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Constrained College Admission Problem:
Manipulability of Truncated College-optimal Stable

Mechanism
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Abstract

A central issue in college admission problems is their vulnerability to ma-
nipulation by students. Students can often falsely report their preferences and
get into more preferred colleges. This paper first shows that the college ad-
mission mechanisms in South Korea and the US, where students are limited
in the number of schools that they can apply to, are equivalent to truncated
college-optimal stable mechanism (TCOSM). Then, by adopting the frame-
work proposed by Pathak and Sénmez (2013), it proves that the type space
which is vulnerable under TCOSM is equivalent to that incurs different match-
ing under TCOSM and student-optimal stable mechanism (SOSM). The result
implies that TCOSM becomes less manipulable as the truncation quota (the
limited number of each student’s applications) increases, considering the type
space which is vulnerable under TCOSM with the lower truncation quota. The
analysis on manipulability of TCOSM supports policy reforms that increase the

truncation quota to enhance students’ satisfaction in college admission.
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Introduction

College admission and school choice problems are widely studied subjects in the
field of market design.! There has been significant theoretical development in eco-
nomics that helped mitigate real world issues, such as instability and manipulabil-
ity. Most notably, Gale and Shapley (1962) proposed a Deferred Acceptance (DA,
henceforth) mechanism. There are two types of the mechanism: student-proposing
and college-proposing DA mechanisms. Student (college)-proposing DA mechanism
satisfies stability and student (college)-optimality.> Hence, student-proposing and
college-proposing DA mechanisms are called student-optimal and college-optimal
stable mechanisms (SOSM and COSM, henceforth), respectively. Unlike COSM,
SOSM offers one more nice property: strategy-proofness on students’ side. Due to
the three desirable properties (stability, student-optimality, and strategy-proofness) of
SOSM, many school districts in the US have adopted modified versions of SOSM.
For example, New York City in 2003 changed its student assignment system to trun-
cated SOSM, where students can apply up to five schools (Abdulkadiroglu, Pathak
and Roth 2005).

Since most college admission mechanisms are not based on SOSM, vulnera-
bility to manipulation by students still remains as a significant issue that needs to
be resolved. Students can often achieve better outcomes in the college admission
“game” by falsely reporting their preferences. In other words, the mechanisms are
not strategy-proof.> For instance, in the early admission process of South Korea, stu-
dents cannot apply to more than six colleges and most students do not apply to top
six colleges in their preferences. Students and parents put enormous time and effort

in choosing six colleges and there even exist consulting firms specializing in assist-

IThe two problems differ only in that, unlike schools, colleges are strategic agents which have their
own preferences over students.

ZFor the definitions of stability and optimality, see Appendix A.

3Manipulability and strategy-proofness are closely related notions. However, for consistency, ma-
nipulability is mostly used in this paper.



ing students in selecting colleges. More detrimentally, many students fail to get into
colleges and reapply the next year just because of their bad play in the game. For
these reasons, the gaming by students in college admission has been one of the core
concerns of education policymakers in South Korea.

The college admission mechanism in the US is similar to that of South Korea,
since students cannot apply to all colleges they want to because of the lack of their
time and financial resources. For example, they have to pay application fees and
write different essays for respective colleges. Therefore, the truncation quota (the
limited number of each student’s applications) can be understood as a vector in the
US, whereas that of Korea is a scalar.

This paper aims to analyze the manipulability of college admission mechanisms
based on their truncation quota. There are two papers which provide frameworks to
compare manipulability of truncated mechanisms. Pathak and Sénmez (2013) pro-
vides the notion of “more manipulable.” Rough definition of the notion is as follows:
a mechanism A is more as manipulable as a mechanism B if the type space (the set of
preference profiles) under which some player(s) can falsely report their preferences
to achieve better outcome is strictly larger in A than in B. Haeringer and Klijn (2009),
while exploring necessary and sufficient conditions for stability or efficiency of trun-
cated versions of Immediate Acceptance (IA), DA, and Top Trading Circle mecha-
nisms, proves the nested structure of Nash equilibria for the mechanisms. Since Nash
equilibrium do not necessarily imply truth-telling by students, it is inadequate to an-
alyze the manipulability of truncated mechanisms in the Nash equilibria perspective.
Hence, the framework of Pathak and Sonmez (2013) is used for this paper’s analysis.

