologically activity. To this regard, the oil from Pinus koraiensis, also known 

as pine nut oil or pine seed oil, has appealed researchers attention for a long time; 

as it contain with the highest content of pinolenic acid (18:3Δ5,9,12) (Imbsa et al., 

1998), which has an unusual UPIFA with a cis 5 ethylenic bone. Besides highly 

content of pinolenic acid (14.9%) , which accounts for most of the Δ-UPIFA 

(17.7%) content, the other main FA in pine nut oil are linoleic acid (18:2Δ9,12, 

48.4%), oleic acid (18:1Δ9, 25.5%) (Lee et al., 2004). 
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Pinolenic acid (all-cis-18:3Δ5,9,12) 

 

Linoleic acid (all-cis-18:2Δ9,12) 

 

Oleic acid (cis-18:1Δ9) 

Figure 7. Structures of Pinolenic acid, Linoleic acid and Oleic acid. 
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The health beneficial properties of PNO have been studied for years. It has re-

ported that Korean pine nut may function to suppress appetite by increasing satiety 

hormones level such as CCK-8 and thus reducing food intake (Pasman et al., 2008). 

Dietary PNO supplementation increased Ig production from spleen lymphocytes 

which indicated PNO’s influence on immune function (Matsuo et al., 1996). Ef-

fects of PNO on lipid profile have also appealed considerable interests for a long 

time. Ferramosca et al. (Ferramosca et al., 2008) showed that mice fed with PNO-

containing diet resulted in lower body weight gain, liver weights, and total serum 

cholesterol and TAG levels in comparison with mice fed with maize oil-contained 

diet. Consumption of a diet containing PNO in mice also resulted in lower serum 

TAG and VLDL-TAG levels compared with mice fed diets containing other oils 

such as sunflower or linseed oils (Asset et al., 1999). 

Recent studies started focusing their attention on the role of PNO in the modulation 

of obesity. PNO replacement in the diet was shown to be effective in lowering body 

weight gain and liver weight in HFD induced obese mice (Park et al., 2013). In a 

study by Le et al. (Le et al., 2012), enhanced mitochondrial FA oxidative metabo-

lism in skeletal muscle and brown adipose tissue was observed in obese mice with 

PNO consumption evidenced by higher expression of genes related to FA oxidation 

such as Ppara, Cpt1 and Acadl.  
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III. Materials and Methods 

1. Animals and diets 

Five-week-old male C57BL/6N mice were purchased from Central laboratory 

animal Inc. (Seoul, Korea) and fed a SC-control diet for 3 days before divided into 

four dietary groups. Control diets contain 10% kcal fat from PNO (PC, n=11) or 

SBO (SC, n=10) and high-fat diets contain 15% kcal fat from lard and 30% kcal fat 

from PNO or SBO (PHF or SHF, both n=12). The diets were made by Dyets, Inc. 

(Bethlehem, Pennsylvania, USA). Table 1 shows the composition of the experi-

mental diets. The fatty acid composition of the experimental diets is shown in Ta-

ble 2. PNO used in the experiment was a gift from Dubio Co., Ltd. (Hwaseong-

City, GyeongGi-do, Korea). Mice were housed individually in a pathogen-free fa-

cility under a controlled environment that provided constant temperature (23 ± 3°C) 

and humidity (55 ± 10%) and a light/dark cycle (12 h/12 h). Body weight was 

measured every week. At the end of 12 weeks, the animals were euthanized with 

CO2 asphyxiation after 12 hour fasting. Blood was collected by heart puncture and 

serum was isolated from blood by centrifugation at 3000 rpm for 20 minutes at 4°C. 

Small intestine and livers were dissected out, and with the remove of surrounding 

fat, small intestine was divided into duodenum, ileum and jejunum. White adipose 

tissue, which located behind the kidney and along the back of the abdomen were 

also dissected. All tissues and serum were immediately snap-frozen in liquid nitro-

gen and stored at -80°C for later biochemical and molecular analysis. All the exper-
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iment procedures involving mice were conducted in accordance with the guideline 

approved by Institutional Animal Care and Use Committee of Seoul National Uni-

versity (approval No. SNU-101029-1) 
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Table 1. Composition of the experiment diets1 

 Control diet High-fat diet 
 (10% Oil) (30% Oil+15% Lard) 
casein (g) 200 200 
L-cystine (g)   3   3 
Sucrose (g) 350  172.8 
Cornstarch (g) 315   72.8 
Dyetrose (g)  35          100 
PNO2 or SBO (g)  45 135 
Lard (g)   0   37.5 
t-Butylhydroquinone (g)       0.009      0.027 
Cellulose (g)  50  50 
Mineral mix (g)3  35  35 
Vitamin mix (g)4  10  10 
Choline bitartrate (g)   2   2 
Total (g)  1045.0   848.1 
kcal/g diet     3.7     4.6 
 

1Resource: Dyets, Inc, Bethlehem, PA, USA. 

2 PNO was a gift from the Dubio Co., Ltd. (Hwaseong-City, GyeongGi-do, Korea) 

3Thirty-five grams of mineral mix (Dyets, #210099) provides 5.1 g calcium, 4 g 

phosphorus, 3.6 g potassium, 1 g sodium, 1.6 g chloride, 0.5 g magnesium, 0.3 g 

sulfur, 59 mg manganese, 46 mg iron, 25 mg zinc, 5 mg copper, 0.2 mg selenium, 

0.2 mg iodine and 4.2 g sucrose. 

