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Abstract 

I solve the discrete dynamic decision of sales agents’ effort allocation under a quota 

bonus compensation when the carryover from the past period is introduced in sales. 

With the solution of dynamic programming, I generate the sales data from two 

segments of sales agents: one with high risk-aversion and the other with low risk-

aversion. As the carryover in sales increases both the expected mean and variance of 

sales in the next period, the sales agent’s optimal effort allocation and thus the 

realized sales pattern vary according to his degree of risk aversion. The highly risk-

averse set the baseline of performance while the less risk averse fluctuate their sales 

above the highly risk-averse. Also, the frequency of achieving quotas is higher in the 

less risk averse group compared to the highly risk-averse group. These different 

patterns could be interpreted as that the highly risk averse try not to exert more effort 

to avoid the uncertainty from the increased sales.  

Following Arcidiacono and Miller (2011), I estimate the segment-wise optimal effort 

functions and utility functions in two steps: calculating the conditional choice 

probability with nonparametric functions and then searching for parameters with EM 

algorithm. The estimation result shows that ignoring the carryover when it exists 

gives out poor estimates of the number and even the size of segments. This is because 

ignoring carryover results in the wrong segmenting of the sales agents from the first 

stage estimation and thus affects the second stage estimation subsequently. The result 

highlights the necessity of considering carryover when understanding sales force’s 

performance history from the sales data if carryover exists. Neglecting carryover 

might lead to wrong segmentation of sales force and thus the inefficient design of 

segment-wise compensation plans. 
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1. Introduction 

Personal selling is a crucial part of the marketing mix. In US economy in 2006, at 

least 20 million people were involved in sales (Zoltners et al. 2008). The total 

investment in sales force was as high as over $800 billion, which was close to three 

times the $285 billion spent on advertising in 2006 (Zoltners et al. 2008).  

 This significance has brought about the needs to design the optimal 

compensation scheme for the practitioners. However, to design an efficient 

compensation scheme that incentivizes a sales force to exert its full effort is difficult 

because managers can only observe the proxy of effort, the performance outcomes 

with noise (i.e. sales performance). This means that a sales force could be 

incentivized to shirk behind the performance incommensurate to effort incurring a 

cost to him while the efficient compensation scheme is to induce full effort.  

 One possible performance outcome that a sales force could shirk behind is 

sales carryover. The sales carryover refers to the process in which a significant 

portion of the given year’s sales volume is not due to efforts of the sales force in the 

given year but is a function of the prior year’s selling efforts and other factors 

(Madhani 2011). These factors include marketing mix variables, unique product 

characteristics, market competition, customer relationship strategies, regulatory 

requirements, government regulation, general market conditions, increased 

promotional and advertising expenditure, a particularly excellent product or 

attractive pricing (Madhani 2011). There are some industries with notably high sales 

carryover rates, such as pharmaceuticals, financial services, office equipment, or 

professional software (Zoltners et al. 2006). According to a study of 50 

pharmaceutical companies in 6 countries with sales forces ranging in size from 35 to 

several thousand, the aggregate carryover sales from selling efforts in one year was 

75% to 80% the next year, 62% to 78% in the third year and 52% to 70% in the 

fourth year (Sinha and Zoltners 2001). This study attributed high carryover rates in 
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pharmaceutical industries to physicians’ reluctance to switch patients from 

medications that are working.  

 As the carryover sales increase the sales agent’s temptation to shirk (Rubel 

and Prasad 2016), it makes the compensation plans lose some efficiencies in 

incentivizing full effort. Due to the unobservability of the effort as well as the 

complexities in selling process between a sales force and its customer, the managers 

find it hard to estimate the exact sales carryover rate and to reflect it in the 

compensation contract. The result is that sales force could easily consider a portion 

of commissions as a hidden or free salary (Madhani 2011).  

 Besides the carryover sales, the non-linear compensation structure adds up 

the complexities and the inefficiencies in incentivizing effort. The non-linearity of 

compensation structure could give sales agents incentives to time the allocation of 

effort. A forward-looking sales agent would maximize his expected utilities by 

“gaming” in effort allocation considering his current decision making affects the 

future compensation. For example, the most commonly used compensation, which 

is quota-based compensation, generates a perverse incentive to the sales force who 

already achieve the quota to postpone additional effort to the future (Misra and Nair 

2011). If the bonus payment from quota achievement is big enough and marginal 

income for sales beyond the quota is small enough, a sales agent might keep his 

effort in a given compensation cycle after earning bonus and exert the saved effort 

in the next compensation cycle to gain another bonus rather than exhaust all his effort 

every time. This gaming behavior could be reinforced if the marginal gain for sales 

beyond the quota is zero (i.e. ceiling in the compensation).  

 How does the effort allocation of a sales agent under a non-linear 

compensation contract change if there are significant carryover sales? This paper 

starts with the above question. If carryover sales are significant, a forward-looking 

sales agent will start to consider the longer effect of his selling effort. He might still 
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exert some effort after achieving the quota, by reckoning that his current effort with 

little or even minus current income (i.e. the marginal cost of exerting effort is bigger 

than the marginal income earned for realizing sales) would be compensated by 

increased probability of gaining another bonus from carryover sales in the next 

compensation cycle. Without carryover sales, after achieving the quota, he might 

lose the motivation to put in extra effort till the next compensation cycle comes. The 

difference would be stark if sales beyond the quota give no marginal income and the 

quota is set high with a big bonus.  

 One variable that comes to be the fore in introducing carryover effect is sales 

agents’ risk aversion. As carryover sales increase the mean and also the variance of 

the future sales, a sales agent’ risk aversion acts on his optimal effort allocation 

decision. How much he could endure the increased variance of future sales from 

carryover sales would affect how he exerts his effort in every period. Thus, this paper 

allows the sales agent’s heterogeneity over risk aversion. Rubel and Prasad (2016) 

found that forward-looking sales agents need different optimal compensation 

according to their risk aversion degrees with the restraint that the optimal 

compensation should be monotonically increasing. Thus, this paper is the extension 

of their idea with non-linear and not monotonically increasing compensation plan.  

 Among several combinations in the non-linear compensation schemes, this 

paper chooses to focus on quota and bonus combination because of its popularity. 

The quotas and bonuses are used in more than 75% of firms in industries (Joseph 

and Kalwani 1998). Also, according to the 2008 Incentive Practices Research Study 

by ZS Associates, 73%, 85%, and 89% of firms in pharma/biotech, medical devices, 

and high-tech industries, respectively, use quota-based compensation (Training 

2008). Considering that the pharmaceutical industry has popularly used quota-based 

compensation plan and it has quite high sales carryover, analyzing dynamic effort 

allocation with carryover sales under the quota and bonus compensation would be 
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practically meaningful for at least the pharmaceutical industry. And there could be a 

lot of areas which popularly use quota-based compensation for their sales agents and 

have high rates of carryover sales.  

 In sum, this paper deals with dynamic effort allocation of sales agents with 

heterogeneous risk aversion degrees under quota and bonus compensation when 

carryover sales are introduced. The specific questions the paper deals are 1) how 

does the effort allocations of forward-looking sales agents vary across their risk 

aversion degrees? and 2) if the managers ignore carryover sales, could they segment 

precisely their sales agents varying across risk aversion from seeing the realized sales 

performance?  

 I set forward-looking sales agents in quota and bonus compensation 

structure and predict their effort allocation decisions by solving dynamic 

programming. The heterogeneity in risk aversion across sales agents is reflected in 

segment-wise effort allocations. From the segment-wise effort allocations, I generate 

the simulated sales data to try estimation of main parameters and followingly 

segmentation of sales agents with two-stage dynamic programming estimation using 

EM algorithm.  

 In Chapter 2, I address some historical points of literature regarding sales 

force compensation and forward-looking agents. In Chapter 3, detailed settings and 

explanation of model are introduced, and in Chapter 4 I point out the reason of 

embracing risk aversion degree in the main model. Followingly, I address data 

generation by solving single agent dynamic programming in Chapter 5 and 

estimation of main parameters with two-stage EM based dynamic programming 

estimation method in Chapter 6. Then, Chapter 7 explains the result of estimation 

and Chapter 8 closes the paper with general discussion.  
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2. Literature Review 

There has been a wide range of research on sales force compensation. Starting from 

Holmstrom (1979), the widely used “standard” framework to understand the 

contracting relationship between the sales manager and the sales agent has been the 

principal-agent framework. Holmstrom’s model describes a contract between a risk-

neutral principal and a risk-averse agent in a risky production process. As only the 

output of production is observable while the input of the agent is not, there arise the 

information asymmetry resulting in the second-best contract.  

 Following Holmstrom (1979), the dynamics in principal-agent models were 

first taken notice for the non-aligned interest between principal and agents and the 

mitigation of moral hazard was mostly examined. Rubinstein and Yaari (1983) and 

Radner (1981) studied an infinitely repeated problem in which neither the principal 

nor the agent discounts the future. In these cases, both the principal and the agent 

could get the same amounts of expected utilities as their first best outcomes, and 

therefore moral hazard is completely overcome. Lambert (1983) examined the 

repeated problem with discounting noting that optimal contract depends on the entire 

previous history of the relationship. He interpreted the intertemporal arrangements 

as a smoothing of incomes across periods for agents which is similar to an insurance 

mechanism.  