Another related paper that uses the concept of “more manipulable” is Chen and
Kesten (2017). They showed that China’s transition from an Immediate Acceptance
(IA) mechanism to the parallel mechanism, a hybrid of IA and DA mechanisms, is
a shift to a less manipulable mechanism. In the companion paper, Chen and Kesten

(2016) experimentally assisted their theoretical results.



This paper first shows that college admission mechanisms in South Korea and
the US, where students are limited in the number of schools that they can apply to,
are equivalent to truncated college-optimal stable mechanism (TCOSM, henceforth).
Then, it proves that the type space which is vulnerable under TCOSM is equivalent
to that incurs different matchings under TCOSM and SOSM. The result implies that
TCOSM becomes less manipulable as the truncation quota increases, considering the
type space which is vulnerable under TCOSM with the lower truncation quota.

Considering the strand of prior literature, the contribution of this paper is two-
folds. First, it brings COSM, a less studied mechanism compared to SOSM, to aca-
demic attention. The equivalence of the South Korean and American college ad-
mission mechanisms and TCOSM implies that theoretical or empirical analysis on
TCOSM could improve the college admission outcomes in the real world. Second,
it is the first paper to analyze the manipulability of TCOSM. The manipulability of
COSM has been proven by Gale and Sotomayor (1985). However, after it, there has
been no further research on manipulability of constrained versions of COSM.

The remainder of this paper is organized as follows. In Section 1, a college ad-
mission problem is formally defined. In Section 2, college admission mechanisms
in South Korea and the US are introduced. Also, by abstracting from these two
mechanisms, a Real-world Mechanism is defined. In Section 3, TCOSM is formally
described and its equivalence to the Real-world Mechanism is proved. In Section
4, the notion of manipulability is provided and the main theorem proves the equiv-
alence of TCOSM’s manipulability and its inequality to SOSM. As the corollary of
the theorem, the paper analyzes manipulability of TCOSM based on its truncation
quota. Lastly, in Section 5, concluding remarks and further research opportunities
are provided. Basic concepts of matching theory necessary for this paper are defined

in Appendix A, and all the proofs are relegated to Appendix B.



1 College Admission Problem

A college admission problem consists of a set of students and colleges and their
preferences along with the quota (capacity) of each college. An individual (a student
or a college) is assumed to have a strict preference over its counterpart and himself.
Furthermore, each college has a fixed quota and it can only admit students up to
the quota. The outcome of a college admission problem is called a matching, and a
mechanism is a systematic way of providing a matching given a college admission

problem. Formal definitions are as follows.

Definition 1.1. A College admission problem is a 5-tuple (S,C,q, Ps, Pc).

1. S: aset of students, S = {s1,...,5m}.
2. C: aset of colleges, C = {ci,...,cn}.

3. g: quota (capacity) vector, ¢ = {q1,...,qn}, q; denotes the total number of

available seats at c;.

4. Ps: a strict preference profile of students, Py = {P,,,..., P, }, P is a linear

ordering of CU {s;}.

5. Pc: a strict preference profile of colleges, Po = {F.,,...,Fe, }, P, is a linear

ordering of SU{c;}.*

cpPy,c, means that s; strictly prefers ¢, to ¢ . ¢, FPys; means that s; strictly prefers
being admitted to ¢, to remaining unassigned (not going to any school). In this case,
¢, is called acceptable. Often unacceptable colleges and student himself are omitted
when stating a student’s preference. For example, F;, : c1,c2 denotes s;’s preference,
where his top and second choices are ¢ and ¢, respectively, and all the other colleges

are unacceptable. Symmetric statement holds for F;;. Furthermore, weak preference

“It is implicitly assumed that colleges’ preferences are responsive since they are not defined over 25.
Roughly speaking, responsive preference means that colleges’ preferences over 25 is consistent with
their preferences over S.



relationship R can be derived from P: c,Ryc, if and only if ¢, = ¢, or c,Pcq. 1If
no confusion arises, a college admission problem is often simply written by omitting
some of the entries in the 5-tuple. For instance, if S,C, g, and Pc are considered fixed,

a college admission problem is written as Ps.