4Ten grams of vitamin mix (Dyets, #300050) provides 4000 IU vitamin A, 1000 IU 

vitamin D3, 50 IU vitamin E, 30 mg niacin, 16 mg pantothenic acid, 7 mg vitamin 

B6, 6 mg vitamin B1, 6 mg vitamin B2, 2 mg folic acid, 0.8 mg menadione, 0.2 mg 

biotin, 10 μg vitamin B12 and 9.8 g sucrose. 
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2. Fatty acid composition of the experiment diets 

Total lipids were extracted from the experimental diet using a Folch extraction 

protocol (Folch et al., 1957). 50 mg diet samples were dissolved with 1mL chloro-

form and 0.5 mL methanol. After dispersion, the whole mixture was agitated on a 

tube rocker for 16 hours at room temperature. Then the homogenate was centri-

fuged at 2000 rpm for 10 minutes and 1 mL supernatant was removed to a new 

tube. Before another centrifugation at 2000 rpm for 10 minutes, added to the su-

pernatant was agitated with 0.2 mL of 0.9% NaCl for 30 minutes. Then the lower 

layer containing lipids was removed to a new tube and was evaporated under vacu-

um under a nitrogen stream.  

By methylating the lipid sample extracted through the above process, fatty acid 

methyl ester was generated. Then the rest lipids were reconstituted in 0.4 mL of 0.5 

M methanolic NaOH and incubated at 100°C for 5 minutes and 0.4 mL of fresh 14% 

BF3 in methanol was added. Another incubating process at 100°C for 5 minutes 

was performed. After that, 8.5 mL H2O and 0.5 mL hexane are added to the sample 

and the mixture was incubated for 10 minutes at room temperature before perform-

ing centrifugation for 5 minutes under 2000 rpm. After centrifugation, the superna-

tant was removed and kept for gas chromatography (GC) analysis. 

10% of samples (1 uL sample solution with split ratio 1:10) were measured with 

GC machine (Agilent 7890A, Agilent Technologies, Santa Clara, California, USA) 

using DB-Carbowax column (0.32 mm × 25 m, 0.2 μm, Agilent Technologies, San-
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ta Clara, California, USA) and flame ionization detector. Helium was used as carri-

er gas with 1.5 mL/min constant flow compensation, injection temperature was 

raised from 50°C to 200°C at 15°C/min and maintained for 20 minutes at 200°C. 

By comparing peaks with the compound retention time, we could get total FA 

composition in diet sample. And the proportions of each fatty acid contained in the 

sample were determined by calculating the ratio of a single peak area (representing 

one specific fatty acid) to the total peak area. 
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3. Serum lipid analysis 

Serum TG level was measured enzymatically using Cleantech TG-S kit (Asan 

pharm Co., Ltd, Seoul, Korea) using a series of coupled reactions where TG were 

hydrolyzed to produce fatty acids and glycerol. Glycerol then undergoes phosphor-

ylation and oxidation, and H2O2, one of the reaction products can be measured 

quantitatively in a peroxidase catalyzed reaction that produces a color. The absorb-

ance of the color can be later used to calculate serum TG concentration. In this 

study, 300 uL of enzyme solution and 2 uL of serum sample or standard sample 

(300 mg/dL of glycerol) were added to 96-well plates with 10 minutes incubation 

at 37°C. The absorbance was measured using a microplate reader (Spectramax 190, 

Molecular Devices, Sunnyvale, California, USA) at 550 nm. Serum TG concentra-

tion was calculated based on the standard curve derived from the absorbance of the 

standard sample. 

Serum NEFA concentration was measured by SICDIA NEFAZYME Kit (Shin 

Yang Chemical, Busan, Korea). This measurement is similar with serum TG con-

tent measurement which is also based on an enzymatic assay. Acyl coenzyme A is 

produced from free fatty acid, and it then goes through a re-oxidizing enzymatic 

process, producing H2O2 which can induce a color-change-reaction. In this study, 

4uL serum sample or standard solution and 200 uL of NEFA reagent 1 were added 

to each well of the 96-well microtiter plate and the mixture was incubated at 38°C 

for 5 minutes. Later another NEFA reagent 2 was added to each well by 100 uL and 
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the absorbance was measured under 546 nm wavelengths using a spectrophotome-

ter (Spectramax 190, Molecular Devices, Sunnyvale, California, USA). Serum NE-

FA concentration was calculated based on the standard curve derived from the ab-

sorbance of the standard sample. 
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4. Measurement of hepatic lipid contents 

Folch method was used to extract total lipids from liver (Folch et al., 1957). 25 

mg liver tissue was homogenized in 2 mL tube with 60 uL PBS solution. Then 800 

uL chloroform and 400 uL methanol were added to the homogenate and the mix-

ture was incubated for 16 hours at room temperature. Then the homogenate was 

centrifuged at 2000 rpm for 10 minutes at room temperature and the supernatant 

afterwards was removed to a new tube. After that, the cap of the tube was left open 

in a fume hood for 3 hours and the remaining solid was well dissolved in 0.1 mL 

isopropanol. Measurement of liver TG level was carried out in the same way as 

mentioned in method 3. 
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5. RNA extraction and cDNA synthesis 

Total RNA was extracted from jejunum and liver using TRIzol reagent (Invitro-

gen, Carlsbad, California, USA) following the manufacturer’s instruction. Frozen 

intestine and liver samples (~50 mg) were homogenized in 1ml of Trizol reagent by 

a power homogenizer (IKA T10 Basix Ultra-turrax, IKA, Königswinter, Germany). 

