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Abstract 

 
Structural collapse is the dominant cause of deaths and injuries 

under seismic excitation. Thus, collapse prevention of building 

during strong earthquake is the most important design objective of 

modern seismic design provisions to promote life-safety and to 

prevent socio-economic losses. In order to ensure an acceptably 

small likelihood of structural collapse under the earthquake load, 

nonlinear dynamic analysis coupled with probabilistic seismic hazard 

analysis is needed. However, nonlinear structural responses under 

seismic excitation vary greatly even if ground motions are scaled to 

get the same level of intensity measure (e.g., ground motions are 

scaled to get the same spectral acceleration at first mode period of 

structure). Furthermore, a large set of ground motions are needed 

for comprehensive reflection of hazard characteristics at a given 

site, which incurs high computational cost during dynamic analyses. 

To reduce the variability of structural responses as well as the 

number of ground motion time series used in nonlinear stochastic 

analyses, the study aims to develop a new seismic intensity 

measure by combining a cumulative IM, e.g. Arias intensity (Arias 

1970) and a peak IM, e.g. spectral acceleration, and a new algorithm 

about selecting ground motion time series for IDA. To this end, 

various techniques of statistical methods such as linear regression, 

clustering analysis, and best subset selection method are employed. 

In order to demonstrate the proposed intensity measure (IM) and 

algorithm, nonlinear dynamic analyses are performed using a 

validated computational model of ductile steel frame structure and 

one of the reinforced concrete (RC) structural frames modeled by 

Haselton et al. (2011). It is found that using a developed IM and 

ground motion selection algorithm, one can obtain a reliable 

estimation on the collapse potential of structure using far less 

number of ground motion time histories with uncertainty reduced. 
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 Chapter 1. Introduction 
 

 

1.1. Study Background 
 

A strong earthquake event has the potential to cause severe 

damage to structural system which may result in considerable 

economic losses and threaten life safety. In order to minimize the 

ultimate socio-economic outcomes, an acceptably small likelihood 

of structural collapse under seismic excitation should be ensured. 

To meet such demand, it is necessary to evaluate collapse 

likelihood of the building during strong earthquake appropriately. 

Estimating collapse capacity of structures, however, is evasiveness 

task due to both significant uncertainties in ground motions and 

chaotic responses of a structure. Therefore, current seismic 

analysis approach, especially for the collapse risk assessment of 

the structural system, adopt probabilistic assessment frameworks 

which can deal with not only randomness of seismic demand but 

also variability of structural capacity. The framework intertwines 

earthquake intensity (e.g., peak ground acceleration, spectral 

acceleration) and corresponding engineering demand parameter or 

structural responses (e.g., inter-story drift, equivalent velocity 

ratio) through series of nonlinear dynamic analyses such as 

incremental dynamic analysis (IDA) so that one can figure out level 

of structural damage in a probabilistic manner (Vamvatsikos and 

Cornell 2002). 

IDA is a widely used method to evaluate structural collapse 

capacity under seismic excitation which is based on so called “IDA 

curve” that tracking the relationship between an “intensity 

measure” (IM) and a corresponding “damage measure” (DM) 

(Vamvatsikos and Cornell 2002, FEMA-350 2000, Maison et al. 

2008, ATC-63 2009, Gunay and Mosalam 2013). The main idea of 

the IDA is that nonlinear dynamic analyses are carried out as the 

intensity level is increased incrementally until the structure shows 

dynamic instability (i.e., the loss of ability to sustain gravity loads). 
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Collapse risk assessment based on IDA, however, have several 

limitations. First, a significant level of variabilities in terms of 

intensity levels of ground motions as well as structural responses is 

often observed. Second, the approach entails high computational 

costs due to the fact that even a single IDA curve requires a large 

number of dynamic analyses. While numerous research efforts are 

reported in the literature to address these issues, collapse risk 

assessment based on IDA have not yet been investigated 

thoroughly by stochastic analyses of computational simulation and 

statistical methods. Therefore, this study develops (1) a new 

measure of seismic intensity to evaluate the structural collapse with 

reduced uncertainty when predicting structural collapse and (2) a 

ground motion selection algorithm to address the high computational 

cost of dynamic seismic response analysis. 

 

1.2. Objectives, Framework and Importance of the Research 
 

The objectives of the study are summarized as follows: 

 

 Propose a new seismic intensity measure by considering 

cumulative IM, peak IM, strong earthquake duration and the 

effects of softening nonlinearities on the structures to predict 

the collapse of a structural system with less uncertainty. 

 Investigate the impact of the energy balance ratio (i.e., ratio of 

seismic input energy given dissipated hysteretic energy) on 

collapse risk assessment. 

 Provide a method to identify the characteristics of ground 

motions which are well correlated with the behavior of IDA-

curve. 

 Develop a new clustering based ground motion selection 

algorithm coupled with a Euclidian metric distance (Chun et al. 

2000) which can reduce the number of time series required for 

IDA. 
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Figure 1.1 Framework for probabilistic assessment of structural collapse. 

Figure 1.1 illustrates the integration between main components 

of the study: analytical models for the selected experimental case 

studies of structural collapse, computational simulations of collapse 

behavior using analytical model, and proposal of new IM as well as 

ground motion selection algorithm. First, an analytical model is 

needed to predict the collapse behavior and validated near-collapse 

experiments reported in the literature (Lignos et al. 2008). 

Recently, Deniz (2014) developed an analytical model of steel 

frame structure, this study employs the computational model 

developed by Deniz (2014) for simulating nonlinear time history 

analysis. Second, using the analytical model validated by the test 

results, IDA are performed for a total of 155 ground motions from 

22 earthquake events (see Appendix A for details). The ground 

motion set was selected from NGA-West2 database (Ancheta et al. 

2013) based on the criteria by Haselton and Deierlein (2007). 

Third, a new IM is developed by combining cumulative and peak 

indices based on structural dynamics, i.e., adopting the inverse form 

of equivalent velocity ratio which will be discussed later. Finally, 

this paper presents a new ground motion selection algorithm based 

on clustering analysis in terms of the behavior of “IDA-curve.” 

The study described here aims to advance understanding of 

structural responses regarding different kinds of ground motion 

time histories for accurate evaluation of collapse capacity, to 
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evaluate the adequacy of current collapse assessment methods, and 

to provide suggestions to enhance existing methods. This paper, 

thus, may have a potential impact across several structural 

engineering experts to improve the evaluation of structural collapse 

capacity to prevent disproportionate collapse. The foremost goal of 

this study is to enhance the life safety by avoiding structural 

collapse because of comprehensive understanding between seismic 

demand and structural capacity. 

 

1.3. Organization of the Study 
 

The chapters in this study are outlined below: 

 

 Chapter 2 provides a comprehensive review of IDA which is one 

of the most widely-used approaches to evaluate the collapse 

capacity of structure under earthquake. Then, statistical 

procedure for fitting fragility functions to structural analysis 

data will be discussed. 

 Chapter 3 develops a new intensity measure which involves the 

cumulative IM, peak IM, strong earthquake duration, and the 

effects of softening nonlinearities on the structure. To this end, 

energy-based collapse criterion and descriptor with ductile 

steel frame computational model whose near-collapse behavior 

is validated is employed. Furthermore, in order to highlight the 

effects of energy parameters when evaluating collapse risk 

assessment, collapse capacity of structure will be demonstrated 

with different set of ground motions in terms of earthquake 

energy balance ratio. Throughout numerical examples, 

applicability and effectiveness of new IM will be tested and 

demonstrated. 

 Chapter 4 introduces the main framework of a new ground 

motion selection algorithm using clustering based adaptive 

sampling procedure. To this end, subset selection method is 

used to identify critical features which is employed in the 

algorithm. Moreover, Euclidian metric distance (MD) which 
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measures the “distance” between the previous and current 

fragility curves is introduced as stabilized parameter of fragility 

curve. The algorithm is also tested in terms of the applicability 

and effectiveness through various numerical examples 

 Finally, Chapter 5 provides a summary of the study and main 

findings.  
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Chapter 2. Incremental Dynamic Analysis and 

Collapse Fragilities 
 

 

Assessment of collapse capacity of structures under seismic 

excitation requires: (1) performing nonlinear dynamic analyses to 

simulate the structural behavior up to collapse, and (2) prediction of 

structural collapse with integration of uncertainties in ground 

motions and analytical models (Zareian and Krawinkler 2007). 

Therefore, this chapter first describes IDA, a nonlinear dynamic 

method to evaluate the collapse capacity of structural system, then 

presents several statistical procedures for estimating fragility 

functions using dynamic structural analysis results with integration 

of existing uncertainties. 

 

2.1. Incremental Dynamic Analysis 
 

Incremental Dynamic Analysis (IDA) (Vamvatsikos and Cornell 

2002) is a parametric analysis method that estimates structural 

performance under seismic load by performing a series of nonlinear 

dynamic analyses of structural model for several ground motion 

records. This concept has been first mentioned by Bertero (1977) 

and has been modified and improved by many experts and 

researchers. Recently, the U.S. Federal Emergency Management 

Agency (FEMA) guidelines adopted incremental dynamic analysis 

as a method to determine the global collapse capacity of structural 

system under earthquake (FEMA-350 2000, FEMA-351 2000). 

This approach usually takes the following steps to evaluate the 

performance of structure (Vamvatsikos and Cornell 2002): 

1. A proper computational structural model needs to be 

developed with a suite of ground motion time histories. 

2. Intensity measure (IM, e.g., peak ground acceleration) and 

damage measure (DM, e.g., drift ratio) should be selected. 

3. For each record, perform nonlinear dynamic analysis as 

incrementally increase the intensity level and track the 
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relationship between IM and calculated DM 

4. One can obtain IDA curves of the structural responses for all 

ground motions 

5. Collapse or limit state is defined on each IDA curve based on 

selected criteria of structural collapse 

6. Fragility curve is obtained based on both IDA results and 

statistical procedure 

As an example, IDA curves using 5 story steel braced frame 

under 30 ground motion time series are shown in Figure 2.1 

(Vamvatsikos and Cornell 2002). 