Definition 1.2. A Matching is a function u : SUC — 25 UC that satisfies
1. |u(s;))|=1and u(s;) € CU{s;},Vs; €8
2. |u(cj)| < gjand u(c;) €25,VejeC
3. u(si) =cjiff s; € u(cj).

Definition 1.3. A Mechanism is a systematic way that provides a matching ( given

a college admission problem (S,C, g, Ps, Pc).

2 College Admission Mechanisms in South Korea and the

U.S.

The college admission system in South Korea consists of two parts: early (sooshi) and
regular admission processes (jeongshi). In the early admission process, each student
can apply up to six programs, i.e., the truncation quota is six.> Then, each college
offers its first round of admission up to its quota by December 15th. If a student gets
admitted to multiple programs at the first round of the early admission process, he
or she should choose whichever college he or she prefers the most and rejects all the
other before the fixed deadline (December 21st).

Also, colleges have waitlists for admission and after the first round of admission,
available seats are offered to the next best candidates in the lists. There is no nation-

wide fixed date dictating the number of the subsequent rounds and their timeline.

5In South Korea, students usually apply to a specific program of a college. In this paper, the terms
“program” and “college” are interchangeably used.



After December 21st, each student cannot retain more than one seat, so if admitted off
the waitlist, a student has to choose between the previously-admitted and the newly-
admitted institutions. Most colleges strive to meet their quotas, unless they are only
left with students below their standards. For example, Some colleges increase the
number of admission rounds to fill their quotas. Some even call students and offer
them admission, when there are few seats left for admission.

If a student gets admitted to some program(s) in the early admission process, he
or she cannot apply to any college in the regular admission. Hence, in this case, s;
at P, denotes remaining unassigned at the early admission process and going to the
regular one.

In the regular admission process, most post-secondary education programs are
divided into three categories, and each student can apply up to one program in each
category. The rest of the process is almost the same with the early admission pro-
cess, except that students’ outside option is to give up their post-secondary education
or to apply again in the following years. Unlike its name, regular admission takes
up smaller part in college admission. According to Korea Council for University
Education, colleges filled up 30.1% of their capacities through regular admission in
2017. In 2018 and 2019, the numbers are expected to decrease to 26.3% and 23.8%,
respectively.®

The college admission system in the United States consists of early and regular
admission processes. There are two types of early admission process: early decision
and early action. Early decision is binding, which means that if admitted, students
must enroll and withdraw applications from all the other institutions. Students can
only apply up to one college. In contrast, Early action is a non-binding decision.
Even though a student gets admitted to a college through early action, he or she

can wait for early action and regular admission results from other colleges and then

Shttp://www.kcue.or.kr/bbs/view.php?gb=high&page=2&idx=1265&kind=&culm=& word=,
retrieved on June 18th, 2017.



decide. Colleges have different regulations regarding the early admission processes.
However, generally a student can apply through both early decision (one college) and
early action (multiple colleges). In the regular admission process in the US, students
can apply to any colleges they want. As in the case of South Korea, there is a fixed
deadline (May 1st) by which students must choose only one offer and reject all the
others. Early action shares this same deadline.

Early decision in the US differs with the early admission process of South Korea
only in that the truncation quota is one. When students are limited in the number
of their applications in early action and regular admission in the US due to the lack
of financial (application fees) and time (preparing for each application) resources,
the two processes combined are equivalent to the early admission process of South
Korea, where a different truncation quota is imposed on each student.’

By abstracting from the admission mechanisms of the two countries, except the
regular admission mechanism in South Korea, which is losing its importance, the

Real-world Mechanism is defined.

Definition 2.1. The Real-world Mechanism, p(z), where ¢ denotes the number of

programs that each student can apply to, consists of the following steps.®

Step 1. Each student applies up to ¢ programs.

Step 2. If the number of qualified students applied to ¢ is greater than g, ¢
offers admission to top g, students and put other students on the wait-
list. Otherwise, c offers admission to all qualified students. This step is

completed by the fixed deadline (deadline 1).