 These multi-period examinations in principal-agent models soon started to 

highlight the manipulation of inputs by sales agents and the effect of compensation 

scheme on it. Holmstrom and Milgrom (1987) made Mirrless (1974)’s two-wage 

nonlinear compensation contract, i.e. a fixed wage unless output is very low or a very 

low wage for very low output, precise by providing its variant in which the agent 

chooses his labor input over time in response to observations of how well he is doing. 

The authors showed that assuming the agent has an exponential utility function and 
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controls the drift rate of a Brownian motion over the unit time interval in continuous 

time model, the optimal incentive scheme was derived as linear in output because 

the agent would choose a constant drift rate independently of the path of output. 

Holmstrom and Milgrom interpreted it as because the two-wage scheme leads the 

agent to work hard only when that appears necessary to avoid a disaster, that a linear 

scheme applying the same incentive pressure on the agent no matter what his past 

performance has been is proved optimal. Later, Lal and Srinivasan (1993) 

corroborated Holmstrom and Milgrom (1987) with further comparative statics 

results. Lal and Srinivasan (1993) additionally derived that the commission income 

as a fraction of total compensation goes up with an increase in the effectiveness of 

the sales-effort while the salary component goes up with increases in uncertainty, 

absolute risk aversion, marginal cost of production, perceived cost of effort, and 

alternative job opportunities for the sales agents.  

 However, the literature could not easily fill the gap between analytically 

optimal compensation plans and ubiquitous simple nonlinear plans in practice. The 

attempts to address the nonlinearity have gone deep and broad. Oyer (1998) 

empirically showed that discrete bonuses and other nonlinearities in compensation 

could lead sales agents to take actions that maximize their expected income over 

several pay cycles. He used the aggregate sales across different industries in different 

quarters and concluded that the effect of fiscal year ends combined with the nonlinear 

incentive contracts undermines the attempts to smooth production by leading 

employees to take actions that affect firm seasonality. More recently, Steenburgh 

(2008) showed that an aggregate analysis might have concluded in the opposite 

direction regarding the effect of quotas in compensation compared to that of Oyer 

(1998). In analytically, Oyer (2000) showed that with the strong assumption that the 

sales agent has a liability limitation and participation constraint does not bind, 

optimal compensation is derived to be a discrete bonus for meeting a quota. He 

interpreted this result as because sales agent’s skills are most valuable in a sales 
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context, the agent cannot expect comparable compensation in other professions, 

allowing firms to select the least expensive compensation plan without concern for 

insuring that the salesperson will participate, while inducing the optimal level of the 

sales agent’s effort by concentrating marginal compensation on sales that maximize 

the additional revenue from additional effort.  

 While addressing the reason of popularity of quota in practice, the sales force 

literature got favored from detailed real data. The later empirical research directed 

to new and minute focus on individual worker’s productivity with the acquisition of 

the detailed performance outcomes associated with every processed check of each 

sales agent while previous literature dealt aggregate sales force productivity. 

Copeland and Monnet (2009) tracked a worker’s productivity at a very fine level of 

detail within the day where bonuses are calculated on a daily basis, and a worker 

starts each day anew. Using these fine data, the authors modeled and estimated the 

worker’s dynamic effort decision problem.  

 More recent analysis on within period dynamics in sales agent’s effort 

allocation adopted the forward-looking behavior from solving dynamic 

programming. The two recent and utmost literatures are Misra and Nair (2011) and 

Chung, Steenburgh, and Sudhir (2014). They both showed the forward-looking 

behaviors of sales agents under compensation plans with quotas using dynamic 

programming approaches. They both dealt with compensation structures consisting 

of quotas, however with different focuses. Misra and Nair analyzed quotas with 

floors and ceilings on commissions and concluded that quotas reduce performance. 

According to them, two characteristics of the quotas were important: First, the quota 

ceiling limits the effort of the most productive salespeople, who would normally 

have exceeded that ceiling. Second, the company followed an explicit policy of 

ratcheting quotas based on past productivity. This reduced salespeople’s incentives 

to work hard in any given period, because hard work was penalized through higher 
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future quotas. However, Chung, Steenburgh, and Sudhir focused on quotas with 

bonuses and concluded that when coupled with bonuses, quotas enhance 

performance. Their compensation scheme included the overachievement 

commissions for exceeding quotas and group quota updates minimized the ratcheting 

effects.  

 In the methodological perspective, two papers followed the recent advance 

in dynamic programming computation: two-step conditional choice probability 

estimation. The two-step CCP estimation approaches have recently gained popularity 

because of their ease of computation relative to traditional nested fixed point 

approaches. The main difference in methodologies between the two papers is 

whether it allows heterogeneity in the model. Misra and Nair avoided the unobserved 

heterogeneity issue by estimating each salesperson’s utility function separately, 

while Chung, Steenburgh, and Sudhir followed Arcidiacono and Miller (2011) to 

allow heterogeneity within the two-step framework.  

 In my setting, I followed Chung, Steenburgh, and Sudhir in methodological 

perspectives but with different quota-bonus plans. I set ceiling in compensation 

above quota similar to Misra and Nair. This is because I want to see the carryover 

effect drawing effort even without marginal gains from achieving more above quotas. 

Thus, the ceiling in compensation works as a significant factor inducing further 

dynamics in the model. And for simplicity, here I ignore the ratcheting effect of sales 

compensation.  

 The further layer of complexity in sales agent literature was addressed in 

Rubel and Prasad (2015). The authors cast light upon the unexplored problem of 

carryover in sales response model. According to their analytical paper, if carryover 

effect exists, but the compensation plan is designed without recognizing it, then the 

firm will lose money because it compensates sales generated through carryover as 

well as effort, but attributes sales only to effort. With differential equations, they 
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discovered that the degree of risk aversion of a salesperson, relative to the noisiness 

of the sales response function, plays an important role in determining the effort 

strategy of the salesperson and the optimal contract in the presence of carryover 

effects. This insight manifests because the carryover effect increases both the mean 

and the variance of future sales. As a result, they found that the shape of optimal 

compensation plan is convex in sales for a low risk-aversion salesperson and concave 

in sales for a high risk-aversion salesperson.  

 The main difference between my setting and Rubel and Prasad’s is that I 

focused on the forward-looking behavior of sales agents under quota-bonus with 

ceiling compensation structures while they focused on the effort allocation between 

in new business and existing business and derived the equilibrium with firm’s 

optimal contracts among monotonically increasing plans. Here, I focus only on the 

distorted effort allocation of sales agents derived from the mixture of carryover and 

quota-bonus structures and see whether introducing carryover effects in sales affects 

the estimation of dynamic structural parameters with heterogeneity in risk aversion 

of sales agents. 

 

3. Model 

Consider an infinite horizon with time discounting where the sales agent is 

compensated every period. Given the states at the beginning of time t, the sales agent 

exerts his optimal selling effort, weighing the expected income from future periods 

against the cost of effort. The sales at time t are realized based on his level of selling 

effort and the market random error. This realized sales become his selling 

performance at time t. At the end of time t, the sales agent is compensated according 

to his performance at time t under a particular compensation scheme. Followingly, 
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the states are updated in the beginning of time (𝑡 + 1), which affects the decision 

making in the next period.   

 Here, I assume that the sales agent participates in the infinite cycle of 

realizing sales and getting compensation. In my simulated model, reservation wage 

is set to minus infinite, which implies that once participating in, the sales agent never 

gets out of the cycle. This assumption is restrictive because I focus only on perpetual 

sales agents. While literatures have handled getting out of the cycle by normalizing 

the reservation wage as zero, here I ignore any chance of getting out of the sales field. 

Considering getting in and out of the firm, future research could extend to the 

function of the compensation scheme as I will discuss later.  

 As in common practices, I assume that the agent is risk-averse and there is 

no private information. Also, the firm or manager cannot observe the sales agents’ 

effort directly, rather it could infer the unobserved effort only from the realized sales 

data. I first summarize the notation of variables and parameters in Table 1 and Table 

2. 

Table 1. Variables 

name explanation range 

State variables 

𝑀𝑡 Period type at time t {1, 2, 3} 

𝑆𝑡 Sales at time t [0.10, 12.18] 

𝑙𝑆𝑡 ln⁡(Salest): log representation of realized sales at time t [-2.3, 2.5] 

𝑄𝑡 Percentage cumulative quota achievement at time t [0, 3.65] 

Action variables  

𝑒𝑓𝑓𝑡 Effort of sales agent at time t [0, 1] 

Utility variables  

𝑊𝑡 Income of sales agent at time t (−∞,+∞) 

𝑈𝑡 Utility of sales agent at time t (−∞,+∞) 

𝑉𝑡 Expected future utilities under optimal effort policy at time t (−∞,+∞) 

Random variables 

𝜖𝑡 Market variation on sales response function i.i.d. N (0, 1) 
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Table 2. Parameters 

name explanation true 

Sales Response Function 

λ Carryover rate 0.5 

𝜎 Degree of market variation 0.01 

Compensation Scheme  

𝑟 Commission rate  0.01 

𝑞 Quota  10 

𝐵 Lump-sum Bonus 0.1 

Utility Function 

𝛾 Risk aversion factor (high risk aversion/ low risk aversion) 2.5 / 0.001 

𝑐 Unit cost of exerting effort 0.05 

Value Function 

δ Time discount factor 0.95 

 

3.1. Sales Dynamics 

I define the sales response function as the equation (1) following Rubel and Prasad 

(2015).  