The homogenates were incubated for 5 minutes at room temperature before sup-

plementing it with 0.2 mL of chloroform. After being shaken vigorously for 15 

seconds, incubated at room temperature for 3 minutes, subsequently the homoge-

nized samples were centrifuged at 12000 g for 15 minutes at 4°C. Following cen-

trifugation, since RNA remains exclusively in the colorless upper aqueous phase 

whereas DNA and proteins are in the interphase and organic phase, the aqueous 

phase was then mixed with 0.5 mL of isopropyl alcohol in a new tube, incubating 

at room temperature for another 10 minutes. The new mixture was centrifuged at 

12000 g for 10 minutes at 4°C, then the supernatant were discarded, and the RNA 

pellets was washed with 1 mL of 75% ethanol. After vortexing, the samples were 

centrifuged at 7500 g at 4°C for 2 minutes, and again the supernatant were re-

moved to let RNA pellets briefly dry. In the end, 20 uL of diethylpyrocarbonate 

(DEPC) water was added to redissolve RNA pellet. Isolated RNA quantity and 

quality were determined via spectrophotometry using a spectrophotometer (Opitzen 

2120UV, Mecasys Co., Ltd, Daejeon, Korea) and by agarose gel electrophoresis 

using Gel-Dox XR system (Bio-Rad Laboratories, Inc., Berkeley, California, USA), 

respectively. 
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The extracted RNA with the final concentration of 0.5 ug/uL was used for 

cDNA synthesis with PrimeScript II 1st strand cDNA synthesis kit (Takara Bio Inc., 

Otsu, Shiga, Japan). A RNA primer mixture with total RNA 2 μg, oligo dT primer 

(50 mM) 1 μL, dNTP mixture (10 mM) 1 μL, RNase-free dH2O 3 μL was incubat-

ed at 65°C for 5 minutes. With another 5 minutes’ ice incubation, PrimeScript II 

buffer (5×) 4 μL, RNase inhibitor (40 U/μL) 0.5 μL, PrimeScript II RTase (200 

U/μL) 1 μL and RNase-free dH2O 4.5 μL were added to RNA primer mixture, mak-

ing the reaction mixture with a total volume of 20 uL. Thermal Cycler 2720 (Ap-

plied Biosystems, Foster, California, USA) was then used to perform cDNA syn-

thesis with the following conditions: 42°C for 50 minutes, 95°C for 5 minutes and 

4°C for 30 minutes. The synthesized cDNA was preserved at -20°C for future use. 
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6. Real-time polymerase chain reaction (PCR) analysis 

Real-time PCR was performed in StepOne Real-time PCR System (Applied Bi-

osystems, Foster, California, USA) with a SYBR Premix Ex Taq (Takara Bio Inc., 

Otsu, Shiga, Japan). PCR measurements were performed in a total volume of 20 uL, 

containing 0.4 uL of 10 uM each primer, 0.4 uL of ROX reference dye, 10 uL of 

SYBR Premix Ex Taq, 1uL of 2 ng/uL cDNA and 7.8 uL of autoclaved distilled 

water. The following PCR program was carried out: 95°C for 30 seconds to initial 

denaturation, 40 cycles of 95°C for 10 seconds to denaturation and 60°C for 30 

seconds to annealing, extension, reading fluorescence. Calculations were per-

formed by a comparative method (2−ΔΔCT) using housekeeping gene Gapdh 

(Glyceraldehyde-3-phosphate dehydrogenase) as an endogenous control. StepOne 

software (version 2.1, Applied Biosystems, Foster, California, USA) was used to 

measure amplification of the target and of the endogenous control in samples and 

in a reference sample. Measurements are normalized using the endogenous control. 

The software also determines the relative quantity of target in each sample by com-

paring normalized target quantity in each sample to normalized target quantity in 

the reference sample. Specific primer sequences used in this study are shown in 

Table 3 and Table 4. 
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7. Statistical analysis 

  The overall effects of fat amount and oil type, and the interaction between the 

two were examined by Two-way ANOVA. The individual group comparison were 

determined by Fisher’s LSD multiple comparison test. All statistical analysis was 

performed within SPSS software version 23 statistical package for Windows (SPSS 

Inc., Chicago, Illinois, USA). The results were expressed as means ± SEM and sig-

nificance was declared at P<0.05.  
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IV. Results 

1. Body weight, weight gain, white adipose tissue weight and liver weight  

  As shown in Table 5, body weight (P<0.05), weight gain (P<0.05) and amount 

of white adipose tissue (WAT) (P<0.05) were significantly higher in HFD fed mice 

in comparison to control diet fed mice. The replacement of SBO with PNO showed 

significant effect on weight gain and WAT weight. PNO-fed groups had significant-

ly lower weight gain (P <0.05) and amount of WAT (P<0.05) than SBO-fed groups. 