 

Figure 2.1 IDA curves for 30 records on a 5 story steel braced frame  

by Vamvatsikos and Cornell (2002). 

The main premise of IDA is that the occurrence of “collapse” 

is usually indicated by a large increase of DM or EDP caused by a 

small increase in the IM (i.e., a flat plateau of “IDA curve” as an 

indication of collapse). However, sometimes IDA curves may show 

erratic behavior instead of monotonical increase of DM as IM 

increases. This chaotic structural behavior makes collapse 

prediction ambiguous and uncertain. Therefore, subjective threshold 

value based collapse criteria in conjunction with “IDA curve” is 

widely used to identify structural collapse capacity: IM-based 

criteria (e.g., lower than 20% of the initial IDA slope) and DM-

based criteria (e.g., exceedance of 10% maximum drift) 
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(Vamvatsikos and Cornell 2002). However, collapse assessment 

based on the existing collapse criteria may be sensitive to the 

assumed threshold value, which may not estimate the likelihood of 

structural collapse appropriately (Deniz et al. under review). To 

address such issues, Deniz et al. (under review) proposed an 

energy-based collapse limit-state using dynamic instability. Since 

energy parameters are aggregated quantities considering 

redistribution and variation of each individual component-damage 

within the structural system, this approach can identify and quantify 

the global collapse behavior of structure. The energy-based 

collapse criteria will be introduced in Chapter 3. 

 

2.2. Statistical Procedure for Fitting Fragility Functions to 

Structural Analysis Data 
 

Structural collapse fragility is defined as the conditional 

probability of collapse given a ground motion intensity. Although 

structural fragilities are derived using various approaches such as 

static structural analyses or field observation of damage (Kennedy 

and Ravindra 1984, Kim and Shinozuka 2004, Calvi et al. 2006, 

Porter et al. 2007, Villaverde 2007, Shafei et al. 2011), statistical 

procedures for fitting fragility curve based on nonlinear analyses 

are herein presented (Baker 2015). Using IDA and collapse criteria, 

each ground motion has a single IM value associated with its onset 

of collapse. Using the lognormal cumulative distribution to provide a 

continuous estimation of the probability of collapse, the likelihood of 

structural collapse at a given IM level, x , can be computed as 

follows (Ang and Tang 2007): 

  






 




x
xIMCP

ln
|  (2.1) 

where    indicates the cumulative density function of the 

standard normal distribution,   and   represent the mean and 

standard deviation of IMln , respectively. The mean and standard 

deviation of the IMln  can be calculated using the results of IDA 
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using following mathematical form (Baker 2015): 





N

i

kIM
N

1

ln
1

̂  (2.2) 

 






N

i

kIM
N 1

2ˆln
1

1ˆ   (2.3) 

where N  is the number of ground motions which is used in IDA, 

and kIM  is the IM  value associated with its onset of collapse for 

the thk  ground motion. This method is denoted “Method A” by 

Porter et al. (2007), which can calculate fragility curve by 

computing the moments from a set of data. 

 

2.2.1. Maximum Likelihood Estimate (MLE) Formulation 

 

When performing IDA, several issues are raised due to the fact 

that some ground motions need to be scaled to large IM values to 

produce structural collapse (Baker and Cornell 2005). One strategy 

to address these issues is to limit the scale of ground motions up to 

certain level, 
max

IM . Since IDA carried out only up to some level 

may result in insufficient data of collapse, one cannot use the 

“Method A” to estimate the parameters of fragility function. 

Rather than using method of moments, one can use the MLE 

formulation to compute the parameters of lognormal distribution, ̂  

and ̂ . 

When the total n  ground motions are performed IDA only up to 

certain level, generally m  ground motions may cause structural 

collapse i.e., n  is always greater and equal to m . After performing 

IDA, IM values of m  ground motions at collapse are known value. 

Then, the likelihood of a ground motion causing structural collapse 

at 
i

IM  is mathematically denoted as 








 





 i

i

IM
l

ln
),(

,1
 (2.4) 

where    represents the PDF of the standard normal distribution 
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and iIM  is the seismic intensity of thi  ground motion at collapse 

point among m  ground motions. The likelihood of the ground 

motion that did not produce structural collapse is also computed in 

the same manner as following  








 





 max

2

ln
1),(

IM
l  (2.5) 

where maxIM  is some upper bound limit level when performing IDA. 

Assuming the effect of ground motion to structural system is 

statistically independent, the likelihood function that ground motions 

were observed to cause collapse can be calculated as product of the 

individual likelihoods. 

  mn
m

i

i
llL













  ),(),(),(

2

1

,1
  (2.6) 

The estimated parameters of fragility curve can be obtained by 

maximizing the likelihood function. It is, however, difficult to find 

the parameters which can maximize likelihood function. Therefore, 

many researchers find the value that maximizes the natural 

logarithm of the likelihood function,   ,ln L  as follows: 

   ),(ln),(lnmaxarg)ˆ,ˆ(
2

1

,1
,




lmnl
m

i

i
 



 (2.7) 

 

2.2.2. Fragility Function based on Probabilistic Seismic Demand Model 

 

For effective and reliable collapse risk assessment, some 

researchers use fragility function developed based on the 

probabilistic seismic demand model, which represents the 

relationship between seismic demand and structural capacity 

(Cornell et al. 2002, Baker and Cornell 2006, Deniz 2014). In 

particular, if a ground motion set selected from seismic hazard 

analysis may not capture the earthquake demand at a given site 

sufficiently, structural collapse assessment with probabilistic model 

evaluates structural collapse capacity more effectively compared to 
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other methodologies such as MLE formulation. Since structural 

fragility rests on both the specific IM-DM equation and results of 

dynamic analyses, the bias which comes from record set can be 

alleviated by probabilistic equation. Different fragility curves can be 

obtained with respect to statistical method. It is, however, noted 

that one cannot determine whether they are correct or not. 

Moreover, this is the topic that requires a thorough investigation in 

the earthquake engineering community. 

The relationship between demand and capacity can be 

demonstrated using linear/nonlinear regression model based on 

IDA-based data points. The difference between seismic demand 

model based fragility and foregoing approach is that “Method A” 

and MLE formulation uses only a single IM value associated with its 

onset of collapse for each ground motion, while probabilistic model 

based methodology uses entire data point of IDA because the model 

developed using all IDA data points can quantify the relationship 

between capacity and demand of structure against collapse 

probabilistically. Although a nonlinear regression model can be used 

for developing fragility function, this section describes a simple 

statistical procedure using a linear regression model. 

A linear regression model of demand, D , is developed as 

shown in Equation (2.8) while the conditional mean and variance are 

shown in Equation (2.9) and (2.10), respectively. 

 
21

ln aIMaD  (2.8) 

 
21

lnln| aIMaIMDE   (2.9) 

  2ln| IMDVar  (2.10) 

where IM  is an intensity measure used in IDA, 1a  and 2a  are 

coefficients computed from regression analysis, 2  represents the 

conditional variance of linear regression error, and   is a normal 

random variable with zero mean and unit standard deviation. In 

order to make a reasonable assumption that demand model has 

constant variance along the regression curve, i.e., homoscedasticity, 
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natural logarithms are applied to IM  before regression. 

The probability that structural demand exceeds a structural 

capacity at a given IM, x , can be described as: 

 
   



















22

)(
lnln|0)(

x

x
xIMDCPxP

DC

DC




 (2.11) 

where C  represents structural capacity, its mean and standard 

deviation is denoted as C  and C , respectively and D  represents 

structural demand at given x  and the mean and standard deviation 

is denoted as same manner. Mean and standard deviation of collapse 

capacity are defined using the collapse or last non-collapse point of 

the IDA results. 
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Chapter 3. New Seismic Intensity Measure for 

Collapse Prediction Combining Cumulative and Peak 

Indices 
 

 

The main tasks of the proposed intensity measure are as 

follows: First, identify IMs that can account for seismic input 

energy ( IE ) and dissipated hysteretic energy ( SPRE ) effectively, 

especially with respect to near-collapse behavior. Then, combine 

the identified measures using an inverse form of equivalent velocity 

ratio, which is the ratio of the earthquake energy applied on the 

structure to the energy dissipated through structural degradation. 

Therefore, this chapter first summarizes and categorizes existing 

IMs for comprehensive understanding about properties of ground 

motion intensities. After literature reviews of existing seismic 

intensities, energy-based collapse criterion and descriptor are 

introduced, which are used for developing new IM (Deniz 2014, 

Deniz et al. under review). Next, IMs that highly correlated with IE  

and SPRE  are presented. Finally, a four-story ductile structural 

frame collapse case study is provided which was used for 

investigating the “energy measure” and is also employed in this 

paper (Deniz et al. under review). 

 

3.1. A Four-Story Ductile Structural Frame Collapse Case 

Study 
 

A series of shaking table test of 1:8 scale models of a 4-story, 

2-bay steel moment-resisting frame with reduced-beam sections 

(RBS) was performed by Lignos et al. (2008). The steel frame was 

tested on the earthquake simulator of the Network for Earthquake 

Engineering Simulation (NEES) facility at the University at Buffalo. 

Figure 3.1 (Lignos et al. 2009) shows the setup of the ductile 

structural model that mass simulator is connected to the test frame 

with axially rigid links at each floor level to transfer P-Delta 

effects acting as leaning columns on the prototype frame. 
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Deniz et al. (under review) developed an equivalent 2D 

computational model, based on the study by Lignos et al. (2008). 