Step 3. Admitted students choose one college by another fixed deadline (dead-

line 2, which can be the same with the deadline 1).

7In reality, Pc’s are different in early action and regular admission, since students have more time to
prepare for their applications in regular admission. However, for simplicity of analysis, the change in
preferences of colleges is ignored.

8 As for the combined process of early action and regular admission in the US,  can be thought as
a truncation vector imposed on students. The rest of the arguments in this paper robustly holds even
when ¢ is a vector instead of a scalar.



Step 4. After the deadline 2, ¢ offers subsequent rounds of admission from the

waitlist. (The timeline of subsequent rounds varies by colleges.)

Step 5. When admitted off the waitlist, a student who is previously-admitted

by another college must choose between the two institutions.

Step (termination) 4-5 are repeated until all colleges either filled up their

quotas or exhausted all the waitlisted students.”

3 Truncated College-optimal Stable Mechanism and Its Equiv-

alence to the Real-world Mechanism

Since TCOSM is a variant of COSM, the formal definition of COSM is first provided.

Definition 3.1. College-optimal stable mechanism (COSM) consists of the following

steps.

Step 0. Each individual reports his strict preference over his counterpart and

himself.

Step 1. Each college ¢ proposes to top g. acceptable students. (If the number
of acceptable students is less than g, it proposes to all students.) Each
student who receives offer(s) from colleges tentatively accepts one most

attractive offer and rejects all the other offers.

Step k (k > 2). Each college ¢ proposes to top ¢, students from its list of ac-
ceptable students who did not rejected its offer at the steps 1 to k — 1
(including those who tentatively accepted its offer). Each student who re-
ceives offer(s) from colleges tentatively accepts one most attractive offer

and reject all the other offers.

Note that p(¢) ends in finite rounds, since there are a finite number of colleges and students.



Step (termination). When no rejection occurs, the algorithm terminates and

the assignment becomes final.!?

TCOSM is the variant of COSM where only top ¢ colleges in each student’s prefer-

ence is considered. Here, ¢ denotes the truncation quota.

Definition 3.2. Truncated college-optimal stable mechanism (TCOSM) with the trun-

cation quota 7, ¥(t), consists of the following steps.

Step 0. Each individual reports his strict preference over his counterpart and
himself. Each student’s preference is truncated so that only top ¢ colleges
remain on it. If the number of acceptable colleges is less than or equal to

t for a student, his preference is not truncated.

Step 1 to Step (termination) same with those of COSM.

By Definition 3.2, COSM automatically becomes y(eo), or equivalently y(|C|).

Proposition 3.1. p(¢) (the Real-world Mechanism where each student can apply up
to ¢ colleges) and y(z) (TCOSM with the truncation quota t) are equivalent
in that they produce the same matching given the same reported preference

profile.

Theoretical analysis on p(r) incurs technical difficulties since colleges have different
timelines for their decisions on waitlists. Proposition 3.1 simplifies analysis of p ()
since one can analyze y(¢) instead. With the help of Proposition 3.1, the analysis on

the manipulability of y(¢) also applies to p(7).

10Since each college proposes only to those who have never rejected them and there are a finite
number of colleges and students, COSM always terminates.



4 Manipulability of Truncated College-optimal Stable Mech-

anism

As aforementioned, manipulability of the college admission mechanism has been one
of the core concerns of education policymakers in South Korea. Pathak and Sonmez
(2013) provides a general framework that can be utilized to compare manipulability
of different mechanisms. Provided below is the modified form of their framework in
the college admission problem setting. Only student-side of manipulability is con-

sidered here.

Definition 4.1. A mechanism ¢ is manipulable by a student s; € S at problem Py if

there exists P;, such that ¢ (P, P, )Py, ¢(Ps)."!

Definition 4.2. Problem Ps is vulnerable under a mechanism ¢ if ¢ is manipulable

by some student s; € S at Ps.

Definition 4.3. A mechanism y is at least as manipulable as a mechanism ¢ if any

problem Ps that is vulnerable under ¢ is also vulnerable under v.

Definition 4.4. A mechanism Y is more as manipulable as a mechanism ¢ if

1. yis at least as manipulable as ¢ and

2. there exists (S,C,q, Ps, Pc) such that Ps is vulnerable under y but not under ¢.