PHF group had significantly lower body weight gain (15.9% lower, P<0.05) and 

WAT amount (19.9% lower, P<0.05) than SHF group. Weekly body weight change 

curve is shown in Fig 8. From where we could see weight gain continued thereafter 

to be lower in PNO fed mice. Lower WAT amount in PC group compared with SC 

group (29.7% less, P<0.05) was also observed. PNO-fed mice had significantly 

lower liver weight in comparison to SBO-fed mice (P<0.05). PHF group had sig-

nificantly lower liver weight than SHF group (12%, P<0.05). No differences were 

observed in liver-to-body weight percentage between SHF and PHF groups. 
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Figure 8. Body weight curves of mice fed with control or HFD containing SBO 

or PNO.  

SC (n=10), 10% soybean oil; PC (n=11), 10% pine nut oil; SHF (n=12), 30% soy-

bean oil + 15% lard; PHF (n=12), 30% pine nut oil + 15% lard. 
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2. Serum and liver lipid concentrations 

  Overall, serum NEFA concentration was significantly higher in PNO-fed mice 

compared with SBO-fed mice (P<0.05). Whereas serum TG concentration was not 

affected by either fat amount or oil type. HFD groups tended to have higher liver 

TG concentration (P=0.09). No significant difference was detected in liver TG lev-

el regardless of oil type (Table 6). 
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3. Expression of genes involved in intestinal fatty acid uptake and channeling 

  To examine whether PNO replacement in diet affects intestinal lipid absorption, 

the expression of genes related to fatty acid absorption, Cd36 and Fatp4, and the 

genes involved in fatty acid channeling within enterocyte, Acsl5 and Acbp, were 

measured (Fig. 9). Overall, the mRNA levels of Cd36 were significantly higher in 

HFD-fed mice (P<0.05) but significantly lower in PNO-fed mice (P<0.05). PHF 

group had a tendency of lower Cd36 mRNA level than SHF group (0.64-fold, 

P=0.06). Feeding HFD led to a significant higher Acbp gene expression (P<0.05), 

but no statistical difference was found regarding different oil type. The mRNA lev-

els of Fatp4 and Acsl5 were not influenced by amount of fat and type of oil.  
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Fat amount 
(P-value) 

0.20 0.04 0.32 0.03 

Oil type 
(P-value) 

0.47 0.03 0.19 0.64 

Interaction 
(P-value) 

0.42 0.51 0.58 0.68 

Figure 9. The mRNA levels of genes related to intestinal fatty acid uptake and 

channeling.  

Data are presented as means ± SEM, n=6 for each group. Two-way ANOVA was 

used to determine the significant effect of fat amount and oil type. Different letters 

indicate significant difference at P<0.05 by Fisher’s LSD multiple comparison test. 

SC: 10% soybean oil; PC: 10% pine nut oil; SHF: 30% soybean oil+15% lard; PHF: 

30% pine nut oil+15% lard. Fatp4: Fatty acid transporter 4; Cd36: Cluster of dif-

ferentiation 36; Acsl5: acyl-CoA synthetase long-chain family member 5; Acbp: 

Acyl-CoA-binding protein. 
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4. Expression of genes involved in intestinal chylomicron secretion 

  To determine whether PNO’s effect on weight gain reduction was associated 

with changes in chylomicron secretion, we measured the expression of genes in-

volved in intestinal chylomicron assembly and secretion. The mRNA level of Mtp, 

an enzyme involved in chylomicron synthesis and secretion, was significantly up-

regulated in HFD-fed mice (P<0.05). PHF group tended to have a lower Mtp 

mRNA level than SHF group (0.81-fold, P=0.08). The gene expression of chylomi-

cron structural components ApoB48 and ApoA4, which also facilitate intestinal lip-

oprotein production, were also measured. Although ANOVA result didn’t show the 

significant difference in the mRNA levels of ApoA4, overall tendency of lower ex-

pression in PNO-fed mice compared with SBO fed mice (P=0.07) was observed. 

When individual group comparisons were done, PHF group had a significantly 

lower mRNA levels of ApoA4 than SHF group (P<0.05). Neither fat amount nor oil 

type influenced mRNA levels of ApoB48 (Fig. 10). 
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Fat amount 
(P-value) 

0.00 0.28 0.37 

Oil type 
(P-value) 

0.19 0.97 0.07 

Interaction 
(P-value) 

0.21 0.60 0.22 

Figure 10. The mRNA levels of genes related to intestinal chylomicron assem-

bly and secretion.  

Data are presented as means ± SEM, n=6 for each group. Two-way ANOVA was 

used to determine the significant effect of fat amount and oil type. Different letters 

indicate significant difference at P<0.05 by Fisher’s LSD multiple comparison test. 

SC: 10% soybean oil; PC: 10% pine nut oil; SHF: 30% soybean oil+15% lard; PHF: 

30% pine nut oil+15% lard. Mtp: microsomal triglyceride transfer protein; ApoB48: 

apolipoprotein B-48; ApoA4: apolipoprotein A-IV. 
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5. Expression of genes involved in hepatic lipid uptake and channeling 

  To examine whether PNO influenced hepatic lipid uptake, the mRNA levels of 

chylomicron remnant receptor Lrp1 and FA uptake protein Fatp5 were measured. 