𝑙𝑛⁡(𝑆𝑖,𝑡) = 𝑣(𝑒𝑓𝑓𝑖,𝑡|𝑠𝑡𝑎𝑡𝑒𝑖,𝑡) + 𝜆𝑙𝑛⁡(𝑆𝑖,𝑡−1) + √𝜎𝜖𝑡,⁡⁡⁡⁡ 

𝑤ℎ𝑒𝑟𝑒⁡⁡0 < 𝜆 < 1⁡𝑎𝑛𝑑⁡𝜖𝑡~𝑖. 𝑖. 𝑑.⁡⁡𝑁(0,1)⁡⁡⁡⁡⁡⁡(1) 

Rubel and Prasad adapted the canonical Nerlov-Arrow model (1962) to define the 

continuous sales rate. While Nerlov-Arrow model addressed the decay in advertising 

with the factor of (1 − 𝜆)  using the differential equation in a deterministic way, 

Rubel and Prasad added a stochastic term in the differential equation. Rubel and 

Prasad defined the sales at time t as 𝑥(𝑡) and the change of sales at time t as 
𝑑𝑥(𝑡)

𝑑𝑡
=

𝑣(𝑡) − (1 − 𝜆)𝑥(𝑡) + √𝜎𝜖(𝑡), 𝑤ℎ𝑒𝑟𝑒⁡⁡𝑥(0) = 𝑥0 . In their model, (1 − 𝜆)𝑥(𝑡)  is 

the decayed sales from the previous period as in Nerlov-Arrow model. And 𝑣(𝑡) 

represents the sales agent’s selling effort. For the stochastic term, 𝜖(𝑡) is the demand 

shock, and 𝜎 = 𝑉𝑎𝑟(
𝑑𝑥(𝑡)

𝑑𝑡
) is the noisiness of the sales response. Thus, the change 
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of sales at time t consists of sales agent’s effort at time t, decayed sales from the 

previous period and unspecified demand shock. Since subtracting the amount of 

decay is the same as adding the amount of carryover, the second term in Rubel and 

Prasad’s also could be interpreted as the carryover from the previous period.  

 Here as shown in (1), I adapt Rubel and Prasad’s model in a discretized way 

with the log-transformed sales, 𝑙𝑛⁡(𝑆) rather than the realized sales, 𝑆 itself. If we 

take the logarithmic transformation of sales in the sales response equation (1), 𝑙𝑛⁡(𝑆) 

frees us from the truncation issue in calculating conditional probabilities and still is 

realistic as the realized sales 𝑆 are restricted above zero. 

 The three components in the sales response function are the same as in Rubel 

and Prasad but in a discretized way. First, the optimal selling effort is the function of 

effort the sales agent exerts in time t and is conditional on the state variables. The 

agent first looks at the state variables at time t and decides which degree of effort to 

exert considering the cost of effort and the expected income. This part represents 

each sales agent’s decision-making process regarding the degree of effort to exert. 

Second, the carryover from previous sales is restricted with the factor of 𝜆 ranging 

in (0, 1). Following Rubel and Prasad, the carryover factor 𝜆 is a constant and only 

one time lagged sales are considered for carryover. The constant carryover factor 

might ignore the heterogeneity in buyer-sales agent relationships or in the deals of 

different time periods. Moreover in reality, it would be more plausible to consider 

that some sales contracts have longer effects than just one period. However, here we 

put the strong assumption of constant 𝜆 and attain the simplest form of sales response 

model. Thus 𝜆 could be interpreted as the market average carryover rate. Lastly, the 

market variation follows the identically independent normal distribution with zero 

mean and variance of 𝜎. The sales agents share the same market variation at time t, 

which rules out any geographical variation in sales or any private information of 

market. Also, as the market variation is independent at the different time, the model 
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also rules out any market seasonality. Thus, besides the same market error unknown 

to all sales agents and individually expected carryover from the previous sales, the 

realized sales in the next period should be explained only with the function v of 

unobserved effort term⁡𝑒𝑓𝑓𝑖𝑡 by individual i.   

3.2. Compensation Contract 

At the end of time t, the sales agent i realizes 𝑆𝑖,𝑡 and earns⁡𝑊𝑖,𝑡 based on his 𝑆𝑖,𝑡 and 

the compensation plan which he agrees to work under. I design the compensation 

plan following Chung, Steenburgh, and Sudhir (2014). Chung et al (2014) 

empirically argued the role of a quota as a pacemaker for the sales agent with middle 

achievement and the incentive of an overachievement commission for the sales agent 

with high achievement. The compensation scheme in their data is comprised of a 

linear commission, a lumpsum bonus for sales above a quota and an 

overachievement commission. I basically follow their compensation structure but 

omit overachievement commission. The modification is to distinguish the carryover 

effect on sales agent’s forward-looking behavior from the incentives of 

overachievement commission. With no overachievement commission, only the 

carryover interprets why the sales agent exerts effort even after accomplishing the 

quota while he earns no marginal gain for sales above the quota at that period: the 

sales agent is expecting the increased gain in the next cycle due to the carryover. 

Therefore, by omitting the overachievement commission, I could identify the 

forward-looking behavior of sales agents in their performance after achieving the 

quota.  

 To observe the dynamic effort allocation of sales agents, I design three-

period cycle of compensation structure. In the start of every first period, the 

cumulative quota achievement is renewed as zero and the sales agent earns linear 

commission for the sales he realizes. He earns the linear commission in every second 
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period, also. In every third period, the bonus payment is given if the cumulative 

achievement during the first, second and third period is above the quota, or he earns 

only the linear commission for the sales he makes in the third period.  

 Below is the specific earning 𝑊𝑖,𝑡 ⁡ under the compensation contract I 

describe above.  

𝑊𝑖,𝑡(𝑆𝑖,𝑡) = {
𝑟𝑆𝑖,𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡1, 2

𝐼(𝑄
𝑡
≥ 1)(𝑟𝑞 + 𝐵) + 𝐼(𝑄

𝑡
< 1)𝑟𝑆𝑖,𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡3⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡(2) 

The sales agent i earns 𝑟𝑆𝑖,𝑡  for period 1 and period 2 where 𝑟  is the linear 

commission rate. And in period 3, the sales agent earns 𝑟𝑆𝑖,𝑡 if he does not achieve 

the quota or he earns a lumpsum bonus, 𝑟𝑞 + 𝐵.⁡ 𝑄𝑖,𝑡 is the sales agent i’s percentage 

of quota achievement till the end of period t in a cycle. 

 Different from Misra and Nair (2011), ratcheting effect from updating the 

compensation scheme based on previous performance is not considered. The 

compensation contract never changes, thus there is no uncertainty on the 

compensation contract itself.  

3.3. Sales agent’s Per-Period Utility 

I define the utility function of sales agent i at time t as below. 

𝑈𝑖,𝑡(𝑒𝑓𝑓𝑖,𝑡 , 𝑆𝑖,𝑡; 𝜽𝒊) = 𝑊𝑖,𝑡 − 𝛾𝑖𝑊𝑖,𝑡
2 − 𝐶⁡𝑒𝑓𝑓𝑖,𝑡

2         (3) 

The sales agent i’s utility at time t, 𝑈𝑖𝑡 ⁡is derived from his compensation, 𝑊𝑖𝑡 which 

is assumed to be equal to his consumption. As shown in equation (3), the utility 

function is the quadratic form of 𝑊𝑖𝑡 conditioning on 𝑒𝑓𝑓𝑖𝑡 and thus 𝑆𝑖𝑡, following 

the equation (1) and (2). And from now on, the sales response function (1) and the 

compensation scheme (2) for the sales agent i are parameterized as 𝜽𝒊 = {𝛾𝑖 , 𝐶, 𝜆, 𝜎}. 

Here, 𝛾𝑖 is a nonnegative risk aversion parameter for the sales agent i. I assume that 

the risk aversion degree differs in sales agents but is constant across the time. And I 
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add the disutility from exerting effort, adopting the common specification of cost as 

𝐶⁡𝑒𝑓𝑓𝑖,𝑡
2  where 𝐶 is a nonnegative scalar. 

 Because the sales agent does not control the market variation 𝜖𝑡 ⁡,  his 

decision on which degree of selling effort to exert,⁡𝑒𝑓𝑓𝑖𝑡  is solely based on the 

expected utility over the market variation as below.   