The analytical model was developed in OpenSees (2004) using 

linear elastic elements for the beams and columns with plastic hinge 

at the elements ends. In order to take RBS into account, offsets 

from the connection of the element ends were applied and nonlinear 

geometry effects were also considered using a co-rotational 

transformation. The rotational springs were used to analytically 

model the plastic hinges with a modified Ibarra-Krawinkler 

deterioration model available as “Bilin” model in OpenSees 

(Lignos et al. 2008). These nonlinear rotational springs at the ends 

of beams and columns are only locations that exhibit the inelasticity 

of this ductile frame. Therefore, the sum of elastic strain energy 

and hysteretic energy in the spring can be represented as the 

dissipated hysteretic energy – total area under the hysteretic curve 

of the degrading element. 

 

Figure 3.1 Shake-table-test of a 4-story, 2-bay steel frame  

by Lignos et al. (2008, 2009). 

A series of nonlinear dynamic analysis is performed 

sequentially under the application of the Canoga Park ground motion 

record from the 1994 Northridge earthquake at the scale factors of 

0.4, 1.0, 1.5, 1.9, and 2.2 following the experiment procedure. The 
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lateral displacement at roof top of computational results were 

matched closely with that of the experimental results as shown in 

Figure 3.2 (Deniz et al. under review). Further details of this work 

are available in Deniz et al. (under review). 

 
Figure 3.2 Lateral displacement of both experimental and computational test 

at the roof top of the frame from Deniz et al. (under review). 

 

3.2. Existing IMs for Ground Motions 
 

For reliable estimation of the existing buildings or earthquake-

resistant design of new structures, it is important to understand the 

key features of both ground motion and structural system that are 

likely to affect the collapse potential of structures. Thus, numerous 

research efforts have been made to characterize the strength of 

ground motion combining with structural information. Since the 

complex phenomenon is described by a single feature, a great deal 

of information is inevitably lost. The interpretation of affecting 

features of ground motion to structural system can vary accordingly. 

It thus seems useful to distinguish and describe the different types 

of IMs and to attempt a classification on that basis. This study 

classifies IMs into following four groups based on their fundamental 

properties: basic, peak, cumulative, and mixed index. Table 1 

summarizes the IMs studied by Riddell (2007) and some other 
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measures proposed in other papers which are either widely-used 

or recently proposed in the field of earthquake engineering (Arias 

1970, Housner 1952, Marafi et al. 2016, Trifunac and Brady 1975). 

Note that since mixed index is an IM that contains more than one 

property of ground motion (i.e., one can make a mixed index 

combining basic, peak, and cumulative indices), it will not be 

handled in this paper. 

 

3.2.1. Basic Index 

 

Basic index is defined as the intensity using only fundamental 

characteristics of earthquake ground motions. It does not contain 

any strength of ground motions but just include primary information 

of time histories. Total duration of ground motion time history or 

average period of zero-crossing per unit time of the acceleration 

are examples of basic index. These features are mostly employed 

to help characterize peak and cumulative index more specifically 

rather than using alone. 

 

3.2.2. Peak Index 

 

As the term implies, the peak index is based on its maximum 

value, or peak, often regardless of its sign. Although various 

intensity measures have been developed, this type of IM such as 

peak ground acceleration (PGA) and elastic spectral acceleration at 

first mode period ( )(
1

TSa ) are most widely used to characterize the 

seismic hazard at given site. A fundamental reason is that PGA is 

the simplest index providing the strength of ground motion. 

Likewise, )(
1

TSa  is the most practical measure that contains 

information about both ground motion and structure. The most 

important reason, however, is that almost every attenuation 

relationship which was developed for providing seismic hazard 

information at site of interest uses PGA and )(
1

TSa . It is, however, 

noted that PGA and )(
1

TSa  may not fully cover the near-collapse 

structural responses. In particular, when structure shows significant 
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nonlinear behavior due to large ductility demand of structural 

system, first mode period cannot represent severe damage potential 

of ground motion. Although some researchers have investigated the 

effects of higher modes (Tothong and Cornell 2007, 2008, Bianchini 

et al. 2009), this paper also handles the higher nonlinearity of 

structures under strong earthquake load based on statistical method. 

 

3.2.3. Cumulative Index 

 

The cumulative index is a measure that considers total behavior 

of the time history by accumulating the quantities as time goes on, 

e.g., integral of square of total ground motion acceleration. The 

cumulative index is useful than peak index when structural system 

needs to be understood from the perspective of aggregated 

quantities such as energy parameters. This is due to the fact that 

cumulative index such as AI  characterizes the earthquake behavior 

during time interval which can represent overall impact of ground 

motion to structural system, while peak index provide only peak 

amplitudes at a time instant. It is, thus, noted that no one can clearly 

state that any single parameter is dominant than other measures. 

Since there is no ground motion whose intensity measures are 

equivalent to each other, the damage potential of structural system 

at near collapse can be different even ground motions are scaled to 

get same intensity level. In other words, if one scales the ground 

motions to get same peak index, PGA=1g, cumulative index, AI , 

can be different for each ground motion. Then, completely different 

structural responses can be obtained even the same structure is 

employed. Therefore, comprehensive studies about the effect of 

earthquake characteristics on structural collapse capacity should be 

needed. In this study, in order to enhance the field of seismic 

intensities, new IM will be developed using existing IMs based on 

comprehensive understanding of complex collapse mechanism. 
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Table 3.1 The intensity measures categorized in three groups in 

terms of characteristic. 

Group IM Unit Description 

Basic 

T
t  s  Total duration of ground motion time history 

S
t  s  

Strong earthquake duration which is defined as the 

time interval over 5% and 95% of the  

(Trifunac and Brady 1975) 

T
v  

S
v  

- 
Number of zero-crossings of acceleration time 

history in 
T

t  and 
S

t  

totalv
T

,
 

strongv
T

,
 

s  Average period of a zero-crossing in 
T

t  and 
S

t  

totalv
f

, .
 

storngv
f

,
 

Hz  
Average frequency of a zero-crossing in 

T
t  and 

S
t  

Peak 

PGA   

PGV   

PGD 

2/ sin  

sin /  

in  

Peak ground acceleration, velocity, and 

displacement 

)(
1

TSa  

)(
1

TSv  

)(
1

TSd  

2/ sin  

sin /  

in  

Maximum pseudo acceleration, pseudo velocity, 

and displacement that a ground motion will cause 

in a linear oscillator with a specified period (
1

T ) 

and damping level 

)(
1

TSa
avg  

)(
1

TSv
avg  

)(
1

TSd
avg  

2/ sin  

sin /  

in  

Average spectrum intensity which are geometric 

mean of elastic spectral properties. Period interval 

can be changed along with mode effects and 

nonlinearity of structure 

I
S  in  Housner’s spectral intensity (Housner 1952) 

),( 
na

TSS  - 

Integral of ground motion response spectrum 

between the fundamental period of the structure 

and the nominal elongated structure, then 

normalized by the area (Marafi et al. 2016) 

Cumulative 

sq
a  

sq
v  

sq
d  

32 / sin  

sin /2  

sin 2  

Integral of squared ground motion acceleration, 

velocity, and displacement 

CAA 

CAV 

CAD 

sin /  

in  

sin   

Cumulative of absolute value of ground motion 

acceleration, velocity, and displacement 

AI  sin /  Arias intensity (Arias 1970) 

 

3.3. Energy-based Collapse Criteria and Descriptor 
 

3.3.1. Energy-based Collapse Criteria 

 

During seismic excitation, earthquake loads applied on the 
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structure introduce energy into the system. Such seismic energy 

into the system (
EQ

E ) is absorbed as kinetic energy (
K

E ), strain 

energy (
S

E ), and the rest is dissipated as work done by the 

damping forces (
D

E ). In addition, repeated loading and unloading of 

the external forces makes excessive deformations of structural 

system, which induces gravity forces applied on the structure to 

release gravity energy (
G

E ) (Akiyama 2002). Taking the integral 

of the dynamic equation of motion with respect to relative nodal 

displacement, the components of the energy balance can be 

described as follows (Deniz et al. under review): 

GEQSDK
EEEEE   (3.1) 

Global collapse capacity of structure under strong earthquake 

can be defined as the point just before the structure shows dynamic 

instability which is defined as the loss of the structural resistance 

against the gravity load. That is, a structural system starts to 

shows boundless lateral drift, i.e., dynamically unstable. The 

accumulation of permanent lateral drifts eventually makes gravity 

energy as dominant parameter in structural system compared to 

other energy responses. Deniz et al. (under review), thus, proposed 

a new collapse criterion based on the incidence of gravity energy 

exceeding dynamic input energy with a sudden increase, that is 

EQG
EE  . This energy-based criterion was verified by checking 

energy time histories of the three experimental case studies for 

steel frames reported in the literature using OpenSees (2004) with 

78-ground motion records provided by Haselton and Deierlein 

(2007). It was observed that the new collapse criterion indicates 

the dynamic instability more accurately and effectively compared to 

subjective-based collapse criteria. Therefore, it can serve as more 

reliable indicator for the purpose of collapse prediction, which helps 

developing structural fragility accurately and assessing the risk of 

collapse capacity properly. 
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3.3.2. Energy-based Collapse Descriptor 

 

Using a ductile steel frame computational model by Lignos et al. 

(2008), IDA was performed using the far-filed set of 78 ground 

motions by Haselton and Deierlein (2007). During IDA, spectral 

acceleration at the first-mode period ( )(
1

TSa ) and maximum inter-

story drift ratio (IDR) are selected as intensity measure (IM) and 

damage measure (DM), respectively. As shown in Figure 3.3 (Deniz 

2014), IM-based (green triangle), DM-based (blue square), and 

Energy-based (red circle) criterion are denoted. Due to 

uncertainty of ground motions, large variability is observed in the 

collapse capacity for two collapse criteria except for the DM-based 

rule which depends on predetermined threshold value. For reliable 

collapse risk assessment, a new DM which shows stable structural 

response at near collapse level is needed. 

 

Figure 3.3 Comparison of collapse data points obtained by three different 

collapse criteria when IDR is selected as DM by Deniz (2014). 