PNO consumption led to significantly higher Lrp1 gene expression than SBO-fed 

groups (P<0.05). Mice in PC group had significantly higher Lrp1 mRNA level 

compared to mice in SC group (1.7-fold, P<0.05). The mRNA levels of Fatp5 were 

significantly higher in PNO-fed mice than SBO-fed mice (P<0.05). This may indi-

cate that PNO could accelerate serum chylomicron and FA clearance. However, the 

mRNA levels of Acsl1 and Acbp, which are involved in hepatic FA channeling, did 

not show any difference in terms of either fat amount or oil type factors (Fig. 11).   
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Fat amount 
(P-value) 

0.48  0.60 0.37 0.08 

Oil type 
(P-value) 

0.01 0.04 0.26 0.82 

Interaction 
(P-value) 

0.49 0.47 0.83 0.36 

Figure 11. The mRNA levels of genes related to hepatic lipid uptake and chan-

neling.  

Data are presented as means ± SEM, n=6 for each group. Two-way ANOVA was 

used to determine the significant effect of fat amount and oil type. Different letters 

indicate significant difference at P<0.05 by Fisher’s LSD multiple comparison test. 

SC: 10% soybean oil; PC: 10% pine nut oil; SHF: 30% soybean oil+15% lard; PHF: 

30% pine nut oil+15% lard. Lrp1: low density lipoprotein receptor-related protein 1; 

Fatp5: Fatty acid transporter 5; Acsl1: acyl-CoA synthetase long-chain family 

member 1; Acbp: Acyl-CoA-binding protein. 

0.0

0.5

1.0

1.5

2.0

2.5

Lrp1 Fatp5 Acsl1 Acbp

SC PC SHF PHF

R
el

at
iv

e 
m

R
N

A 
le

ve
l

a

b

ab

b



50 

6. Expression of gene involved in hepatic TG lipolysis and fatty acid oxidation 

  We also examined the expression of hepatic genes involved in TG lipolysis and 

FA oxidation to see whether PNO could prevent liver lipid accumulation against 

HFD treatment as well as increased hepatic lipid uptake. Atgl is known to play a 

key role in TG hydrolysis (Turpin et al., 2011). In current study, HFD did not make 

a significant difference on mRNA level of Atgl, whereas PNO consumption groups 

tended to have a higher mRNA level of Atgl (P=0.08).  

  Mitochondrial FA oxidation related genes Cpt1a, Acadl, Ehhadh and Acaa1 were 

also measured. PNO-fed mice had higher mRNA levels of Cpt1a in comparison 

with SBO-fed mice (P=0.05). The mRNA levels of Acadl were also significantly 

higher in PNO-fed mice compared with SBO fed mice (P<0.05). Mice in PC group 

had significantly higher Acadl mRNA levels compared to mice in SC group (1.2-

fold, P<0.05). The mRNA levels of Acaa1 and Ehhadh were not significantly af-

fected by the different dietary treatments (Fig. 12). 
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Fat amount 
(P-value) 0.83 0.29 0.32 0.17 0.87 

Oil type 
(P-value) 0.08 0.05 0.01 0.19 0.16 

Interaction 
(P-value) 0.58 0.95 0.61 0.35 0.62 

Figure 12. The mRNA levels of genes related to hepatic TAG lipolysis and fatty 

acid oxidation.  

Data are presented as means ± SEM, n=6 for each group. Two-way ANOVA was 

used to determine the significant effect of fat amount and oil type. Different letters 

indicate significant difference at P<0.05 by Fisher’s LSD multiple comparison test. 

SC: 10% soybean oil; PC: 10% pine nut oil; SHF: 30% soybean oil+15% lard; PHF: 

30% pine nut oil+15% lard. Atgl: Adipose triglyceride lipase; Cpt1a: carnitine 

palmitoyltransferase 1a; Acadl: Long Chain Acyl-CoA Dehydrogenase; Ehhadh: 

enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; Acaa1: 

acetyl-Coenzyme A acyltransferase 1a. 
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7. Expression of genes involved in hepatic TG synthesis and VLDL assembly 

  TG synthesis and TG contained VLDL secretions are pivotal factors affecting 

lipid accumulation in liver. As shown in Fig. 13, compared to SBO-fed mice, 

PNO-fed mice had significantly higher mRNA levels of ApoB100 which is in-

volved in VLDL assembly and secretion (P<0.05). On the other hand, gene expres-

sion of Dgat2, an enzyme catalyzing the final step in the TG biosynthesis, was not 

influenced by different dietary treatments. 
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Fat amount 
(P-value) 

0.08 0.56 

Oil type 
(P-value) 

0.11 0.04 

Interaction 
(P-value) 

0.33 0.90 

Figure 13. The mRNA levels of genes related to hepatic TAG synthesis and 

VLDL assembly.  

Data are presented as means ± SEM, n=6 for each group. Two-way ANOVA was 

used to determine the significant effect of fat amount and oil type. Different letters 

indicate significant difference at P<0.05 by Fisher’s LSD multiple comparison test. 