𝐸𝜖𝑡 ⁡(𝑈𝑖,𝑡(𝑒𝑓𝑓𝑖,𝑡, 𝑆𝑖,𝑡; 𝜽)) = 𝐸(𝑊𝑖,𝑡) − 𝛾𝑖𝐸(𝑊𝑖,𝑡
2 ) − 𝐶⁡𝑒𝑓𝑓𝑖,𝑡

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 The sales agent has the uncertainty over the realized sales 𝑆𝑖,𝑡 because of the 

market variation 𝜖𝑡. But once the sales are realized, the earning 𝑊𝑖,𝑡⁡and followingly 

the utility 𝑈𝑖,𝑡 ⁡is calculated exactly. And as the sales agent decides his effort level 

before the market variation realizes, he cares about the expected utility in (4) not the 

realized utility in (3).  

 Note that in the above concave utility function, the utility has a maximum 

point after which it decreases with increasing earning. Here, I assume that the utility 

is monotonically increasing with increasing earnings and ignore any satiation of 

utility. Thus, I confine the relationship between the utility and the earning before 

reaching the maximum point by setting the risk aversion, 𝛾𝑖 in the range of (0, 
1

2𝑊𝑖,𝑡
).  

3.4. State Transitions  

There are two sources of dynamics in the model. First is the nonlinearity in the 

compensation scheme in period 3. The sales agent’s effort in period 1 and period 2 

affects the probability to earn a bonus in period 3. Thus, the sales agent cannot choose 

the optimal effort independently across the time. Second is the carryover term in the 

sales response function. As the current sales affect future sales by depreciating 

carryover terms, each period is not independent nor is each cycle of three time 

periods. Specifically, without carryover, there is no incentive to exert effort after 

getting the bonus in period 3 since the marginal utility is negative. However, with 
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the carryover in sales introduced, the sales agent considers the investment for future 

sales by exerting more effort than the single period optimal effort level. The sales 

agent thus has an incentive to exert effort even after achieving the quota in period 3 

because he wants to make the probability to get a bonus in the next cycle higher. 

Hence, the sales agent needs to take into account how current decision on effort 

affects his expected future compensation.  

 These dynamics are embedded in the transition of the three state variables: 

period type, ⁡𝑀𝑖𝑡 ,  sales from previous month, 𝑆𝑖,𝑡−1,⁡ and cumulative quota 

achievement up to the previous period,⁡𝑄𝑖,𝑡−1 which is in [0,1]. At the beginning of 

time t, the sales agent chooses his optimal effort level in time t considering the 

expected income based on the state variables, 𝑠𝑡𝑎𝑡𝑒𝑖𝑡.  

𝑠𝑡𝑎𝑡𝑒𝑖𝑡 = {𝑀𝑡, 𝑆𝑖,𝑡−1, 𝑄𝑖,𝑡−1}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

 The first state variable⁡𝑀𝑡 , period type (or month type) in one cycle, is 

deterministic. ⁡𝑀𝑡 rotates as 1 → 2 → 3 → 1 → ⋯. As I assume all sales agents face 

the same period type at the same time t, I delete the subscript for individual sales 

agent i.  

𝑀𝑡 = {
𝑀𝑡−1 + 1⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑀𝑡−1 = 1, 2

⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 The second state variable 𝑆𝑖,𝑡−1, sales in the previous period, is to consider 

the carryover effect. In previous month, the realized sales following the equation (1) 

is saved for the second state variable in the next month.  

 The third state variable ⁡𝑄𝑖,(𝑡−1),  cumulative quota achievement up to 

previous period in one cycle, is a measure for how close the accumulation of sales 

to the quota. It is augmented by the realized sales each period, except at the end of 

period 3 when the sales agent gets into a new cycle of accumulating achievement 

rate.  
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𝑄𝑖,𝑡 = {
𝑄𝑖,𝑡−1 +

𝑆𝑖,𝑡
𝑞
⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑀𝑖,𝑡−1 = 1,2,

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Whereas the first variable, period type transits in a purely deterministic way, the 

latter two evolve in a stochastic way as they involve market random error term in 

sales response function (1).  

3.5. Optimal Choice of Effort 

Each sales agent chooses an effort level based on the state variables in the beginning 

of time t to maximize the discounted stream of expected utility flows, given the 

compensation plan 𝜳 , both the sales response function and the utility function 

parameterized with 𝜽. The present-discounted utility under the optimal effort policy 

can be represented by a value function that satisfies the following Bellman equation 

(8). The Bellman equation solves the optimal effort function eff conditional on 

𝑠𝑡𝑎𝑡𝑒𝑖,𝑡 .⁡Here, 𝛿⁡is the time discount factor.  

𝑉(𝑠𝑡𝑎𝑡𝑒𝑖,𝑡; 𝜽𝒊, 𝜳)

= 𝑚𝑎𝑥
𝒆𝒇𝒇

{⁡𝑈(𝑠𝑡𝑎𝑡𝑒𝑖,𝑡 , 𝑒𝑓𝑓𝑖,𝑡; 𝜽𝒊, 𝜳)

+ 𝛿𝑉(𝑠𝑡𝑎𝑡𝑒𝑖,(𝑡+1)
′ |𝑠𝑡𝑎𝑡𝑒𝑖,𝑡, 𝑒𝑓𝑓𝑖,𝑡; 𝜽𝒊,𝜳)⁡}⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

 

4. Existence of Carryover  

In this chapter, I address the effect of carryover in sales on sales agents’ decision 

making under my setting. When carryover is introduced in sales response function, 

both expectation and variance of future sales increase compared to the model without 

carryover, given that the states and effort level are the same (i.e. 𝑠𝑡𝑎𝑡𝑒𝑖𝑡 =

{𝑀𝑡, 𝑆𝑖,𝑡−1, 𝑄𝑖,𝑡−1}⁡⁡𝑎𝑛𝑑⁡𝑒𝑓𝑓𝑡 are the same for the models with carryover or without 

carryover). This is the same argument as in Rubel and Prasad (2015). Let’s consider 
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the two sales response functions with and without sales carryover effect. Table 4 

compares the expectation and variance of future sales for two different models.  

         As shown in Table 4, the bigger the last period sales 𝑆𝑖,𝑡−1⁡or the higher the 

carryover effect rate 𝜆, the more the sales agent expects for the next period’s sales 

and the more he should bear the uncertainty from the market variation. Therefore, 

for the sales agent, exerting effort and proportionally increasing realized sales can 

be explained as participating in the risky gambling. With higher risk but higher return 

from the carryover effect, the sales agents with different risk aversion degrees differ 

in decision making over optimal effort levels. The caveat here is that the above 

argument holds only when 𝑆𝑡−1 >  1. Otherwise, if 0 < 𝑆𝑡−1 < 1 , the carryover 

effect only decreases the expectation and the variance of future sales compared to 

the case without carryover effect. I allow 𝑆𝑡−1  to be between the range of [0.10, 

12.18], however, the optimal effort functions from solving the dynamic 

programming compute the simulated sales data above 1 for most of the cases for 

each of the different risk aversion degrees. For details, following Chapter 5 will 

demonstrate the specific data generation process and the result of simulated sales 

data for different risk aversion degrees.  

Table 3. Expectation and variance of future sales with/without carryover effect  

 
With carryover effect 

𝑆𝑡 = 𝑆𝑡−1
𝜆 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡) 

Without carryover effect 

𝑆𝑡 = 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡) 

𝐸(𝑆𝑡) 

𝐸(𝑆𝑡) 

= 𝐸(𝑆𝑡−1
𝜆 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡)) 

= 𝑆𝑡−1
𝜆 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥𝑝⁡(

1

2
𝜎) 

𝐸(𝑆𝑡) 

= 𝐸(𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡)) 

= 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥𝑝⁡(
1

2
𝜎) 

𝑉𝑎𝑟(𝑆𝑡) 

𝑉𝑎𝑟(𝑆𝑡) 

= 𝑉𝑎𝑟(𝑆𝑡−1
𝜆 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡)) 

= 𝑆𝑡−1
2𝜆 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡)

2 𝑒𝑥𝑝(𝜎) (𝑒𝑥𝑝(𝜎) − 1) 

𝑉𝑎𝑟(𝑆𝑡) 

= 𝑉𝑎𝑟(𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) 𝑒𝑥 𝑝(√𝜎𝜖𝑡)) 

= 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡)
2 𝑒𝑥𝑝(𝜎) (𝑒𝑥𝑝(𝜎) − 1) 
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5. Data Generation 

To generate the data, I build the hypothetical sales environment by setting parameters 

and variables as in Table 1 and Table 2. Then, I numerically solve dynamic 

programming in a discretized space and interpolate the space with Chebyshev 

polynomials of state variables. Using the optimal effort policy that I attain from 

solving dynamic programming, I forward-estimate the actions, here the effort levels, 

of 100 sales agents and get 60 periods of sales data which includes 20 cycles of bonus 

payment.  

5.1.  Parameter Setting and Discretization of Variables 

First step to generate the simulated data is to define the sales setting. To build the 

sales response function, compensation scheme, utility and value function, I set the 

true values of 8 parameters as in Table 2.  