The energy based descriptor, termed as equivalent ratio (
R

V ), 

which is related to the ratio of the system’s degrading energy 

( Degrading
E ) to the earthquake total input energy (

I
E ) is defined as 

follows:  
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 
 

EQ

Degrading

endtheattime
EQ

Degrading

R
E

E

E

E
V

2max2

max

2




 (3.2) 

Since the gravity energy becomes equal to the seismic input energy 

at near collapse, the total input energy then become almost twice 

the seismic energy (i.e., 
EQI

EE 2 ). It is, thus, reasonable to 

introduce 
EQ

E2  for the denominator in Equation (3.2). Furthermore, 

the ratio at the end of the excitation can be approximated by the 

ratio of the maximum value as shown in the right hand side of 

Equation (3.2) because energy parameters are cumulative values. 

Given that most of hysteretic energy occurs from degrading 

rotational springs in the ductile frames, one can replace degrading 

energy as total strain energy dissipated from spring energy (
SPR

E ). 

Moreover, using a corresponding equivalent velocities for energy 

terms in Equation (3.1), one can finally get 
R

V , which is the ratio of 

the maximum equivalent velocities. 

 
 

 
 

EQ

SPR

EQ

SPR

EQ

SPR

R

V

V

mV

mV

E

E
V

max2

max

2

1
max2

2

1
max

2max2

max

2

2





















  (3.3) 

An alternative IDA result is presented in Figure 3.4 (Deniz 

2014) with replacing IDR to 
R

V  and employing energy-based 

collapse criterion for circumventing sensitivity of collapse point due 

to assumed value. As shown in the last non-collapse case from 

each IDA curve (red asterisks), the collapse capacity defined by 
R

V  

exhibits a significantly reduced variability (Deniz 2014). Due to 

redistribution and variation of damage within structure, most widely 

used DM, IDR, may not accurately represent the overall collapse 

behavior. It is, however, noted that one can overcome the limitation 

by employing energy parameters at system-level which allows for 

considering each individual component damage within the structural 

system. Thus, using the energy based collapse criterion and 

descriptor, one can estimate the structural collapse more effectively. 
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Figure 3.4 Last non-collapse points (red asterisks) from IDA curves when 

energy-based collapse criterion and descriptor are employed  

by Deniz (2014). 

 

3.4. Development of a New Intensity Measure 
 

3.4.1. Seismic Input Energy 

 

Arias intensity ( AI ), mathematically defined as the integral of 

squared ground motion acceleration, is interpreted as the total 

energy per unit weight stored by a set of undamped simple 

oscillators at the end of an earthquake (Arias 1970). 


Tt

dtta
g

AI
0

2)(
2


 (3.4) 

where, 
T

t  is total duration of ground motion and )(ta  represents 

ground motion acceleration. Although AI  is considered as one of 

the most commonly used IMs for describing seismic input energy, it 

does not take any structural information into account. This is the 

reason that new intensity measure is needed incorporating both 

input stochastic properties and structural characteristics for seismic 

input energy. In order to characterize the seismic input energy, 

average modified Arias intensity with strong earthquake duration 

( )(
1

* TAI avg ) is proposed in this section. To begin with, modified 
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Arias intensity with strong earthquake duration ( )(
1

* TAI ) is 

developed first that accounts for combining both total energy for 

ground motion and first mode period of structure. 

Spectral acceleration ( )(
1

TSa ) is the most commonly used IM in 

earthquake engineering defined as the value representing the 

maximum acceleration that a ground motion will cause in a linear 

oscillator with a specified period and damping level (Baker 2006). 

Likewise, rather than using a maximum value, )(
1

* TAI  uses a whole 

pseudo spectral acceleration responses of specified natural period 

with strong earthquake duration. The definition of )(
1

* TAI  is 

obtained by replacing ground acceleration from AI  to pseudo 

spectral acceleration responses of linear single degree of freedom 

(SDF) oscillator for specific damping value (5% damping has been 

introduced in this paper) at first mode period of structure, then 

integrating squared of pseudo spectral acceleration accumulated for 

corresponding period. Strong earthquake duration is defined as the 

time interval over 5% and 95% of the integral of square of pseudo 

spectral acceleration,  dttSa
g

)(2 . Mathematical form of )(
1

* TAI  is as 

follows: 


95

5

)()( 2

1

*
Ds

Ds
g

dttSaTAI  (3.5) 

where, g
Sa  and 

955
Ds  indicates pseudo spectral acceleration and 

strong earthquake duration, respectively. Although )(
1

* TAI  

incorporates both characteristics of ground motion and information 

of structure’s first mode period, it cannot properly interpret the 

ground motion’s impact on the responses due to lack of accounting 

for the effects of softening nonlinearities on the structure. Since not 

only stiffness and strength of structural system but also their ability 

to dissipate earthquake energy degrades under the earthquake 

excitation, the effect of period elongation caused by stiffness 

degradation should be taken into account (Katsanos and Sextos 

2015). 

Considering the effects of softening nonlinearities on the 
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structure, )(
1

* TAI avg  is defined as the arithmetic mean of modified 

Arias intensity over the interval between the structure’s relative 

frequency drop (i.e., elongated fundamental period ( /
1

T )) to 

fundamental period (
1

T ) as follows (De Biasio et al. 2014): 

 









 





/

2

1

*

1

1

*

1

1

* 1

1

1

1

)(

)1(
)(

)1(

1
)(

T

T

f

f
avg dT

T

TAI

T
dTTAI

f
TAI  (3.6) 

where 
1

f  and 
1

T  are the first mode of frequency and period of 

structure, respectively and   indicates the ratio of structure’s 

relative frequency drop (i.e., period elongation due to stiffness 

degradation of structural system). IDA data in terms of  )(ln
1

* TAI avg  

and  
I

Eln  which is transformed using natural logarithm with 85% 

of relative frequency drop is shown in Figure 3.5. This figure 

confirms that one can estimate 
I

E  precisely using )(
1

* TAI avg  

without performing dynamic analysis due to high correlation 

between 
I

E  and its corresponding intensity measure, )(
1

* TAI avg . It 

is noted that the period elongation of structure under strong 

earthquake is hard to evaluate, particularly, when structural system 

is complex and sophisticated. To circumvent the complicated 

procedure, optimal   is determined through comparing sum of 

squared error (SSE) of linear regression. In other words, the alpha 

value is chosen such that SSE of linear regression is minimized, 

which makes 
I

E  and )(
1

* TAI avg  most highly correlated. It should be 

noted that quantifying the structure’s nonlinear behavior based on 

statistical inference can be useful considering chaotic nature of the 

dynamic behavior of a structure. 

In Equation (3.6), it is found that )(
1

* TAI  is integrated over the 

frequency interval rather than period interval which is more 

common feature to describe the IM. The integration over the 

frequency domain gives higher weight to lower frequency spectral 

ordinate that integration over the period domain as shown in 

Equation (3.6). Moreover, the accumulation of the )(
1

* TAI  over 

frequency domain would give higher weight to spectral ordinate 
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closer to “known” fundamental frequency and lower weight to 

spectral ordinate closer to “less-known” elongated frequency 

(De Biasio et al. 2014). 

 

Figure 3.5 Relationship between natural logarithms of )(
1

* TAI avg  and 
I

E  

with 85% frequency drop. 

3.4.2. Dissipated Hysteretic Energy 

 

As shown in Equation (3.1), some part of 
I

E  is dissipated 

through structural degradation, so called degrading energy ( Degrading
E ). 

Degrading
E  is defined as the area under the hysteric curve of the 

degrading elements which is the sum of 
E

E  and 
H

E  for the 

rotational spring of the ductile structure. The cumulative energy 

component 
H

E  reaches the maximum value at the end of the time 

series analysis while 
E

E  becomes zero. Moreover, most of 

hysteretic energy occurs from degrading rotational spring of ductile 

frames, it is natural that Degrading
E  can be described in terms of spring 

energy termed as 
SPR

E  (Deniz 2014). 

SPR
E  is dependent on the complex mechanism which is 

characterized by such as number of inelastic load cycle, ductility of 

structure, and the hysteresis loop. Thus, it is hard to estimate 
SPR

E  

without performing dynamic analysis or using parameters of 
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degrading model. The proxy measure of degrading energy can then 

be obtained approximately. Given that energy is proportional to the 

force from the fundamental theory of structural mechanics, higher 

strength of ground motion leads to more degrading energy in the 

structures, even though same energy is applied on the system. It is 

thus noted that IM whose property represents the strength of 

ground motion can be a good candidate for describing 
SPR

E  such as 

peak ground acceleration or )(
1

TSa . Moreover, to find a peak IM 

that not only take structural characteristic and seismic properties 

into account but also consider period elongation of structural 

system during dynamic analyses, average spectral acceleration 

( )(
1

TSa
avg

) introduced by Baker and Cornell (2005) is identified as 

the best proxy of 
SPR

E . The average spectral acceleration is defined 

as a geometric mean of a series of spectral acceleration which is 

computed as 

N
N

i

iNavg
TcSaTcTcSa

/1

1

1111
)(),,( 







 



  (3.7) 

where N  represents the number of periods used to compute 

)(
1

TSa
avg

 and the 
i

c  is a non-negative values range between 1  to 

/1  with a uniform period spacing 0.01s (Bojórquez and Iervolino 

2011), where   should coincide with the value for )(
1

* TAI avg  in 

Equation (3.6). For dissipated hysteretic energy, geometric mean is 

used for AI  instead of the arithmetic mean for )(
1

* TAI avg . This is 

due to the fact that peak IM should take the effects of compounding 

into account when describing 
SPR

E . Contrast to 
I

E  which just piles 

up the applied energy on the structure during earthquake, 
SPR

E  

should consider previously affected structure’s period elongation 

because of influence on the state of stiffness degradation of 

structural system. 