SC: 10% soybean oil; PC: 10% pine nut oil; SHF: 30% soybean oil+15% lard; PHF: 

30% pine nut oil+15% lard. Dgat2: diacylglycerol O-acyltransferase 2; ApoB100: 

apolipoprotein B-100. 

 

0.0

0.5

1.0

1.5

2.0

Dgat2 ApoB100

SC PC SHF PHF

R
el

at
iv

e 
m

R
N

A
 le

ve
l



54 

V. Discussion 

  The present study showed that the replacement of SBO with PNO in control diet 

or in HFD resulted in lower body weight gain and less amount of WAT. PNO re-

placement in the diet might function to suppress excessive intestine lipid absorp-

tion by down-regulating intestinal FA uptake related genes as well as to improve 

hepatic lipid metabolism by up-regulating genes related to TG lipolysis, FA oxida-

tion and VLDL secretion in both control diet and HFD fed mice.  

  HFD induced body weight gain is associated with excessive intestinal lipid ab-

sorption (Petit et al., 2007) and increased lipoprotein production (Huang et al., 

2013). In this study, the expression of the key gene involved in intestinal FA uptake 

Cd36 was significantly higher in HFD groups compared to control groups, but its 

expression was also significantly lower in PNO-fed groups when compared to 

SBO-fed groups. These results suggest that PNO replacement may prevent exces-

sive lipid absorption from intestine.  

  After being taken up by enterocytes, dietary sources of lipid are used for the bio-

synthesis of neutral fats (Iqbal and Hussain, 2009), which are transported into the 

endoplasmic reticulum by Mtp and packaged as chylomicron with ApoB48 and 

ApoA4 (Black, 2007; Huang et al., 2013). ApoA4 and ApoB48 are the structural 

apolipoproteins of chylomicron, and the induction of ApoA4 expression found in 

HFD-fed mice might also facilitate intestinal absorption as well as lipoprotein pro-
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duction (Lu et al., 2006; Stan et al., 2003). In the current study, HFD groups had 

significantly higher mRNA level of Mtp, whereas PNO consumption group showed 

a tendency of suppression toward this overexpression. Besides, mRNA level of 

ApoA4 was significantly lower in PHF group compared to SHF group. These re-

sults indicate that PNO consumption may inhibit overproduction of chylomicron by 

intestine in HFD fed mice. 

  Collectively, in intestine, PNO replacement inhibited the overexpression of 

genes related to intestinal FA uptake, chylomicron assembly and secretion; espe-

cially in HFD fed mice. The results suggest that PNO consumption could lower 

intestinal lipid absorption, chylomicron excretion and finally lead to weight loss. 

Since chylomicrons are responsible for the transportation of most dietary lipids 

from the intestinal tract into circulation (Mortimer et al., 1995), the inhibition of 

chylomicron secretion with PNO replacement further suggests that PNO consump-

tion may reduce lipid flux to the circulation, liver, muscle or other lipid accumula-

tion tissue. 

  Chylomicron leaves intestinal lumen, transfers dietary lipid firstly to adipose 

tissue or other extrahepatic tissues (Nestel et al., 1962), and delivers the remaining 

lipids in the form of chylomicron remnants which can be cleared from plasma by 

liver via Lrp1 (Lillis et al., 2008; Masson et al., 2009). It is reported that impaired 

clearance of chylomicron remnants is a risk factor for the development of cardio-

vascular disease (Willnow, 1997) whereas this hepatic clearance can be down-
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regulated by HFD (Mortimer et al., 1995). In current study, the mRNA levels of 

hepatic chylomicron remnant uptake receptor Lrp1 was significantly higher in 

PNO-fed mice. This result indicated that PNO replacement in diet could accelerate 

the removal of chylomicron remnant from circulation by liver. 

  Dietary fatty acid can enter liver in two ways: through the uptake of chylomicron 

remnant derived from intestine, or through overflow of plasma free FA pool 

(Donnelly et al., 2005). We then measured the mRNA levels of genes related to 

hepatic FA uptake. It is reported that elevated plasma free FA concentration could 

activate the hepatic fatty acid uptake to reduce free FA levels (Adiels et al., 2008; 

Hardwick et al., 2009). In this study, with higher serum NEFA level observed in 

PNO consumption group, liver FA uptake related gene Fatp5 mRNA level was sig-

nificantly higher in PNO-fed groups. Worth to be noted, as the majority of plasma 

NEFA is derived from lipolysis of TG activities in WAT (Bjorndal et al., 2011; 

Grenier-Larouche et al., 2012). Therefore the higher serum NEFA level observed in 

PNO-fed group may result from the enhanced lipolysis in WAT with PNO con-

sumption. From this point of view, additional studies may be needed to determine 

the influence of dietary PNO replacement on lipid metabolism and deposition in 

adipose tissue. 