Pathak and S6nmez (2013) has shown that truncated SOSM becomes less manipula-
ble as the truncation quota increases. However, as the three examples below illustrate,
it cannot be said that TCOSM with a smaller truncation quota is more as manipulable

as that with a greater truncation quota.

Definition 4.5. u’(Ps), p.(Ps), and s, (Ps) denote a matching of Ps through (),
COSM (y(e0)), and SOSM, respectively.

11s,,- denotes S — {s;}, thus P, is the preference profile of all students except s;.

10 A= L



Example 4.1. P; is vulnerable under (1), but not under y(2).

Pe:s1,52,83 (e, =1) Py ici,02
P, 51,852,583 (qe, = 1) Py, ic1,02

Py, :c1,00

o u2(Ps) = u.(Ps) = {(c1,51),(c2,52)} = Uso(Ps). Here, no student can manip-

ulate the mechanism.

o ul(Ps)={(c1,51)} # Hso(Ps). Let Py, : c2. Then, ! (P, B ;) = {(e1,51), (e2,52) ).

Since 2P, 52, Y(1) is manipulable by s, at Ps.

Example 4.2. P; is vulnerable under ¥(3), but not under y(2).

P.:s1,54,53,52 (9, = 1) Py i c3,02,C1
P.,: 54,52,51,53 (e, = 1) Py, i c1,02,¢3
Pe.: 53,81,82,54 (qes = 1) Py i cp,03,02

Ps4 1 C2,C1,C3

4 HS(PS) = .LLC(PS) = {(Clvsl)a(C27S4)7(C37S3)} 7& .uSO(PS)' Let i): © C3. Then,
uf(}A’s:,PM) = {(c1,53),(c2,54),(c3,51)}. Since c3P; ¢y, ¥(3) is manipulable

by s; at Ps.

o u?(Ps) ={(c1,s3),(ca,s4),(c3,51)} = Wso(Ps). Here, no student can manipu-

late the mechanism.
Example 4.3. P; is vulnerable under both (1) and y(2).

P..: s1,53,54,52 (4e, =2) 2,0

P.,: $2,51,53,54,85 (g, =2) 1 c1,02

Py,
by,
Py, e,
Py, 2,0
Py cr,c

11 H 2T} o]



o u2(Ps) = pe(Ps) = {(c1,53,54),(c2,51,2)} # Uo(Ps). Let Py, : ¢;. Then,
,uf(i’;,PS_z) ={(c1,82,54),(c2,51,53)}. Since ¢ Py, ¢, ¥(3) is manipulable by

sy at Ps.

o 1! (Ps) ={(c1,52),(c2,51,53)} # Uso(Ps). Let Py, : 1. Then, ul(P, P, ) =

{(c1,52,54), (c2,51,53)}. Since ¢1 Py, s4, Y(1) is manipulable by s4 at Ps.

Even though the above examples imply that the manipulability of TCOSM does not
directly depend on the truncation quota, it illustrates which Ps is vulnerable under
v(¢): Ps such that p!(Ps) # W (Ps). In fact, ul(Ps) # L, (Ps) is the necessary and
sufficient condition for Ps to be vulnerable under y(7). Based on the theorem, the

analysis of TCOSM’s manipulability based on the truncation quota becomes possible.
Theorem 4.1. Ps is vulnerable under mechanism ¥(z) if and only if ! (Ps) # s, (Ps).?

Proposition 4.1. Only considering college admission problems, where p1/(Ps) # L, (Ps),

¥(¢) is more as manipulable as y(t + 1).

The proposition states that if y(¢) does not incur p,(Ps) at Ps, increase in the trun-
cation quota by one decreases manipulability of a mechanism. The type space con-
sidered in the proposition is where p!(Ps) # L (Ps), and it implies that all Ps’s in
the space are vulnerable under y(¢). This seems to be a strong assumption that di-
rectly leads to the conclusion. However, this is a reasonable assumption considering
the reality of college admission mechanisms. In the real-world, there are a large
number of colleges and students, and thus y(¢) would not produce a student-optimal
matching most of the time. For example, under TCOSM, there usually exist unfilled
seats (quota) at some colleges and unassigned students that would prefer to enter that
colleges, as y(1) in Example 4.1.