The results of nonlinear dynamic analysis regarding  )(ln
1

TSa
avg  

and  
SPR

Eln  which is linear transformation of )(
1

TSa
avg  and 

SPR
E  

using natural logarithm are shown in Figure 3.6. The plot begins to 
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diverge at the point where  )(ln
1

TSa
avg

 is around at -1.3, which 

coincides with the point where the deterioration model, rotational 

spring in the frame, reaches their peak strength and the first mode 

period of structure starts to change. Much variability is observed in 

Figure 3.6 compared to Figure 3.5 because each ground motion 

makes different influence on the structure that may result in 

different deterioration level of structural system. Using “specific” 

parameters such as modified Ibarra-Krawinkler deterioration model 

(Lignos et al. 2008), one may be able to find or develop a “limited-

IM” which reduce the variability of 
SPR

E . However, this would lead 

to losing general applicability to other structures which do not use 

“specific” parameters. Thus, it is reasonable that even without 

relying on nonlinear analysis using a particular deterioration model, 

)(
1

TSa
avg

 correlates reasonably well with 
SPR

E . 

 

Figure 3.6 Relationship between natural logarithms of )(
1

TSa
avg  and 

SPR
E  

with 85% frequency drop. 

 

3.4.3. A New Intensity Measure 

 

This paper proposes a new cumulative IM, )(
1

* TAI avg , for 

seismic input energy and find a proper peak IM, )(
1

TSa
avg , for 

dissipated hysteretic energy. Using the inverse relation of 
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equivalent velocity ratio which is the ratio between seismic input 

energy and hysteretic energy, new IM can be defined as follows: 

)(

)(

1

1

*

TSa

TAI
IM

avg

avg
  (3.8) 

The new IM involves the cumulative IM, peak IM, strong 

earthquake duration, and the effects of softening nonlinearities on 

the structure. Due to the inverse relation of 
R

V , the new IM is 

scalable, in that its value is proportional to the ground motion 

scaling factor. Therefore, it can be used in IDA and also employed 

in performance-based earthquake engineering (PBEE) framework. 

The efficiency of the IM can be tested by comparing the 

dispersion of the point where the seismic intensity indicates the 

collapse of a structure. Comparison are made between the 

dispersion of the new IM and a most widely used IM, )(
1

TSa , at last 

non-collapse level of IDA. 
R

V  is selected as DM and collapse is 

defined using energy-based collapse criterion. To facilitate direct 

comparison between IMs, both fragility curves have been 

normalized by those of median values. Figure 3.7 shows both 

fragility curves of the IM for a steel moment resisting frames by 

Lignos et al. (2008). The coefficient of variation (c.o.v) of the new 

IM is 0.1869, lower than 0.4378 of )(
1

TSa . This result shows that 

new IM can serve as more reliable measure for the purpose of 

predicting collapse. 
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Figure 3.7 Collapse fragility curve for steel frame structure using the new IM 

and )(
1

TSa  which are normalized by each median value. 

 

3.4.4. Application of New IM to Reinforced Concrete Structural Frame 

 

Even though the structural system used to develop the new IM 

was validated by the experimental results, there is a chance that the 

new IM is applicable only to steel frame structure. Therefore, the 

applicability and effectiveness of the new IM need to be checked for 

other type of structures. In order to further quantify the efficiency 

of new IM at collapse, one of the RC SMF buildings developed by 

Haselton et al. (2011), 4-story perimeter frame (ID 1004), is 

selected. Haselton et al. (2011) report the results of nonlinear 

dynamic analyses for a set of 30 representative reinforced concrete 

(RC) special moment-frame (SMF) building to assess the risk of 

collapse under the ground motion set used in federal emergency 

management agency (FEMA) P-695. To demonstrate the 

applicability of the new IM, “traditional” IDA is performed instead 

of using energy-based descriptor and criterion: IDR, one of the 

most widely-used DM, is selected as a damage measure instead of 

R
V . Moreover, rather than using energy based collapse criterion, 

collapse is defined as the point where the lateral story drifts of the 

building increase without bounds, i.e., the point where the IDA 
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curves become almost flat. The same method is used for calculating 

the period elongation of the RC structure which is determined 

through comparing SSE of linear regression between  )(ln
1

* TAI avg  

and  
I

Eln  by varying  . The optimal period elongation value for 

RC building is computed as 0.96. This result is reasonable that 

structure’s relative frequency drop of RC structure (0.96) is much 

bigger than that of more ductile steel frame structure (0.85), which 

in turn shows that   can effectively account for the behavior of 

structural nonlinearities. 

IDA is performed for an RC SMF building subjected to the 78 

ground motion records in the expanded FEMA set, incrementally 

increase intensity level until collapse. Figures 3.8 and 3.9 show IDA 

curves of )(
1

TSa  and new IM to IDR, respectively. Comparing the 

IDA curves of Figure 3.8 and 3.9, it is found that the new IM gives 

gradual slope at near collapse area which can provide more reliable 

collapse limit states when IM-based collapse rule is employed. The 

dispersion in the collapse fragility curves of the RC SMF building is 

smaller for new IM than that of )(
1

TSa  as shown in Figure 3.10. The 

c.o.v of the new IM is 0.2421 compared to the 0.3762 of spectral 

acceleration. It should be noted that one can predict the collapse for 

a structural system with less uncertainty not only with energy-

based collapse criterion and descriptor but also with existing 

collapse criterion and widely used DM such as IDR. 
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Figure 3.8 IDA curves for )(
1

TSa  and IDR using RC structure subject to 78 

ground motions. 

 

 

Figure 3.9 IDA curves for new IM and IDR using RC structure subject to 78 

ground motions. 
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Figure 3.10 Collapse fragility curves for one of test specimen by Haselton et 

al. (2011) using )(
1

TSa  and new IM which is normalized by each median 

value. 

 

3.5. Influence of Energy Balance Ratio Between EI and 

EDegrading on Structural Collapse Capacity 
 

During earthquake excitation, structural system can be 

understood from the viewpoint of the energy parameters such as 

energy balance between earthquake input energy and dissipated 

hysteretic energy (Uang and Bertero 1990). Although this is the 

topic that has been researched extensively in the literature, the 

influence of energy balance between 
I

E  and Degrading
E  on structural 

demands does not have a well-defined framework when selecting 

ground motions for dynamic analysis, particularly emphasis on 

predicting structural collapse. This section, therefore, aims to 

highlight the effects of energy parameters when evaluating 

structural collapse. First, IM which can illustrate energy balance 

between 
I

E  and Degrading
E  is proposed using the relation between 

)(
1

* TAI avg  and )(
1

TSa
avg , which is demonstrated as proxy measure for 

I
E  and Degrading

E , respectively. Collapse fragility curve is then 

computed for the test specimen of Lignos et al. (2008) subjected to 

a set of different energy balance ratio of ground motions. 
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A new measure of seismic intensity is developed here as an 

indicator of energy balance ratio between 
I

E  and 
Degrading

E  of a 

ground motion. To begin with, a set of ground motions have to be 

scaled to get the same target value of )(
1

TSa
avg

 (e.g., each ground 

motion is scaled to make )(
1

TSa
avg

 get g1 ). The energy balance 

ratio denoted by 
AI

 , is then defined as a discrepancy between the 

value of )(
1

* TAI avg  and the median of the ground motion record set. 

Thus, energy balance ratio for thk  ground motion, 
kAI ,

  is 

mathematically expressed as follows: 

   







 



N

k

kavgkavgkavgkavgkAI
xSaAI

N
xSaAI

1

*

,,
**

,,
*

,
|ln

1
|lnexp  (3.9) 

where, *x  denotes any positive integer (e.g., 1g), and N  indicates 

the number of ground motions employing in the IDA. Suppose 

ground motions are scaled to get the same target value of )(
1

TSa
avg , 

it is natural to think that same amount of energies are dissipated 

through structural system under the set. Each ground motion, 

however, has different )(
1

* TAI avg  value so that higher value of 

)(
1

* TAI avg  indicates more seismic input energies are applied on the 

structural system given same energy is dissipated. 

In order to estimate collapse fragility regarding energy balance 

ratio, a set of ground motions should be grouped in terms of 
AI

 , 

“high” energy balance ratio record set is defined as a value of 
AI

  

belongs to intervals of 67th percentile to 100th percentile among the 

set and “medium” and “low” energy balance ratio group consist 

of 34th percentile to 66th percentile and 0th percentile to 33th 

percentile of 
AI

  among the records, respectively. For effective 

risk assessment of structural collapse, energy based collapse 

criterion and descriptor are used for estimating collapse fragility 

under 155 ground motions. Collapse fragility curves resulting from 

IDA conducted using high, medium, and low energy balance ratio 

records sets are illustrated in Figure 3.11. The median spectral 

acceleration value of collapse capacity estimated using high, 
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medium, and low record sets are 1.004g, 1.129g, and 1.435g, and 

c.o.v of each set are 0.191, 0.303, and 0.4767, respectively. It is 

found that ground motions whose energy balance ratio belongs to 

low group make buildings vulnerable to collapse and increase the 

uncertainty in terms of structural demand. The results serve to 

illustrate the significant impact of energy balance ratio of ground 

motion to collapse prediction. Thus, one can reliably predict the 

structural collapse when IDA is performed using a ground motion 

sets which are selected considering an energy balance ratio. 

 

Figure 3.11 Collapse fragility curves estimated using the high, medium, and 

low energy balance ratio record sets. 
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Chapter 4. A Ground Motions Selection Procedure 

Using Clustering-based Adaptive Sampling 
 

 

For accurate and reliable collapse risk assessment, nonlinear 

dynamic analyses coupled with probabilistic seismic hazard analysis 

need to be performed. To begin with, ground motions whose 

response spectra is closely matched with a site-specific target 

response spectrum should be selected for nonlinear dynamic 

analyses of structural system. For comprehensive reflection of 

hazard characteristics at a given site, a large set of ground motions 

are needed, which incur high computational cost of dynamic seismic 

response analysis. To reduce the number of ground motion time 

series used in nonlinear stochastic analyses while providing proper 

information about given site, this chapter develops a new algorithm 

about selecting ground motion time series. The main idea of the 

framework is that a set of ground motions are grouped regarding 

their critical features which affect the likelihood of structural 

collapse, and ground motions are selected from the identified 

clusters until the estimated fragility is converged. To this end, 

statistical learning algorithm such as subset selection method and 

clustering analysis are employed. Using the developed algorithm, 

one can obtain reliable estimation on collapse fragility using far less 

number of ground motions. 