  Liver lipid accumulation occurs when the amount of TG from chylomicron rem-

nant taken from plasma and de novo lipogenesis overwhelms the amount of TG 

used for lipolysis and FA oxidation as well as for excretion with VLDL (Fabbrini et 
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al., 2010). In the current study, even though hepatic NEFA and TG uptake were 

increased in PNO-fed group, liver TG concentration remained similar between 

SBO and PNO groups. Therefore the potential mechanisms that account for liver 

dealing with excessive lipid influx associated with PNO consumption became our 

main interest. Atgl, in addition to its direct effect on catalyzing the initial step of 

TG hydrolysis, has an influence on regulation of FA oxidation without affecting 

VLDL secretion (Ong et al., 2011). Cpt1a catalyzes the rate-limiting step, shuttling 

FA across the mitochondrial membrane for beta-FA oxidation. Acadl, Ehhadh and 

Acaa1 are three beta-oxidation marker enzymes (Guo et al., 2007; van der Leij et 

al., 2007). In present study, higher gene expressions of Atgl, Cpt1a and Acadl ob-

served in PNO-fed groups suggest that PNO may contribute to activate TG lipoly-

sis as well as mitochondrial FA oxidative pathway in liver.  

  In addition, we also measured expression of genes related to TG synthesis and 

secretion as VLDL. Liver-specific Dgat2 catalyzes the terminal step in TG synthe-

sis (Millar et al., 2006) and ApoB100, a structural protein on VLDL, is involved in 

VLDL assembly and secretion in liver (Miccoli et al., 2008). In current study, PNO 

consumption did not exert any influence on Dgat2 mRNA level. However, mRNA 

level of ApoB100 was significantly higher in PNO-fed groups which indicates that 

PNO replacement could enhance the incorporation of TG into VLDL for secretion 

from liver, enabling lipid to be recycled for further uptake by extrahepatic tissue.  
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  Together, PNO replacement in diet resulted in higher plasma NEFA and chylo-

micron remnant clearance by liver which might relieve plasma lipid burden, but at 

the same time, it could reversely cause lipid accumulation in liver. However, the 

higher expression of genes involved in hepatic TG lipolysis, FA oxidation and 

VLDL production observed in PNO-fed groups indicate PNO consumption may 

increase hepatic lipid metabolism to accommodate the excessive hepatic lipid in-

flux, which might further prevent a progressive liver lipid accumulation.  

  Even though PNO replacement resulted in less chylomicron secretion from intes-

tine as well as elevated hepatic chylomicron remnant clearance by liver, there were 

still no significant differences in serum TG concentrations between two different 

oil dietary treatments. It is generally accepted that plasma TG has two different 

carriers, one is chylomicron from intestine, and another is VLDL which is mainly 

assembled and secreted by liver (Heath et al., 2003). Plasma TG concentrations are 

determined by the balance between production of chylomicron-TG and VLDL-TG 

(Geerling et al., 2014). Under normal conditions, chylomicron remnants could be 

rapidly removed from the circulation by liver (Cooper, 1997), and during postpran-

dial period, VLDLs contributes more than 90% of TG rich lipoproteins(Heath et al., 

2003). Therefore, even though PNO consumption suppressed excessive chylomi-

cron secretion from intestine and enhanced chylomicron remnant clearance from 

circulation, serum TG concentration might have still remained similar between two 

different oil groups because of elevated VLDL secretion from liver in PNO-fed 

groups.  
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  In conclusion, this study provided some evidence at transcriptional level on the 

disparities in various intestinal and hepatic metabolic pathways between PNO and 

SBO diet fed mice. PNO replacement may suppress excessive lipid absorption and 

chylomicron secretion into body circulation from intestine as well as enhances he-

patic lipid metabolism in both control and HFD fed mice. Overall, the results may 

indicate PNO as potential dietary supplement for preventing metabolic dysregula-

tions of lipids in intestine and liver seen with obesity.  
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VI. Summary and Conclusion 

In this study, the effects of Korean pine nut oil (PNO) compared with soybean 

oil (SBO) on the factors involved in intestinal and hepatic lipid metabolism were 

investigated. After feeding mice for 12 weeks with control diets containing 10% 

kcal fat from SBO or PNO (SC or PC) or high-fat diets containing 45% kcal energy 

where 15% kcal fat from lard and 30% kcal fat from SBO or PNO (SHF or PHF), 

body weight, amount of white adipose tissue (WAT), serum free fatty acid and tri-

acylglycerol (TG) levels, liver weight and TG levels were measured. Also the ex-

pression of genes involved intestinal FA uptake and channeling, intestinal chylomi-

cron synthesis; hepatic lipid uptake and channeling, hepatic TG lipolysis and FA 

oxidation, as well as VLDL assembly were measured by real-time PCR. The results 

of the present study were as follows: 

1) Body weight, white adipose tissue weight and liver weight: HFD-fed mice 

had significantly higher body weight (P<0.05) and WAT amount (P<0.05) 

than control diet-fed mice. PHF group had significantly lower body weight 

gain (15.9% less, P<0.05) and less WAT (19.9% less, P<0.05) than SHF 

group. Less WAT was also observed in PC group than SC group (29.7% 

less, P<0.05). Liver weight was significantly lower in PNO-fed mice in 

comparison to SBO-fed mice (P<0.05). 
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2) Serum and liver lipid levels: PNO-fed mice had significantly higher NEFA 

than SBO-fed mice (P<0.05). Whereas serum and liver TG concentrations 

were not affected by either fat amount or oil type.  

3) Expression of genes involved in intestinal FA uptake as well as chylomi-

cron assembly: PNO-fed mice had significantly lower Cd36 mRNA levels 

(P<0.05) and tendency of lower ApoA4 mRNA levels (P=0.07) than SBO-

fed mice in intestine. Besides, PHF group showed a significant lower 

ApoA4 gene expression than SHF group (P<0.05).  