 With the market variation term 𝜖 following normal distribution in the sales 

response function (1), realized sales 𝑆  are naturally continuous values and the 

cumulative quota achievements 𝑄  are followingly continuous. However, to solve 

dynamic programming with the numerical approach of simple approximation, one 

needs to discretize the state and action variables.  

 Among the three state variables, period type 𝑀𝑡  is already discrete; 𝑀𝑡 ∈

{1, 2, 3}. The time t can be infinite by repeating the cycles of three discrete period 

types infinitely. As t goes to infinite, 𝑀𝑡 changes as 1 → 2 → 3 → 1 → 2 → ⋯.⁡The 

second state variable 𝑆𝑖,𝑡⁡ is followingly discretized as I generate 𝑙𝑛⁡(𝑆𝑖,𝑡)  first by 

equally spacing 100 points within the range of [-2, 2.5] and putting these points in 

the simple inverse function. Thus, 𝑆𝑖,𝑡 is restricted in (0.13, 12.19) with 100 points. 

As 𝑆𝑖,𝑡 is calculated from 𝑒𝑥𝑝⁡(𝑙𝑛⁡(𝑆𝑖,𝑡)), almost all possible points of 𝑆𝑖,𝑡 could not 

be represented in less than 6 decimal places, such as 0.13535353…. So here, the 
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open parenthesis in the range of 𝑆𝑖,𝑡 reflects the lengthy decimal places or irrational 

numbers of 𝑆𝑖,𝑡. The third state variable 𝑄𝑖,𝑡 is generated by calculating all possible 

combination of 𝑆𝑖,𝑡 in one cycle and adding zero point. In my setting, the quota q is 

10 and the realized sales are bound below around 12.18. Thus, the maximum 

accumulated sales for three periods are theoretically above 36, which results in 

maximum 𝑄𝑖,𝑡 above 7 in the third period. However, as I discretize sales through 

equally spaced log transformed sales, sales below 5 are much denser. There are only 

20 points in (5, 12.19) among 100 points in 𝑆𝑖,𝑡. Thus, 𝑄𝑖,𝑡 is arranged much denser 

below 1.5 and sparser above 1.5 and below 7.  

 The finite grids in the 3-dimensional state space are all possible 5275 

combinations of three state variables. The finite points in the 1-dimensional action 

space are 30 possible effort values. I design action space with 30 equally spaced 

points in the range of [0, 1] and for the simplicity I use ⁡𝑣(𝑒𝑓𝑓𝑖,𝑡|𝑠𝑡𝑎𝑡𝑒𝑖,𝑡) =

𝑒𝑓𝑓𝑖,𝑡(𝑠𝑡𝑎𝑡𝑒𝑖,𝑡). So, the sales response function is represented hereafter as the below 

function (1)’.  

𝑙𝑛⁡(𝑆𝑖,𝑡) = 𝑒𝑓𝑓𝑖,𝑡(𝑠𝑡𝑎𝑡𝑒𝑖,𝑡) + 𝜆𝑙𝑛⁡(𝑆𝑖,𝑡−1) + √𝜎𝜖𝑡    (1)’ 

5.2.  Solving the Dynamic Programming  

After discretizing the state and action variables, I solve the dynamic programming 

with a numerical approach of successive approximation following Rust (1996). 

Solving the dynamic programming is to find the optimal action policy given a state. 

The optimal effort policy for 5275 states is the function of a state which given a state, 

chooses the level of effort giving the maximum expected utility among 30 different 

effort levels. Hence, the sales agent’s optimal effort policy function has the domain 

of 5275 states and the range of 30 effort levels.  
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 Remember that the state variables at the beginning of time t, 

{𝑀𝑡, 𝑆𝑖,𝑡−1, 𝑄𝑖,𝑡−1} are the period type at time t, the lagged sales from the previous 

time (𝑡 − 1)  and the percentage of quota achievement till the last time ⁡(𝑡 − 1) . 

Given a state at the beginning of time t,⁡{𝑀𝑡, 𝑆𝑖,𝑡−1, 𝑄𝑖,𝑡−1}, the sales agent could 

expect the probability of state transition to another state {𝑀𝑡+1, 𝑆𝑖,𝑡, 𝑄𝑖,𝑡} based on 

the distribution of market variation in sales response function (1). This is because 

𝑀𝑡 changes in a deterministic way and⁡𝑄𝑖,𝑡 has a one-to-one relation with 𝑆𝑖,𝑡 , and 

henceforth, the market variation in the sales response function (1) explains all 

probabilities in the state transition.  

 I construct 30 state transition matrices which sizes are 5275 by 5275 for 30 

different effort levels. With one effort level fixed, I could build a 5275 by 5275 state 

transition matrix which (i, j)-element represents the probability of transition from 

state i to state j. For example, with the effort level at 𝑒𝑓𝑓𝑖,𝑡  and given a state 

{𝑀𝑡, 𝑆𝑖,𝑡−1, 𝑄𝑖,𝑡−1} , the log transformed next time realized sales 𝑆𝑖,𝑡  follows the 

normal distribution with the mean, 𝑒𝑓𝑓𝑖,𝑡 + 𝜆𝑙𝑛⁡(𝑆𝑖,𝑡−1) and the variance of 𝜎, which 

are all known with known parameters λ⁡and⁡σ. Based on this distribution of sales, I 

calculate 5275 discrete probabilities for each effort fixed given a state and normalize 

them to make them conform to the axioms of probabilities. After building the 

transition matrices, the optimal effort policy comes out followingly. With 30 

transition matrices, given a state, I could calculate 30 expected utilities from (4) in a 

probabilistic way and could choose one optimal effort level which gives the highest 

expected utility among 30 effort levels. 

 I solve the optimal effort policy by successive approximation. As shown in 

Rust (1996), the solution to infinite horizon Markov-Chain dynamic programming 

problems is mathematically equivalent to computing a fixed point of the Bellman 

operator. Guaranteed by the contraction mapping theorem, I approach the solution 

starting with an arbitrary initial guess. I set the tolerance level at 1e-5 and iterate 
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until the solution converges within the tolerance level. As a result, I attain a vector 

of optimal effort policy for 5275 different states.  

5.3. Interpolation 

After solving the dynamic programming, I interpolate the solution space to predict 

the optimal effort level from any continuous states other than 5275 discrete states. 

This step is necessary because while generating the sales data with random market 

errors, the state variables, specifically the sales and the quota achievement could be 

any continuous values other than 5275 discrete values.  

 For interpolation, I first try using the simple linear regression with the 

orthogonal polynomials of state variables. As the main purpose here is to predict the 

optimal effort level in the neighborhood of discrete space, I could expand the 

regressor set sufficiently enough to make the R-square close to 1. However, the three 

state variables show high multicollinearity, especially sales quantity and cumulative 

quota achievement in percentage have a highly positive correlation. And this 

condition requires so many high-ordered terms if I expand the regressor set only with 

the standard 1, x, x2…⁡polynomials and even they do not contribute to large marginal 

increases in R-square. Thus, I follow a hint from Chung et al (2014) which links 

unobservable effort and observable states with a nonparametric model of effort 

function in their estimation stage with the real data. They model nonparametric effort 

function with Chebyshev polynomials of state variables to estimate conditional 

choice probabilities. I follow using Chebyshev polynomials of state variables and 

use these orthogonal basis functions to expand the regressor set with fewer regressors 

so as to relieve concern for multicollinearity among state variables.  

 In order to restrict the predicted effort values between 0 and 1, I re-

parameterize the effort values x⁡ as y = ln (
x

1−x
).  Thus, the set of the Chebyshev 

polynomials of sales and cumulative quota achievement, dummy variables for period 
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types and their interaction terms explains re-parameterized y in a linear regression, 

restricting the effort level x in the range of (0, 1). The challenge here is that the 

optimal solutions for 5275 discrete states are not smooth, and thus even the 

orthogonal polynomials could not make R-square reach above 0.7. Therefore, I need 

to add up additive dummy variables to split the data points with eye measurement, 

seeing the data points on the graph and comparing them with the interpolated surface. 

After some adjustments, the resulting R-square for two different risk aversion cases 

(high/low) becomes 0.9090319 and 0.8611435, respectively.  

 I also try using the nearest neighborhood interpolation. I first match the 

month type then I find the nearest neighbor of 2-dimensional vector (i.e. sales and 

quota achievement rate) with the Euclidean distance measure. As I use 1-nearest 

neighborhood, in sample explanation of original 5275 data increases compared to 

the linear regression with basis functions. The two data sets generated by different 

interpolation methods show some differences. Specifically, sales performance 

generated from 1-nearest neighborhood interpolation shows that sales agents 

perform the best in every third period while sales performance generated from the 

linear regression shows that sales agents perform the best in every second period. 