 

4.1. Ground Motion Selection Algorithm 
 

The main goal of the algorithm is to reduce the number of 

dynamic analysis when estimating collapse capacity of structural 

system. A large ground motion set, however, is needed for 

reflecting information about probabilistic seismic hazard analysis 

when evaluating structural collapse. In this study, a new ground 

motion selection algorithm is proposed to reduce the computational 

cost effectively while keeping consistency with seismic hazard 

analysis. The main idea of the algorithm is that ground motions in a 
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given set are grouped distinctively in terms of the relationship 

between IM and corresponding calculated DM in IDA. Then, select 

one ground motion from each identified cluster and perform 

nonlinear time history analyses. This is based on premise that if 

ground motions are clustered properly regarding a behavior of IDA 

curves, the results of dynamic analyses using ground motions in the 

same cluster shows similar to each other. 

Clustering analysis is a standard technique in statistics that is 

commonly used to cluster a set of data so that data in the same 

group show more similar characteristics compared to data from 

other groups. Although many clustering methods have been 

developed, K-means clustering analysis, a simple and most widely 

used technique, is employed in this study. Given an initial set of 

center, K, the procedure of K-means clustering algorithm is 

consisted of two steps (Friedman et al. 2001): 

 

 For each center, the subset of data which is closer to its center 

than any other center is identified. 

 In each cluster, the mean vector of each feature for data points 

is computed and becomes the new center for that cluster. 

 

These two steps are performed iteratively until the mean 

vector converges to a certain value. As shown in the procedure, a 

fundamental task of clustering method is the choice of distance or 

dissimilarity measure between two data points (Friedman et al. 

2001). In order to apply clustering algorithm, ground motions 

should be denoted as vector of intensity measures which can 

explain the relationship between IM and DM. If vector of intensity 

measures has been already figured out regarding IDA curves, one 

can use chosen IMs. If not, the procedure to find these vector of 

intensity measure so called “critical features” may be helpful, 

which will be explained in the next section. 

Using clustering method, a new ground motion selection 

algorithm is developed as follows: 
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1. Initialize: Choose initial values of the number of cluster, n , 

and target coefficient of variation (c.o.v), * . A lower level 

of target c.o.v would lead to higher total computational cost. 

2. Cluster: Perform K-means clustering analysis based on 

critical features so that distinct groups of ground motion are 

identified. When performing clustering analysis, some 

statistical issues have been occurred such as data splitting 

and scale problem due to different scale between each 

critical feature. To address such issues, it is noted that 

natural logarithm is applied to each variable in order to 

satisfy the homoscedasticity assumption and normalized by 

its own standard deviation value to make scaleless variables. 

Please note that K-means clustering sometimes converges 

to local-minima, thus one has to perform a few times of 

clustering analysis to find the global optimization result. 

3. Sample: Although ground motions in the same group show 

similar characteristics, a ground motion that located near at 

the center point of each cluster can represent the 

characteristics of the group most properly. Therefore, this 

study selects a “dominant” ground motion rather than 

randomly sample a ground motion from each cluster for 

nonlinear dynamic analysis. IDA is then carried out using 

selected ground motions. 

4. Estimate initial fragility: Assign the result of IDA to other 

ground motions in the same cluster and fit fragility function 

to dynamic analysis results using statistical procedure. 

5. Update: Perform clustering analysis with increasing the 

number of cluster and sample one ground motion from each 

cluster. Since the ground motions from the previous stage 

are re-used, it is not necessary to sample a new ground 

motion from the clusters including the ground motion 

employed previous step. 

6. Estimate fragility: IDA is carried out using recently sampled 

ground motion(s) then estimate new fragility curve. 

7. Convergence check: Compute distance between previous 
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and current fragility curves using MD. If c.o.v of MD is 

greater than target c.o.v, return to step 5. Otherwise, stop 

the algorithm. The fragility stabilizing parameter, MD, will be 

discussed later. 

 

The aforementioned procedure is explained by a flow chart in 

Figure 4.1. This procedure is based on the “Method A” fragility 

fitting method. If one cannot guarantee the set of ground motions 

from probabilistic seismic hazard analysis, i.e., most ground motions 

in the set represent similar IDA curves, probabilistic seismic 

demand model based fragility fitting method is better choice for 

reliable estimation. Then, some modification in ground motion 

selection algorithm is needed. First of all, estimation technique 

should be changed from “Method A” to probabilistic seismic 

demand model based fitting method. In addition, since fragility curve 

is a function of probabilistic model, MD will not be required any 

longer in convergence check step. Thus step 4 and 7 will be 

changed as follows: 

 

4. Estimate: Rather than assign the results of dynamic analysis 

to other ground motions in the same cluster, use just 

analyzed ground motion results to fit fragility function based 

on Equation (2.8) to (2.11). For example, if the number of 

ground motions which is used in dynamic analysis is 15 

among 155, “Method A” procedure uses 155 collapse data 

points because of assigning the result to other ground 

motions, while probabilistic seismic demand model based 

approach uses 15. However, the latter not only uses 

collapse data point but also employs non-collapse data point 

to develop probabilistic model. Thus one can overcome the 

limitation of bias of structural responses result from record 

set. 

7. Convergence check: Instead of employing MD, the fragility 

curve is updated until the parameters of safety margin 

against the collapse of structural system (i.e., )(x
DC

   
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and  22 )(x
DC

   in Equation (2.11)) converges to certain 

value. It is, however, noted that algorithm only check 

convergence of  22 )(x
DC

   due to the fact that the value, 

)(x
DC

  , varies with respect to given . 

 

From experience of the study, the target c.o.v in Step 2, is 

typically on the order of 2%. A good rule of thumb for the initial 

number of ground motion is more than 15 because the proposed 

method is based on statistical approach. Furthermore, the 

convergence of the iteration is sensitive to critical features so that 

well defined IM vector makes the fragility curve converged with a 

few times of nonlinear dynamic analyses. 

 

Figure 4.1 Flowchart of ground motion selection algorithm procedure. 

K-mean clustering analysis of ground motion set 

Sample*: Sample one “dominant” ground motion for each 

cluster and perform IDA using selected ground motions 

Estimate fragility: Assign the result of IDA to other 

ground motions in the same cluster and estimate fragility 

curve 

Choose initial value: n , *  

Yes 

No 
 

Check  

convergence: 
*   

End Algorithm 

*: It is not necessary to sample a new ground motion from the 

clusters including the ground motion employed previous step 

Calculate c.o.v of MD:   

Update: 

 1 nn  
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4.2. Identification of Critical Features for Incremental 

Dynamic Analysis 
 

Critical features are the characteristics of ground motions that 

are well correlated with behavior of IDA-curve. Since IDA-curves 

are significantly affected by the choice of IM and DM used in IDA, it 

is important to identify critical features corresponding the selected 

IM and DM. To begin with, formulation which can interpret seismic 

demand and structural capacity should be identified. Based on 

theories of structural mechanics and/or expert opinions, following 

mathematical form is usually adopted to construct a probabilistic 

model when drift ratio is selected as DM (Cornell et al. 2002). 

 
i

a

i

iIMbDM  (4.1) 

where 
i

IM  represents a possible relevant feature of ground motion 

and 
i

a  accounts for its sensitivity to 
i

IM  and b  is an intercept of 

the model. The coefficients can be found by regression analyses. 

The formulation, however, can be changed along with DM used for 

IDA. For example, if an energy-based descriptor named as 

equivalent velocity ratio (
R

V ) is used as DM, Equation (4.2) is more 

useful than Equation (4.1). 

IMc

IMc

T

T








e

e
DM

1
 (4.2) 

where IM represents the vector of candidate IMs and c denotes the 

corresponding coefficients vector. Since 
R

V  is related to the ratio of 

the system’s degrading energy to earthquake input energy, it 

should be smaller than 1 (Deniz 2014). Therefore, formulation of 

logistic regression is more reasonable choice for 
R

V . 

Since the goal of the procedure is to find additional features of 

ground motion which can minimize “remaining uncertainty” that 

are not fully covered by originally selected IM for IDA, each ground 

motion is first scaled to get the same intensity level of selected IM. 

For example, when spectral acceleration ( )(
1

TSa ) is originally 
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selected for IM, ground motions are respectively scaled to get the 

same spectral acceleration value, e.g. 1g. Next, the best subset of 

intensity measures that properly reduces the remaining uncertainty 

is found using best-subset selection method which is one of the 

subset selection methods in statistical field. The procedure starts 

with empty set of features and generates all possible probabilistic 

model using a single feature. Then, the model is expanded in the 

same manner by sequentially adding another features. The best 

subset of features can be determined through comparing the sum of 

squared error (Friedman et al. 2001). Since best-subset selection 

method explores the entire search space ( p2  possible model, where 

p  is the number of predictors), it is common to limit the number of 

subsets that are expanded for computational efficiency. In summary, 

the procedure to find key characteristics of IDA-curve can be used 

not only for ground motion selection algorithm but also for 

comprehensive understanding between seismic demand and 

structural capacity. 

 

4.3. Euclidian Metric Distance 
 

The metric distance measure is originally developed to measure 

a fuzziness in information theory (Klir and Folger 1988), but its 

concept can also be used to measure the distance between two 

different fragility curves expressed as probabilistic manner. A 

general form of metric distance, Minkowski class of distance, would 

mathematically be stated 

w

Xx

w

xfxfM

/1

21
)()( 








 



 (4.3) 

where )(
1

xf  and )(
2

xf  denote functions of x , and w  represents a 

number greater than 1. For 1w  and 2w  are special case of 

Minkowski class of distance, which are called as Hamming and 

Euclidian distance, respectively. 