Proposition 4.1 is a theoretical support for the admission policy reforms that in-

crease the truncation quota. For example, the introduction of Common Application

12The case when ¢ = |C| or oo was proved by Gale and Sotomayor (1985).

1 ™
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in the US could be theoretically supported in that it makes the admission system less
manipulable. Common Application is a college admission platform that applicants
can use to apply to any of its 693 member colleges. It reduces students’ burden of
applying to different schools on separate platforms. Even though it does not intend
to deal with manipulability of admission system, it virtually increases the truncation
quota, and thus contribute to the system being less manipulable.!? Also, since ma-
nipulability is one of major issues in the South Korean admission mechanism, the

policymakers can increase the truncation quota to mitigate the problem.

5 Conclusion

In college admission problems, manipulability is one of crucial problems that policy-
makers are striving to resolve. Failure to properly “game” leads to qualified students
unjustly going to less desirable colleges or even taking an unwanted gap year. For
example, there are many students in South Korea who are re-preparing for college
admission not because they were unqualified but because they applied to “wrong”
colleges. This paper sheds light to the solution.

First, it shows that the Real-world Mechanism, the abstraction of college admis-
sion mechanisms in South Korea and the United States, is equivalent to truncated
college-optimal stable mechanism (TCOSM). The result facilitates the analysis of
college admission mechanisms, since TCOSM could be utilized instead. Further-
more, the equivalence result evidences the academic importance of COSM, which
has been less studied compared to SOSM.

Second, it proves that the type space (preference space) which is vulnerable under
TCOSM and the space of which matching under TCOSM is different from that under
SOSM are equivalent. As an implication of this result, TCOSM becomes less ma-

nipulable as the truncation quota increases considering the type space which incurs

131ts mission is to “promote access, equity, and integrity in the college admission process.”

1 ¢
13 i e~ Syl |



different matchings under SOSM and TCOSM with the less stringent quota. This
result is a theoretical proof of an assertion that strategic behaviors of students will
decrease when they are allowed to apply to more schools.

Further research could be conducted to examine the empirical validity of the the-
oretical result. For example, the change incurred by the US Common Application
might provide data source for statistical analysis. Also, as in Chen and Kesten (2016),

experimental methods could be applied as well.

14 A =1
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Appendix A: Basic Concepts of Matching Theory

Definition A.1. A matching y is blocked by an individual i if iP;u(i).'*

Definition A.2. A matching p is individually rational if it is not blocked by any

individual.

Definition A.3. A matching u is blocked by a student-college pair (s,c) if cPspi(s)

and sP.s', for some s’ € p(c).

Definition A.4. A matching u is (pairwise) stable if it is individually rational and

not blocked by any student-college pair. '3

Definition A.5. A stable matching y is student-optimal if for all s; € S, p(s;) Ry, 1t (si),

where (1’ is a stable matching.

Definition A.6. A student s is achievable for a college c if s and ¢ can be matched in

a stable matching.

Definition A.7. u is college-optimal if for all ¢; € C, u(c;) consists of g; top-ranked
students among students achievable for c;. If the number of students achievable

for ¢; is less than g;, u(c;) is the set of all students achievable for c;.

Appendix B: Proofs for the Theorem and Propositions

Definition B.1. u’(i|Ps), p.(i|Ps), and s, (i|Ps) denote the matching of an individual
iin p/(Ps), te(Ps), and uy, (Ps), respectively. P;. and P denote the z-truncation
of P, and Ps, respectively. The z-truncation means the preference profile that

leaves only top ¢ colleges in the preference profile.

14 A5 for a college, i is blocked by an individual (a college c) if cP.s for some s € p(c).

15 As for a many-to-one matching like a college admission problem, there is a stronger stability con-
dition called group stability. However, since colleges’ preferences are responsive in this paper’s model,
group stability and pairwise stability are equivalent.
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Proof of Proposition 3.1.