4) Expression of genes involved in hepatic lipid uptake and channeling: 

PNO-fed mice had significantly higher mRNA expression of Lrp1 and 

Fatp5 than SBO-fed mice in liver (P<0.05) 

5) Expression of genes involved in hepatic TG lipolysis and FA oxidation: 

PNO-fed mice had a tendency of higher Atgl mRNA levels (P=0.08), and 

significantly higher Cpt1a and Acadl mRNA levels in liver (P<0.05). Mice 

in PC group had significantly higher Acadl mRNA levels compared to 

mice in SC group (1.2-fold, P<0.05). 

6) Expression of genes involved in hepatic TG synthesis and VLDL assembly: 

PNO consumption did not exert any influence on Dgat2 mRNA level. 

ApoB100 mRNA expression was significantly up-regulated in PNO-fed 

mice compared with those fed SBO (P<0.05). 
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The results indicate that PNO-fed groups had significantly lower weight gain 

and less amount of white adipose tissue compared to SBO-fed groups. The lower 

Cd36 mRNA expression and a tendency of lower ApoA4 mRNA level in PNO con-

sumption groups suggest that PNO may decrease activities of intestinal FA uptake 

and chylomicron assembly in intestine. The tendency of higher Atgl mRNA expres-

sion, together with the significantly higher Cpt1a, Acadl and ApoB100 mRNA lev-

els in PNO-fed group may imply that PNO could increase hepatic TG lipolysis; 

mitochondrial FA oxidation and VLDL assembly.  

In conclusion, PNO replacement might function to prevent excessive lipid ab-

sorption and chylomicron secretion into body circulation from intestine in HFD fed 

mice. It also could enhance hepatic lipid metabolism in both control and HFD fed 

mice. Overall, this study may indicate PNO as potential dietary supplement for 

preventing metabolic dysregulations of lipids in intestine and liver seen with obesi-

ty.  
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국문초록 

고지방 식이로 유도된 비만 
마우스에서 잣기름이 소장과 간 지방 

대사에 미치는 영향  

 
서울대학교 대학원 식품영양학과 

주 슈 앙 

 잣기름의 섭취는 체중 증가를 감소시키고 고지방 식이로 유도한 비만 

마우스에서의 간지방증을 예방하는 데에 긍정적인 영향이 있다고 

보고되어 왔다. 본 연구에서는 고지방식이 중 일부를 잣기름으로 

대체하였을 때 잣기름이 소장과 간에서의 지질 대사에 미치는 영향을 

보고자 하였다. 5 주령의 수컷 C57BL/6 마우스를 네 군으로 나눈 후 네 

가지 실험 식이를 각각 12 주간 제공하였다. 실험 식이는 총 식이 

칼로리의 10%를 콩기름이나 잣기름으로 공급하는 저지방 식이(SC 또는 

PC)와 총 식이 칼로리의 45% 중 15% 라아드로, 30%는 콩기름이나 

잣기름으로 공급하는 고지방 식이 (SHF 또는 PHF)로 구성되었다. 장내 

지방산 흡수 와 운반(Cd36, Fatp4, Acsl5, Acbp), 카일로미크론 합성 (Mttp, 
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ApoB48, ApoA4), 간 지질의 흡수와 운반 (Lrp1, Fatp5, Acsl1, Acbp), 간 

중성 지방 분해와 지방산 산화 (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1)와 

초저밀도 지단백 합성 (ApoB100) 관련 유전자의 mRNA 발현량을 Real-

time PCR 로 측정하였다. 전반적으로 잣기름 섭취군에서 체중 증가량 

(P<0.05)과 백색 지방량 (P<0.05)이 적었다. 소장에서 잣기름 섭취군의 

Cd36 의 발현량은 유의적으로 낮았고(P<0.05), ApoA4 의 발현량은 SHF 

군보다 PHF 군이 유의적으로 낮았다 (P<0.05). 또한 간 지질 대사 

지표의 결과를 보면 Atgl 과 Cpt1a 의 발현량은 잣기름 섭취군이 높은 

경향성을 보였다 (Atgl, P=0.08; Cpt1a, P=0.05). Acadl 및 ApoB100 의 

발현량은 잣기름 섭취군에서 유의적으로 높았다 (P<0.05). 잣기름 

섭취군에서 Cd36 과 ApoA4 이 모두 낮은 발현량을 보인 것으로 보아 

잣기름이 소장에서 지방 흡수와 카일로미크론 합성을 감소시킬 수 

있다고 할 수 있다. 또한 잣기름 섭취군에서 Atgl 과 Cpt1a 의 발현량이 

높은 경향이 있고 Acadl 및 ApoB100 의 발현량이 유의하게 높았다는 

것으로 보아 잣기름 섭취가 간에서의 중성 지방 분해를 증가시키며 

지방산 산화 및 VLDL 합성은 촉진할 수 있다는 가능성을 제시한다. 

결론적으로 본 연구는 고지방 식이를 섭취한 마우스에서 잣기름이 

과도한 장 지방 흡수하는 것을 방지할 뿐만 아니라 간 지질 대사를 

개선하는 가능성도 있음을 시사한다. 
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