In this paper, normalized Euclidian metric distance, MD (Chun 

et al. 2000) which is normalized by the mean of previous fragility 
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curve is used as criteria of convergence of the fragility curve 

 

iy

o

p

i

p
dpyy

MD


2/1
1

0

2






 




 (4.4) 

where 
p

y  is thp  quantile of cumulative density function (CDF), the 

superscript i  and o  means previous and current fragility, 

respectively and iy
  represents the mean of previous fragility 

curve. Normalization using mean of previous fragility curve can 

make the MD a dimensionless quantity. If the value of i

p
y  is equal 

to o

p
y  in overall ranges of 0  to 1 , the two CDFs become identical 

and MD goes to zero. The MD defined in this study can provide the 

information on how much an updated dynamic analyses can effect 

on the fragility curve. A larger MD means that clustering analysis 

has not yet grouped a set of ground motions properly so that 

fragility curve fluctuates a lot. It is thus natural that stable and 

small values of MD guarantee that the fragility curve is converged, 

i.e., c.o.v of MD smaller than target c.o.v can be a criterion for 

algorithm. 

As previously mentioned, lognormal cumulative distribution is 

often used to define a fragility function which includes scale and 

shape factor or mean and standard deviation of xln ,   and  .  

The probability density function is given by (Ang and Tang 2007): 
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For mathematical simplicity, let   represents a natural 

logarithm of scale factor, )exp( , one can analytically derive closed 

form of general MD follows lognormal distribution as follows (Chun 

et al. 2000): 
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where   and   with subscription i  and o  represent scale and 

shape parameter of previous and current fragility curve, 

respectively. Using explicit form of MD, one can easily stabilize the 

fragility curve in ground motion selection algorithm. 

 

4.4. Numerical Examples 
 

The breadth of applications and performance of the proposed 

ground motion selection algorithm are demonstrated by numerical 

examples. First, roof drift ratio (
x

D ) and spectral acceleration at 

the first mode period ( )(
1

TSa ) which is most commonly used DM 

and IM is selected for demonstrating the efficiency of the algorithm. 

Second, applicability of the algorithm is tested using different 

combination of IM and DM such as 
R

V  and )(
1

TSa . Since proposed 

algorithm and selected critical features are developed based on the 

steel frame structure even though the test specimen was validated 

by the experiment results, it is needed to evaluate its applicability 

and effectiveness. In order to further check the applicability of the 

algorithm and the effectiveness of critical features identified 

through steel frame structure, the algorithm with selected critical 

features are evaluated using one of RC SMF building reported by 

Haselton et al. (2011). Finally, to test the proposed algorithm with 

different fragility fitting method, the collapse risk assessment of 

steel frame structure developed by Lignos et al. (2008) is assessed 

under biased record set with the probabilistic seismic demand 

model based collapse fragility fitting method. 

 

4.4.1. Numerical Example 1 

 

In the first example, )(
1

TSa  and 
x

D  is selected as IM and DM 

for IDA and 20% IM-based criteria is used to define structural 

collapse. In order to employ ground motion selection algorithm, 

critical features should be first identified. Various measures mostly 

from Riddell (2007) and some other seismic intensities proposed in 

recent studies (Chandramohan et al. in print, Marafi et al. 2016) 
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have been considered as candidates for critical features. To identify 

critical features, each ground motion is respectively scaled to get 

same )(
1

TSa , 1g. Using the best-subset selection method and the 

model in Equation (4.1), three additional features are identified as 

critical features: Arias intensity ( AI ) (Arias 1970), peak ground 

acceleration (PGA) and average modified Arias intensity with 

strong earthquake duration ( )(
1

* TAI avg ). Thus, the ground motions 

are denoted as vector that has four components, 

 )(,,,1)(
1

*

1
TAIPGAAIgTSa avg . 

Initial values of parameters, the number of initial cluster and 

target coefficient of variation, are selected as 20 and 0.02, 

respectively. To illustrate the process, MD computed from each 

step of adaptive selection with respect to the fragility curve of 

previous step is shown in Figure 4.2. Using the ground motion 

selection algorithm, one can obtain small MD value even using small 

number of ground motions as shown in blue asterisk mark. 

Furthermore, while large variability is observed when using 

randomly selected ground motions (red plus mark), the ground 

motion algorithm make fragility curve converged quickly to a certain 

value. 

 

Figure 4.2 Metric distance measure (MD) of the fragility model at each step 

of updates with respect to the fragility curve from the previous step. 

To test whether the “certain value” is local optimum or not, 
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the MD values are computed with respect to the fragility curve 

calculated using the entire set of ground motions which is called as 

“real fragility curve” in this study. Please note that this is done 

only for the test purpose, and in practical situation, MD will be 

computed with respect to fragility curve of previous step. Figure 

4.3 and 4.4 show the distance from the fragility curve based on 

“real fragility curve”. The MD will be zero when fragility curve is 

estimated using total 155 ground motions, as shown in the last 

green triangle point of Figure 4.3 at the number of ground motion is 

equal to 155. While the MDs of randomly selected ground motion 

denoted as green triangle show large variability as expected, that of 

proposed algorithm decrease steadily in this case well as shown in 

Figure 4.4 (yellow square). Finally, fragility curve calculated using 

only 30 ground motions is compatible with the one computed by the 

original set as shown in Figure 4.5. 

 

Figure 4.3 MDs of randomly selected ground motion at each step of updates 

with respect to the fragility curve based on the entire set. 
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Figure 4.4 MDs of ground motion selection algorithm at each step of updates 

with respect to the fragility curve based on the entire set. 

 

 

Figure 4.5 Fragility curves by the developed algorithm (30 ground motions) 

and the entire set of 155 ground motions. 

 

4.4.2. Numerical Example 2 

 

It is noted that even using the same structural system under the 

same set of ground motions, different IDA-curves may be obtained 

along with selection of IM and DM for IDA. To test the applicability 

of proposed algorithm considering such an issue, the second 
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example is explored. Instead of employing 
x

D , 
R

V  is used as 

damage measure and )(
1

TSa  is selected as IM. In addition, the 

energy collapse criterion is introduced with 
R

V  so that the 

dispersion due to record-to-record variability can be decreased, 

which in turn leads to a reduction on uncertainty level of predicting 

collapse (Deniz 2014, Deniz et al. under review). 

Through best-subset selection method with Equation (4.2), 

three additional features are identified as critical features: AI , 

)(
1

* TAI avg  and strong earthquake duration (
s

t ) (Trifunac and Brady 

1975). The ground motion selection algorithm was employed under 

same condition of the first example. Figure 4.6 shows MD computed 

with respect to previous step of fragility curve. One can see 

significant savings in computational time when compared with 

randomly selected ground motion as shown in Figure 4.6. Figure 4.7 

also confirms that fragility curve using 30 ground motions can 

provide a fragility curve that is almost same as “Real fragility 

curve”. Thus, one can demonstrate that proposed algorithm is not 

sensitive to selected IM and DM for IDA. 

 

Figure 4.6 MDs of the fragility model at each step of updates with respect to 

the fragility curve based on the entire set when 
R

V  is selected as DM. 
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Figure 4.7 Fragility curves evaluated by using developed algorithm (30 

ground motions) and employing the entire record set (155 ground motions) 

when 
R

V  is selected as DM. 

 

4.4.3. Numerical Example 3 

 

In order to find the additional features which are used in ground 

motion selection algorithm, the results of incremental dynamic 

analysis for the steel frame structure are employed. Thus, the 

determined critical features should be checked its effectiveness and 

applicability subject to other structure. To test the efficiency of 

identified critical features with ground motion selection algorithm, 

one of RC SMF building, 4-story perimeter frame (ID 1004), 

developed by Haselton et al. (2011) is examined under 78 ground 

motion records in the expanded FEMA set. )(
1

TSa  and 
x

D  is 

selected as IM and DM for IDA. To perform algorithm, previously 

identified AI , PGA, and )(
1

* TAI avg  is used as critical features for 

clustering analysis. The results are obtained based on 15 of the 

number of initial cluster and 2% of target c.o.v. Figure 4.8 and 4.9 

shows that ground motion selection algorithm shows quick 

convergence of MD and provide reliable structural collapse 

likelihood using 22 ground motions. 
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Figure 4.8 MDs of the fragility model at each step of updates with respect to 

the fragility curve based on the entire set for RC SMF building. 

 

Figure 4.9 Fragility curves by the developed algorithm (22 ground motions) 

and the entire set of 78 ground motions for structure developed  

by Haselton et al. (2011). 

Based on the critical features of the Example from 1 through 3, 

one can infer that both AI  and )(
1

* TAI avg  are the most critical 

seismic intensities which can properly capture the remaining 

variability that are not fully covered by spectral acceleration at first 

mode period in IDA. It is noted that selected critical features are in 

line with new IM combined with peak (e.g., )(
1

TSa ) and cumulative 

(e.g., )(
1

* TAI avg ) indices. Therefore, one can predict the structural 

responses with less uncertainty using new IM, particularly for 
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estimating the collapse risk assessment of structural system. 

 

4.4.4. Numerical Example 4 

 

In developing collapse fragility, a linear regression model can 

be used for providing more reliable probabilistic evaluation of 

collapse likelihood, particularly a set of ground motions are biased. 

Following the statistical procedure described above, a linear 

regression model of demand is developed as in Equation (2.8) for 

the test case of Lignos et al. (2008). To test the efficiency and 

applicability of the algorithm with probabilistic model, 99 ground 

motions are selected by intention to make biased record set. To 

show a level of bias in record sets, comparison is made between the 

fragility curve which is estimated using 99 ground motions and the 

one by the original set (i.e., 155 ground motions are used) based on 

“Method A” statistical fitting procedure. As shown in Figure 4.10, 

the biased fragility function (blue curve) seems to slightly 

overestimate the structural collapse compared to “real fragility 

function” due to the fact that the biased record set is mostly 

consisted of weak ground motions which can make structural 

collapse at relatively large )(
1

TSa  level. 