Proposition 3.1. p(¢) (the Real-world Mechanism where each student can apply up
to ¢ colleges) and y(z) (TCOSM with the truncation quota t) are equivalent
in that they produce the same matching given the same reported preference

profile.

Proof. Let Ps, P denote the reported preference profiles of students and colleges, re-
spectively. It is enough to show that a matching p, incurred by p(¢) given (S, C, g, P o)
is stable and college-optimal. This is because COSM incurs a stable and college-
optimal matching assuming that the reported preference profiles are true, and TCOSM

is equivalent to COSM assuming that the truncated preference profile is true.
Claim 1. py, is stable.

Proof. u, is individually rational since students (colleges) are not matched to
unacceptable colleges (students) under p(z). Therefore, it is enough to show
that u, is not blocked by any student-college pair. Suppose not: There exists
(si,¢j) which blocks .. Then, ¢ jﬁ;tur(si), and there exists sx € l.(c;) such
that sii’:j s;.10 Since, s; is strictly preferred to sy, ¢; must have offered admission
to s;, before offering it to s;. Furthermore, since s; strictly prefers c; to W (si), si
must have chosen a college ¢; such that ¢;R,c;. Since ¢ jIA’: We(si), c1 7 Ur(si).

This is a contradiction to the fact that s; is matched to g, (s;).

Claim 2. u, is college-optimal.

Proof. Let a proposal step denote a step of p(¢) where some college(s) offers
admission to some student(s). Then, the k’* proposal step means the k" of all
colleges’ admission rounds. Thus, In this definition, a college may or may not
offer admission to student(s) at a proposal step. In other words, a proposal step
is an admission round of some colleges, but it may not be the case for other

colleges.

161¢ cj has not filled up its quota g; in iy, then s = c;.

1 ™
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College-optimality can be seen by induction. Suppose that up to the k* pro-
posal step, all achievable students of each college who received offers from it
tentatively accepted them. Then it is enough to prove that at the (k4 1) pro-
posal step, each college’s achievable students who have tentatively accepted
offers before the (k+ 1) proposal step don’t reject the offers in favor of other
new offers (Claim 2.1) and achievable students who newly get offer from it at

the (k -+ 1)" proposal step tentatively accept its offers (Claim 2.2).

Claim 2.1. ¢;’s achievable students tentatively accepted c;’s offer before the
(k1) proposal step do not decline c;’s offer at the (k+ 1)/ proposal
step.

Proof. Suppose not: A student s, achievable for ¢; who tentatively ac-
cepted c;’s offer before the (k+ 1) step declines ¢ ; in favor of another
school ¢, at the (k+ 1) step. Then, any matching u that assigns s,
to c; is unstable, since cpi);tcj and salg;s, forsomes € u(cp). The later
part is from the fact that ¢, proposes to s, at the (k+ 1) proposal step,
which in turn implies that s, is one of g., top-ranked students among the
achievable students for ¢,,. Since (s4,c)) is a blocking pair of y, s, is not

achievable for c;.

Claim 2.2. ¢;’s achievable students who newly receive offers from c; at the
(k+ 1)" proposal step tentatively accepts it.
Proof. Let s, denote a c;’s achievable student who newly receives offer
from c; at the (k+ 1) proposal step.
If s, is unassigned and c; is the only college that offers admission to s, at
the (k+ 1)" proposal step, s, accepts the offer since the fact that s,, is a
achievable student of ¢; implies that ¢; is an acceptable college for s,,.
It remains to be seen that s,, who has received multiple offers before and at

the (k -+ 1) proposal step accepts c’;s offer. Suppose to the contrary that
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s, chooses another college ¢, instead of c¢;. Then, any matching u that
assigns s, to ¢; is unstable. It is because cpf’;tcj, and s,,f’:ps, forsomes e
i(cp). The later part is from the fact that ¢, proposes to s, at the (k+
1)"" proposal step, which in turn implies that s, is one of qc, top-ranked
students among the achievable students for ¢,,. Since (s,,¢,) is a blocking

pair of U, s, is not achievable for c;.

Claim 2.1. and Claim 2.2. also applies to Vc € C. Hence, L, is college-optimal.

Proof of Theorem 4.1.