This could be interpreted as the identification in the data generation process is 

approved. However, the focal interest in my simulation is the differences in mean 

and variance of sales performance among two types of sales agents, the highly risk 

averse or the less risk averse. And the interpolation methods change little between 

the two groups. The less risk averse show higher variance and higher mean while the 

highly risk averse show lower mean and lower variance. Thus, I keep the data 

generated by the linear regression with orthogonal polynomials and use this data for 

estimation later.  
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5.4.  Sales data with the Heterogeneity in Risk Aversion factors  

Given the continuous optimal policy function from interpolation, I generate sales 

data of 60 time periods by 100 sales agents with one of two risk aversion degrees; 

60 sales agents have high risk aversion of 3 and the other 40 sales agents have low 

risk aversion of 0.01. Since I only use the first half of the quadratic utility function 

before reaching the maximum point, the risk aversion degree should be below 
1

2𝑊𝑡
 as 

I explain earlier. The maximum value of 𝑊𝑡 is 0.15 when achieving the bonus in 

month 3. Therefore, the risk aversion degree should be below 3.33 to keep the utility 

function monotonically increasing. As the sales agents are risk averse following the 

literatures, the risk aversion factor should always be above zero. And to make 

segregation of one group from another clear and easy, I set the degree of less risk 

aversion at 0.01 which seems close to the risk neutrality.  

 I forward simulate the actions of the sales agents up to 160 times using the 

interpolated value functions starting with the initial state (1, 0, 0): in period 1, with 

no lagged sales and zero accumulated quota achievement. The first 100 sales data 

are burned in and the latter 60-period sales data for 100 sales agents are saved. The 

plotting of sales data shows that only 5-period burn-in is enough to confirm the 

stability.  

5.5. Summary Statistics of Data 

The simulated sales data for 100 sales agents are shown in Figure 3. The sales agents 

with low risk aversion perform better in average in terms of making sales. However, 

they have higher variance of performance compared to the counterpart with low risk 

aversion. The sales are steadier for the highly risk averse than for the less risk averse.  

 The introduction of sales carryover results in different sales patterns 

compared to the previous literature. In Misra and Nair (2011) without sales carryover, 
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the sales pattern has a spike at the end of quarters suggesting that agents tend to 

increase effort as they reach closer to quota. However, in my simulated data with the 

sales carryover introduced, the sales pattern has a spike rather in the beginning of 

quarters in month 1. Across all risk aversion degrees, the sales agent in average 

makes the biggest performance in month 1 while realizing the least amount of sales 

in month 2. In month 3 when the bonus is to be given out based on the quota 

achievement, a little increase of sales from previous month is shown in the graph.  

 Also, as in Table 4, the sales agent makes sales even after achieving quota 

in month 3. In the end of month 3, a new cycle of sales starts with zero cumulative 

quota achievement. However, as the sales agent expects the carryover of sales to the 

next cycle which affects the chance to reach the quota in the next quarter, he still 

exerts effort to build sales. 
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Figure 1. Sales performance by sales agents with high/low risk aversion 

(a) Sales data from 100 sales agents 

1. The grey vertical lines indicate period type 3 when the bonus payment is given according to the 

quota achievement.  

2. The red lines on the upper level indicates the sales performance by 40 less risk averse sales 

agents.  

3. The green lines on the bottom indicates the sales performance by 60 highly risk averse sales 

agents.  

 

(b) 95% range of sales for high/low risk aversion 

1. The grey vertical lines indicate period type 3 when the bonus payment is given according to the 

quota achievement.  

2. The red lines on the upper level indicates the sales performance by 40 less risk averse sales 

agents.  

3. The green lines on the bottom indicates the sales performance by 60 highly risk averse sales 

agents.  

4. The bold lines are the means for sales by the same group of sales agents with respect to the risk 

aversion degree.  

5. The dotted lines are upper/lower bound for 95% confidence interval of the sales by the same 

group of sales agents with respect to the risk aversion degree.  
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Table 4. Descriptive statistics of the simulated data 

Variable Mean SD Min Max 

Number of sales agents 100    

Periods of time 60    

All sales agents 100     

Wealth for one quarter (end of quarter) 0.0295 0.0520 0.0065 0.2000 

Number of times achieving bonus 1.38 5.4335 0 11 

Sales in month 1 (end of month) 2.2470 2.0030 0.6605 10.780 

Sales in month 2 (end of month) 1.8130 1.4482 0.5562 8.1660 

Sales in month 3 (end of month) 1.7980 1.3385 0.6535 5.8340 

Cumulative sales in month 3 (end of month) 3.611 1.3304 1.357 12.420 

Cumulative quota achievement in month 2 

(beginning of month) 
0.2244 0.2002 0.0660 1.0780 

Cumulative quota achievement in month 3 
(beginning of month) 

0.4057 0.3387 0.1217 1.7940 

Sales agents with high risk aversion 60    

Wealth for one quarter (end of quarter) 0.0150 0.0094 0.0065 0.0342 

Number of times achieving bonus 0 0 0 0 

Sales in month 1 (end of month) 1.7230 1.1822 0.6605 4.0070 

Sales in month 2 (end of month) 1.5090 1.0352 0.5562 3.2590 

Cumulative sales in month 3 (end of month) 3.016 0.7238 1.357 6.401 

Cumulative quota achievement in month 2 

(beginning of month) 
0.1719 0.1177 0.0660 0.3913 

Cumulative quota achievement in month 3 

(beginning of month) 
0.3228 0.2170 0.1217 0.6670 

Sales agents with low risk aversion 40    

Wealth for one quarter (end of quarter) 0.0513 0.0814 0.0067 0.2 

Number of times achieving bonus 3.45 0.0814 0 11 

Sales in month 1 (end of month) 3.0320 2.7328 0.7606 10.78 

Sales in month 2 (end of month) 2.2680 1.7423 0.7417 8.1660 

Cumulative sales in month 3 (end of month) 4.503 1.5202 1.496 12.420 

Cumulative quota achievement in month 2 
(beginning of month) 

0.3032 0.2735 0.0760 1.0780 

Cumulative quota achievement in month 3 

(beginning of month) 
0.530 0.4292 0.1630 1.7940 
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6. Estimation 

Using the generated sales data with heterogeneous degrees of risk aversion, I 

estimated the dynamic model following the recent two-step conditional choice 

probabilities (CCP) approach with unobserved heterogeneity of Arcidiacono and 

Miller (2011). The two-step CCP approach in the dynamic model is first introduced 

by Hotz and Miller (1993) and is extended by Bajari et al (2007), overcoming the 

computational burden in the nested fixed-point algorithm of Rust (1987). Notably, 

Arcidiacono and Miller (2011) utilized expectation-maximization algorithm to 

accommodate the unobserved heterogeneity in the first step of estimation. Here, I 

follow Arcidiacono and Miller to estimate the segment-wise structural models. 

Chung, Steenburgh, and Sudhir (2014) extended the empirical validity of 

Arcidiacono and Miller (2011) under the context of the effort allocation of sales 

agents as in my case, but with different compensation scheme and without sales 

carryover effect. I first estimate the parameters acknowledging the existence of 

carryover effect and then compare the results with those estimated ignoring the 

carryover effect.  

6.1 The first step: effort and sales response functions for each 

segment 

The unobserved heterogeneity in risk aversion affects the optimal effort policies and 

thus the realized sales. Using the EM algorithm, I segment the sales agents with 

respect to their optimal effort policies in sales response functions.  

 Below is the sales response function for sales agent i in segment s at time t.  

𝑙𝑛⁡(𝑆𝑖,𝑡) = 𝑒𝑓𝑓𝑖,𝑡,𝑠(𝒔𝒕𝒂𝒕𝒆𝒊,𝒕) + 𝜆𝑙𝑛⁡(𝑆𝑖,𝑡−1) + √𝜎𝜖𝑖,𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)′′ 

Only the optimal effort function differs across segments while other parameters 

𝜆, 𝜎⁡remain the same for all sales agents regardless of the segment. Considering the 
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effort is a decision by sales agents given the current state variables, a nonparametric 

model of effort function using the combination of Chebyshev polynomial basis 

functions from the state variables is possible. Chung et al (2014) employs Chebyshev 

basis functions to map between observable states and actions including unobservable 

effort functions. Here, I follow Chung et al (2014) to represent the unobservable 

effort with observable states nonparametrically. Note that I already use the 

orthogonal basis function in data generation process with interpolation. Here, in the 

estimation stage, the estimated effort function could be different from the linear 

regression model in interpolation. The nonparametric effort function for sales agent 

i in segment s at time t is as below where 𝜌𝑠,𝑚⁡is the Chebyshev polynomial of degree 

m in segment s.  