 

Figure 4.10 Collapse fragility curves estimated using biased ground motion 

set and the entire set of 155 ground motions. 
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As stated previously, structural collapse estimated using 

probabilistic demand model based fragility fitting procedure is less 

sensitive to biased record set because of IM-DM regression model. 

Figure 4.10 compares the fragility model based on regression IM-

DM model: a fragility curve subject to 155 ground motions (black 

curve), the one subject to 99 ground motions (blue curve), and the 

structural fragility subject to proposed algorithm among biased 

record set (red dashed curve) estimated using regression model. 

Although, blue curve is compatible with the black curve and closely 

matched compared to the fragilities estimated based on method of 

moment fitting procedure, the one assessed based the proposed 

algorithm seems more accurate and reliable. Due to clustering 

analysis, ground motions are equally selected in record sets so that 

one can address the bias of a ground motion set. Furthermore, in 

order to quantify the effectiveness of the regression based fragility 

method, the MD value of three different fragilities are calculated. 

First, fragility curve based on method of moment procedure with 

respect to “real fragility curve”, i.e., distance between two 

fragility curves in Figure 4.10 is 0.6036. Second, fragility curve 

using regression model based procedure with respect to “real” 

one, i.e., distance between blue and black curves in Figure 4.11 is 

0.0573. Finally, regression model with the proposed algorithm 

procedure with respect to “real fragility curve”, i.e., distance 

between red and black curves in Figure 4.11 is 0.0302. Therefore, 

the numerical example confirms that probabilistic demand model 

based fragility fitting procedure with proposed algorithm yields 

more reliable results when record sets are biased. 
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Figure 4.11 Collapse fragility curves estimated using the entire ground 

motion set, biased ground motion set, and biased set with ground motion 

selection algorithm (31 ground motions are used). 
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Chapter 5. Conclusions 
 

 

IDA is a most widely used methodology to assess collapse 

potential of structural system. It is however noted that there exist 

critical issues in seismic fragility assessment associated with 

variability of structural responses and high computational cost. To 

address the limitations and to further enrich the field of 

performance based earthquake engineering, especially when 

evaluating risk of structural collapse, a new IM based on 

comprehensive understanding of collapse mechanism under seismic 

excitation as well as a new clustering based ground motion 

selection algorithm coupled with Euclidian metric distance has been 

developed. It is noted that one can get more gradual slope of IDA 

curve near collapse point using the proposed IM, which may serve 

as more reliable collapse criterion when using IM-based rule to 

identify structural collapse capacity. Furthermore, using a 

clustering analysis coupled with the relevant features of ground 

motion, a set of ground motions are clustered regarding relationship 

between IM and corresponding DM, which can reduce the number of 

ground motion used in dynamic analyses while keeping consistency 

with probabilistic seismic hazard analysis at given site. Since 

clustering analysis make sampling points equally distributed in 

whole domain of record set, convergence of structural collapse 

capacity can be quantified even using small number of ground 

motions in dynamic analysis and also avoid false convergence or 

converging to local optimum value that may result in inaccurate 

estimation of structural collapse capacity. The breadth of 

applications of new IM and ground motion selection algorithm was 

demonstrated using ductile steel frame and RC SMF building. 

Along with two main developments, there are several additional 

findings in this study. First, this paper introduces a new parameter 

(  ) and statistical procedure for quantifying the structure’s 

softening, which can be useful particularly when structural system 

is sophisticated and complex. Second, it is found that the energy 
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balance ratio of seismic energy to dissipated hysteretic energy 

significantly influence on structural capacity. Therefore, energy 

balance ratio should be considered when ground motions are 

selected for estimating performance of structural system. Finally, 

identified critical features and proposed algorithm is helpful not only 

for reducing computational cost but also for comprehensive 

understanding between seismic demand and structural capacity. 

Several possible improvements for future work can be proposed 

for both methods. For the new IM, it would be necessary to develop 

ground motion prediction equations(GMPEs), at which time the 

predictability of the IM could be evaluated. For the ground motion 

selection algorithm, more advanced method to find critical features 

is needed, which are used in the algorithm. This is necessary for a 

more accurate and stable estimation of the collapse fragilities. From 

these two methods, adequacy and efficiency of current collapse risk 

assessment of structural system can be enhanced. 
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Appendix A 

 

The ground motion selection criteria set used in this study are 

provided by Haselton and Deierlein (2007) using NGA-West2 

database (Ancheta et al. 2013), except some criteria for obtaining 

large dynamic analysis data. The ground motion records used in the 

nonlinear dynamic analyses are summarized in Table 1. 22 

earthquakes and total 155 ground motions are selected using the 

following criteria: 

 Distance from source to site > 10 km (average of Joyner-Boore 

and Campbell distances) 

 Soil shear wave velocity, in upper 30 m of soil, greater than 180 

m/s (NEHRP soil types A-D; note that all selected records 

happened to be on C/D sites) 

 Limit of six records from a single seismic event (each record 

set has two-lateral components) 

 Lowest useable frequency < 0.25 HZ, to ensure that the low 

frequency content was not removed by the ground motion 

filtering process 

 Strike-slip and thrust faults (consistent with California) 

 No consideration of spectral shape ( ) 

 No consideration of station housing, but PEER-NGA records 

were selected to be “free-field” 
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Table A.1. Summary of the number of ground motions used in this paper 

Earthquake Magnitude 
Number of  

ground motions 

1966 Parkfield 6.19 6 

1976 Friuli, Italy-01 6.50 4 

1979 Imperial Valley-06 6.53 11 

1986 N. Palm Springs 6.06 7 

1987 Whittier Narrows-01 5.99 8 

1987 Superstition Hills-02 6.54 8 

1989 Loma Prieta 6.93 12 

1992 Landers 7.28 9 

1992 Big Bear-01 6.46 9 

1994 Northridge-01 6.69 11 

1995 Kobe, Japan 6.90 12 

1999 Kocaeli, Turkey 7.51 5 

1999 Chi-Chi, Taiwan 7.62 10 

1999 Duzce, Turkey 7.14 6 

1999 Hector Mine 7.13 7 

1999 Chi-Chi, Taiwan-03 6.20 3 

1999 Chi-Chi, Taiwan-04 6.20 1 

1999 Chi-Chi, Taiwan-05 6.20 3 

1999 Chi-Chi, Taiwan-06 6.20 5 

1992 Cape Mendocino 7.01 12 

2003 San Simeon, CA 6.50 1 

2004Parkfield-02, CA 6.00 5 
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국 문 초 록 

 
도시 인프라 시스템의 복잡성이 증대함에 따라 지진에 대한 

사회경제적 취약도 역시 나날이 증가하고 있어, 지진하중에 대한 

구조물의 손상과 붕괴를 예측하고 피해 및 인명손실을 최소화할 수 있는 

내진설계의 중요성은 나날이 증대되고 있다. 효과적인 내진설계를 통한 

지진재해의 경감 및 복원력의 효과적 강화를 위해서는 지진하중에 대한 

구조물의 내진성능을 정확히 평가하는 것이 필수적이다. 이를 위해 최근 

지진동의 변동성과 구조 시스템 내 잠재된 여러 불확실성을 고려하여 

구조물의 붕괴 확률을 산정하는 여러 가지 해석 및 평가방법이 개발 

되었고, 근래에는 구조물의 취약도를 평가하는 해석 방법의 하나로서 

증분동적해석법(Incremental Dynamic Analysis, IDA) – 지진의 강도와 

구조물의 응답의 상호관계를 분석하기 위하여 지진의 강도를 점진적으로 

증가시키면서 비선형 동적해석을 수행하는 방법 – 이 많이 사용되고 

있다. 증분동적해석법은 지진동과 구조물에 내재하는 불확실성과 

변동성을 체계적으로 고려할 수 있어, 성능기반지진공학(Performance 

Based Earthquake Engineering, PBEE)에서 자주 사용되고 있지만 

해석 시 주로 사용되는 지진강도척도(Intensity Measure)인 가속도 

스펙트럼( )(
1

TSa )은 지진동의 강도 및 특성을 효과적으로 나타내지 

못하는 단점이 있으며 다양한 지진동 필요와 더불어 많은 횟수의 비선형 

동적해석 수행을 요하는 근본적인 한계점을 가지고 있다. 이에 본 

연구는 구조물의 붕괴 영향 관점에서 지진동의 불확실성을 감소시키기 

위해, “누적” 지진강도척도와 “최대” 지진강도척도를 조합한 새로운 

지진강도척도의 개발하였고, 구조물의 붕괴 여용력(Collapse Capacity) 

예측 시 사용되는 지진동 수를 효과적으로 줄이기 위해 클러스터링 기반 

적응형 샘플링 기법을 활용한 지진동 선택알고리즘을 제안하였다. 

정량적이며 신뢰성 있는 방법론 개발을 위하여 다양한 통계 분석 기법이 

사용되었으며, 그 적용성 및 효용성 검증을 위하여 Lignos 등(2008)에 

의해 실험될 철골 구조물 및 Haselton 등(2011)에 의해 모델링 된 RC 

구조물을 대상으로 155개의 지진동 시간이력을 이용 각각 

증분동적해석을 수행하였다. 증분동적해석 결과를 분석한 결과, 새로운 

지진강도 척도와 알고리즘을 사용하면 지진동에 내재하는 변동성을 크게 

줄일 수 있었으며 매우 적은 수의 동적해석으로도 구조물의 지진 

취약도를 구할 수 있음을 확인하였다. 본 연구에서 제시된 방법론은 
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향후 성능기반지진공학에 폭넓게 적용이 가능할 것으로 예상된다. 

 

주요어: 지진강도척도, 지진동 선택, 취약도 해석, 증분동적해석, 에너지 

평형비, 중요강도척도 
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