Theorem 4.1. Ps is vulnerable under mechanism 7(¢) if and only if p’(Ps) # s (Ps).

Lemma 4.1. If y(z) is strategy-proof (on students’ side) at Pg and u/(Ps) is stable,
then u’(Ps) = Wso(Ps) -
Proof. Suppose that p’(Ps) is stable. Then, it is enough to show that strategy-
proofness implies student-optimality. Suppose to the contrary: p’(Ps) # Lo (Ps).
Then, there exists s; € S such that i, (s;|Ps)Py; . (s;| Ps), by the lattice prop-
erty of stable equilibria. By the Rural Hospital Theorem (Roth 1986), the set of
unassigned students is the same across L, (Ps) and p!(Ps). Furthermore, con-
sidering the lattice property and p/(Ps) = pe(P5), tso(Ps) = Uso(P§). Let i’; :
lso(5j|Ps). Then, pl(s;|Py, P ) = e(sj|Py, PL) = tso(sj|P) = tso(s[Ps).

This contradicts the strategy-proofness.

Proof of “if” part
(Contrapositive of “if”: If Ps is not vulnerable under y(k), then u’(Ps) =
.uso (P S ) )

Proof. The fact that Py is not vulnerable under y(k) is equivalent to the strategy-

proofness of (k) at Ps. Therefore, 11’ (s,u|Ps)Ry, 1. (sm|Py, Py ) Vs € S and VP, .

S )
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By Lemma 4.1, it is enough to show that p’(Ps) is stable. To prove the stabil-
ity, suppose to the contrary that there exists (s;,c;) such that ¢;P;, p/(s;|Ps) and
s,-PCJ.s’ , wheres' € pl(c;j|Ps). s;P.;s' means that ¢; must have offered admission
to s; before y(k) ends. If u/(s;|Ps) # s;, then c; is included in P;. Hence,
c;jPypl(si|Ps) cannot hold. Therefore, u.(s;|Ps) = s; and c; is not in P;. If
s; reports Py, : ¢ j. Then, ul(silP,, P ) = ¢ ;. This is a contradiction to the

strategy-proofness.

Proof of “only if” part

(Contrapositive of “only if”: If p’(Ps) = W (Ps), then Ps is not vulnerable

under y(k).)

Proof. Suppose not: There exist s, € S and P;, such that 11’ (s,|Ps,, Py )Py, 1. (s, | Ps).

Case 1. ul(s,|Ps) = ¢, for some ¢, € C.
Since L (Ps) = folPs). Heo(Ps) = oY), Hence, te(PL) = oo (PL).
At P{. truth-telling is optimal for each student by Gale and Sotomayor
(1985). Since it is optimal for s, not to lie under y(co) at P%, and s, is
assigned to some college in P , truth-telling is optimal for s,,.

Case 2. ul(s,|Ps) = s,.
Let ! (s,| Py, Py, ) = cp. Without loss of generality, P, : '’ tso(sv]Ps) =
sy means that s, are rejected by all colleges in P, at SOSM. Along with
the assumption that p’(Ps) = U, (Ps), this in turn implies that, at each
of these colleges, the quota is filled up with higher ranking students at

ul(Ps) = Wso(Ps) or s, was unacceptable. Hence,

pi(cp|Ps)| = qc,and s'Pe s, Vs’ €

ui(cplPs), or cpPe,s,. Therefore, ui(s,|P,,, Py ,) # cp.

7By Theorem 5.34 of Roth and Sotomayor (1990), deleting colleges after cp in f’g does not affect
the matching. Also, since u’(sy|Ps,,Ps_,) = cp, deleting colleges before ¢, does not affect the matching
as well.
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Proof of Proposition 4.1.

Proposition 4.1. Only considering college admission problems, where p/(Ps) # L, (Ps),

¥(¢) is more as manipulable as y(t +1).

Proof. y(t) is at least as manipulable as (¢ + 1), by Theorem 4.1 and the assumption
that u’(Ps) # Uso(Ps). Also, there always exist (S,C, g, Py, P;) such that P; is vulnera-
ble under 7(z), but not under (¢ + 1). This is trivial since one can construct a college

admission problem as in Example 4.1, for all ¢.

1 i R,
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