𝑒𝑓𝑓𝑖,𝑡,𝑠(𝒔𝒕𝒂𝒕𝒆𝒊,𝒕) = ⁡ ∑ 𝛾𝑠,𝑚𝜌𝑠,𝑚(𝒔𝒕𝒂𝒕𝒆𝒊,𝒕)

𝑀

𝑚=1

⁡⁡⁡⁡⁡⁡⁡(9) 

Therefore, the sales response function for segment s becomes, 

𝑙𝑛⁡(𝑆𝑖,𝑡) = ∑ 𝛾𝑠,𝑚𝜌𝑠,𝑚(𝒔𝒕𝒂𝒕𝒆𝒊𝒕)

𝑀

𝑚=1

+ 𝜆𝑙𝑛⁡(𝑆𝑖,𝑡−1) + √𝜎𝜖𝑖,𝑡 ⁡⁡⁡⁡⁡(1)′′′ 

and 𝚯𝐬 = {𝛄𝐬, 𝜆, 𝜎}, the set of parameters given the order of Chebyshev polynomial 

basis m and the segment s for sales agent i is to be estimated. To be clear,  𝛄𝐬 is the 

vector of coefficients of Chebyshev polynomial basis and is the only parameter 

varying across the segment s. Thus, heterogeneity across segments comes in the sales 

response function only through 𝛄𝐬.⁡ 

 Assume that sales agent i belongs to one of S segments, 𝑠 ∈ {1,… , 𝑆} with 

segment probabilities 𝑞𝑖 = {𝑞𝑖1, … , 𝑞𝑖𝑆}. Let the population probability of being in 

segment s be πs . Then, the likelihood of individual i making 𝑙𝑛⁡(𝑆𝑖,𝑡)  at time t, 

conditional on the observed states, 𝒔𝒕𝒂𝒕𝒆𝒊𝒕 and unobservable segment s is, 
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𝐿𝑖𝑠𝑡 = 𝐿(𝑙𝑛⁡(𝑆𝑖,𝑡)⁡⁡|⁡𝒔𝒕𝒂𝒕𝒆𝒊𝒕, 𝑠; ⁡𝜣𝒔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10)⁡ 

And the likelihood of observing sales history 𝑙𝑛⁡(𝑆𝑖) over the time period (t = 1,… ,T), 

given the observable state history 𝑠𝑡𝑎𝑡𝑒𝑖 and the unobservable segment s, is given 

by,  

𝐿𝑖𝑠 = 𝐿(ln⁡(𝑆𝑖)|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣𝒔, 𝜋𝑠) = 𝜋𝑠(∏ 𝐿𝑖𝑠𝑡
𝑇
𝑡=1 )⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11)               

Overall, the likelihood of individual i is obtained by summing over all the 

unobserved segments⁡𝑠 ∈ {1,… , 𝑆}. 

𝐿𝑖 = ⁡⁡𝐿(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊;𝜣, 𝝅) = ∑ 𝐿𝑖𝑠
𝑆
𝑠=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡(12)                 

Hence, the log-likelihood over the N sample of individuals becomes, 

𝑙𝑜𝑔⁡(𝐿) = ∑ log⁡(𝐿𝑖
𝑁
𝑖=1 )⁡⁡⁡⁡⁡⁡⁡⁡(13)                 

 Since maximizing the above exact log likelihood is computationally 

infeasible, I follow Arcidiacono and Miller (2011) to maximize the alternative, the 

expected log-likelihood, 𝐴:  

𝐴 =∑∑∑𝑞𝑖𝑠 log(𝐿𝑖𝑠𝑡)

𝑇

𝑡=1

𝑆

𝑠=1

𝑁

𝑖=1

, 

𝑞𝑖𝑠(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣,𝝅) = ⁡
𝐿𝑖𝑠(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣𝒔, 𝜋𝑠)

𝐿𝑖(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊;𝜣, 𝝅)
 

 Given λ, and model specification of effort function, I iteratively search for 

𝜎 and 𝜸 by updating 𝝅⁡with q until the loglikelihood converges. The process at the 

(𝑚 + 1)𝑡ℎ  iteration after getting parameters {𝜣𝒔
𝒎, 𝝅𝒎}  from 𝑚𝑡ℎ  iteration is as 

follows:  

(1) With {𝜣𝒔
𝒎, 𝝅𝒎}, compute 𝑞𝑖𝑠

𝑚+1⁡from the equation below.  

𝑞𝑖𝑠
𝑚+1(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣

𝒎, 𝝅𝒎) =
𝐿𝑖𝑠(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣𝒔

𝒎, 𝜋𝑠
𝑚)

𝐿𝑖(𝑙𝑛⁡(𝑆𝑖)⁡|𝒔𝒕𝒂𝒕𝒆𝒊; 𝜣
𝒎, 𝝅𝒎)
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(2) With 𝑞𝑖𝑠
𝑚+1, obtain 𝜣𝒎+𝟏 by maximizing A where 𝜣𝒎+𝟏 =

{𝜸𝒎+𝟏, 𝜆, 𝜎𝑚+1}.  

Note that 𝜆 is given in this algorithm, which means 𝜆 never updates but is 

fixed.           

1) With 𝑞𝑖𝑠
𝑚+1, compute coefficients 𝛄𝐦+𝟏 from the weighted least squares. 

2) With 𝛄𝐦+𝟏, update 𝜎𝑚+1 from minimizing sum of squares of residuals 

in linear regression. 

(3) Update 𝝅𝒎+𝟏 by taking the average of 𝑞𝑖𝑠
𝑚+1⁡over the sample. 

𝜋𝑠
𝑚+1 =

1

𝑁
∑𝑞𝑖𝑠

𝑚+1

𝑁

𝑖=1

 

 I iterate (1) to (3) till the loglikelihood converges with the tolerance level at 

1e-5. The initial value needed to start the iteration is only q. This is because I use the 

residuals as new regressand by subtracting carryover term from the sales 

performance (note that 𝜆 is given) and compute weighted least squares with q being 

weights. And the initial values of the segment probabilities q are set equally across 

segments and sales agents. After convergence, I get the final estimate of 𝜣𝒔̂ and 𝝅𝒔̂ 

for all segments. Hence, from 𝜣𝒔̂,⁡ I can set the effort function for all segments 

𝑒𝑓𝑓̂𝑠(𝒔𝒕𝒂𝒕𝒆) , and thus complete the sales response function for all segments 

𝑆̂𝑠(𝒔𝒕𝒂𝒕𝒆). Also from 𝛑̂𝐬, I now know the population probabilities of all segments. 

The probability of individual i in segment s, 𝑞𝑖𝑠 is no longer in use: it just helps 

calculate the main parameters in the sales response function and the population 

probabilities. Again, the segment-wise parameters are only the coefficients of effort 

function, 𝛄𝐬.  

 The next step is to find the optimal λ  given model specification of effort 

function. The above iterative process is the function of λ  and I optimize λ  by 
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maximizing the converged loglikelihood resulting from above EM algorithm. I use 

basic optim function in R with BFGS method.  

 Lastly, the model specification of effort function should be chosen. I try 

47988 combinations of Chebyshev polynomials and the number of segments. I build 

the regressor set with Chebyshev polynomials of state variables whose degrees vary 

from one to 6 and whose combinations with month type dummies vary from case 1 

to case 6. Thus, for each segment, I build 36 cases of effort function and as I try the 

number of segments from one to 3, I build 36 + 362 + 363 = 47988 numbers of 

effort function specifications. This does not cover every possible combination for 

effort function model specification. However, I believe that this number of trials in 

model selection procedure is large enough. Among 47988 candidate model 

specifications, I choose one with the lowest BIC and continue to estimate segment-

wise utility functions with chosen effort function specification.  

6.2 The second step: utility functions for each segment 

The second stage is to find the structural parameters that rationalize the optimal 

actions estimated in the first stage (i.e. estimated segment-wise effort functions and 

estimated segment-wise sales response functions). Below is the utility function of a 

representative agent in segment s at time t with 𝒔𝒕𝒂𝒕𝒆𝒕  who conforms to the 

estimated optimal effort 𝑒𝑓𝑓̂𝑠𝑡(𝒔𝒕𝒂𝒕𝒆𝒕)  and thus the estimated sales response 

function 𝑆̂𝑠𝑡(𝒔𝒕𝒂𝒕𝒆𝒕), both parameterized with the set⁡𝜣̂𝒔.  

𝑈𝑠𝑡 = 𝑈𝑠𝑡(𝑆𝑠𝑡(𝒔𝒕𝒂𝒕𝒆𝒕); 𝚯̂𝒔) = 𝐸(𝑊𝑡) − 𝜸𝒔𝑉𝑎𝑟(𝑊𝑡) − 𝑐𝑒𝑓𝑓̂𝑠𝑡(𝒔𝒕𝒂𝒕𝒆𝒕)⁡, ∀𝑠

= {1,… , 𝑆}⁡⁡⁡⁡⁡⁡(14) 

 The value function is the expected sum of utility flows over infinite time 

periods. The expectation operator is over the sales shock 𝜖𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1) . The 

value function for a representative agent in segment s at time t with 𝒔𝒕𝒂𝒕𝒆𝒕 is, 



33 

 

𝑉𝑠 = 𝑉𝑠(𝒔𝒕𝒂𝒕𝒆𝒕; 𝜣̂𝒔, 𝜦𝒔) = ⁡𝐸{∑ 𝛿𝑡𝑈𝑠𝑡
∞
𝑡=0 }                           (15), 

where 𝛿 is the time discount factor and 𝜦𝒔 is the parameter set for the utility function 

of segment s. Specifically, 𝜦𝒔 = {𝜸𝒔, 𝑐} . Here, I assume that the cost of exerting 

effort c is known and thus focus on the estimation of risk aversion factors 𝜸𝒔⁡among 

different segments. As segment probabilities 𝝅̂ is estimated in the first stage, I can 

simplify the value function for segments as below.  

𝑉 = 𝑉(𝒔𝒕𝒂𝒕𝒆𝒕; 𝜽̂, 𝜦) = ∑ 𝜋̂𝑠⁡𝐸{∑ 𝛿𝑡𝑈𝑠𝑡
∞
𝑡=0 }𝑆

𝑠=1                     (15)’, 

As in the conventional dynamic estimation, I assume that the time discount factor 𝛿 

as 0.95 which here is the same as the true parameter for data generation. 

 I first construct the optimal value function for each segment. Using the 

estimated policy functions and the sales response function from the first stage and 

with the distribution of the sales shock ϵ known, I carry out the forward-simulation 

of the actions of sales agents and construct the value function of agents. In my setting, 

sales agents are in the infinite cycle of time horizon. However, in the estimation, I 

believe that the finite time up to 60 is enough to retain the value function.  

 The detailed forward simulation is as follows.  

(1) From initial state 𝒔𝒕𝒂𝒕𝒆𝒕, calculate the optimal actions as 𝑒𝑓𝑓𝑠𝑡̂(𝒔𝒕𝒂𝒕𝒆𝒕). 

(2) Draw sales shock 𝜖𝑡 from the standard normal distribution.  

(3) Update state 𝒔𝒕𝒂𝒕𝒆𝒕+𝟏, using the realized sales 𝑆̂ (𝑒𝑓𝑓𝑠𝑡̂(𝒔𝒕𝒂𝒕𝒆𝒕)) + 𝜖𝑡 

I iterate from (1) to (3) till t=60. Then I average the sum of discounted utility flows 

over 60 periods, which becomes the estimate of the value function 

𝑉𝑠̂(𝒔𝒕𝒂𝒕𝒆; 𝑒𝑓𝑓𝑠̂(𝒔𝒕𝒂𝒕𝒆); 𝜣̂𝒔, 𝜦𝑺) . Then with the estimated segment probabilities, I 

could calculate 𝑉̂(𝒔𝒕𝒂𝒕𝒆) with the optimal effort policy. For the state variables in the 
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value functions 𝑉̂, I choose 5275 discretized states used in data generation, and hence 

could derive 5275 value function outputs.  

 To estimate the utility parameters 𝜦, I perturb the optimal effort policies in 

200 different ways which could be parameterized as 𝜽𝒊
′ for i = 1, …, 200. Then I 

derive 200 perturbed value functions for the same 5275 states but with the perturbed 

effort policies up to t=60. Then the difference in the optimal value function and one 

of perturbed value function is retained as below.  

𝑄𝑖 = 𝑉(𝒔𝒕𝒂𝒕𝒆𝒕; 𝜽̂, 𝜦) − 𝑉(𝒔𝒕𝒂𝒕𝒆𝒕; 𝜽𝒊
′, 𝜦)⁡⁡⁡⁡∀𝑖 = {1,… ,200}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

 As the value function with optimal action function is never less than that 

with deviated action function, 𝑄𝑖  is always greater than or equal to zero. Thus, I 

finally obtain the estimates of the structural parameters by minimizing the objective 

function below: 

1

200
∑(𝑚𝑖𝑛{𝑄𝑖, 0})

2

200

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

The above objective function minimizes the case where the deviated value function 

is greater than the optimal value function based on the first stage estimates. Here, I 

set the same market errors 𝜖𝑡 at each t between the optimal and the deviated value 

function to minimize the effect from random errors on forward simulation.  

 To find the standard errors of second stage parameters, I follow the two-

stage dynamic estimation of Bajari, Benkard and Levin (2007). I numerically find 

the gradients and the hessians of the objective functions in the first stage and in the 

second stage and then multiply adequate matrices for the standard errors of the 

structural parameters.  
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7. Results 

I estimate the sales response functions and the utility functions in segment-wise. 

Especially, to check the effect of carryover in the estimation, I first conduct the 

estimation knowing the existence of carryover in equation (1)′′. And then I conduct 

the estimation ignoring the existence of carryover in equation (1)′′. (i.e. I set λ = 0.) 

Thus, the number of parameters in the first approach knowing the carryover is one 

larger than that in the second approach ignoring the carryover. And note that to 

minimize the effect from random errors on forward simulation in the second stage 

estimation, I give the same market shock 𝜖𝑡 ⁡at the same time t for both of the two 

approaches. 

 The results from the two approaches are in Table 5 and Table 6. The critical 

difference of the two approaches is in describing the heterogeneity of sales agents. 

When ignoring the carryover, I could not get the true numbers of segments in sales 

agents while acknowledging the carryover leads to the right segmentation of sales 

agents. Ignoring the carryover while it exists concludes that the number of segments 

is three while the true number is two. It seems that ignoring the carryover divides the 

less risk averse group in another two segments. However, acknowledging the 

carryover concludes that there are two segments, which is correct and moreover, the 

estimated segment sizes are close to true sizes based on the three-sigma rule.  

 Besides the segmentation, both the two approaches estimate the first stage 

parameters for sales response function well. The market variation σ  is estimated 

close to true sizes based on the three -sigma rule. Also, estimating carryover factor 

is successful in the case of not ignoring carryover.  

 The focused heterogeneous parameters, risk aversion factors γ are estimated 

in segment-wise. The estimates when the carryover is ignored are poorer than those 

when the carryover is not ignored. This is because ignoring carryover results in 
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wrong segmenting of the sales agents in the first stage estimation and thus affects 

the second stage estimation. However, the problem with the true approach of not 

ignoring the carryover is represented with too small standard errors in the second 

stage to include the true value based on three-sigma rule. I could not confirm that the 

estimated risk aversion factors are in the 95% bounds roughly calculated by the 

three-sigma rule. The plausible reason of this poor estimate could be in the 

interpolation while generating the data. With linear regression of orthogonal 

polynomials, I could make the R-square high as 0.87 but this would not be enough 

to interpolate well for generating the simulated data. I admit that the simulated data 

itself could lack accuracy for continuous values. But still, the different degrees of 

risk aversion result in the different patterns in the sales performance and also affect 

the estimation as to finding the right segmentation of sales agents.   
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Table 5. Parameter Estimates when ignoring the carryover 

   (a) Effort Policy Function 

Variable Segment 1 variable Segment 2 variable Segment 3 

 estimate s.e.  estimate s.e.  estimate s.e. 

Segment Size 0.59658 0.008201  0.21640 0.039836  0.18701 - 

Intercept 1234.813 67.0126 Intercept -398.129 77.9950 Intercept 111.510 203.2984 

𝝆𝟏(𝑸𝑸) -2399.200 195.7339 𝝆𝟏(𝑸𝑸) -1535.39 5537.7350 𝝆𝟏(𝑸𝑸) -158.894 292.6718 

𝝆𝟐(𝑸𝑸) 1597.203 62.6342 𝝆𝟐(𝑸𝑸) -596.463 52.9197 𝝆𝟐(𝑸𝑸) 138.196 252.3204 

𝝆𝟑(𝑸𝑸) -1011.740 83.7153 𝝆𝟑(𝑸𝑸) -506.958 1840.3720 𝝆𝟑(𝑸𝑸) -52.501 93.5652 

𝝆𝟒(𝑸𝑸) 363.184 94.1653 𝝆𝟒(𝑸𝑸) -198.329 114.2758 𝝆𝟒(𝑸𝑸) 27.500 49.53079 

𝝆𝟓(𝑸𝑸) -130.452 80.7166 𝝆𝟏(𝑸𝑸)D2 2045.539 5622.4610 𝝆𝟏(𝑸𝑸)D3 116.300 2551.2880 

𝝆𝟏(𝑸𝑸)D2 21023.850 1767.6270 𝝆𝟐(𝑸𝑸)D2 99.018 163.4155 𝝆𝟐(𝑸𝑸)D3 19.540 266.0624 

𝝆𝟐(𝑸𝑸)D2 -157.279 176.4500 𝝆𝟑(𝑸𝑸)D2 668.131 1864.0100 𝝆𝟑(𝑸𝑸)D3 32.136 781.2688 

𝝆𝟑(𝑸𝑸)D2 11148.310 140.9823 𝝆𝟒(𝑸𝑸)D2 97.688 161.9900 𝝆𝟒(𝑸𝑸)D3 18.797 256.9963 

𝝆𝟒(𝑸𝑸)D2 -156.125 195.9997       

𝝆𝟓(𝑸𝑸)D2 2473.325 389.0482       

 
1. ρi(x) is a Chebyshev polynomial of x in degree i.  

2. D2 is a dummy for month 2 and D3 is a dummy for month 3. 

3. For the segment size, I re-parameterized it to restrict each segment probability set between 0 and 

1 and to restrict the sum of all probabilities to be 1. In the parenthesis, the numbers represent the 

original 0 to 1 scaled probabilities. The standard errors are estimated from the re-parameterized 

estimates. For segment size s, the degree of freedom in the segment size parameters is (s-1).   
 

 

   (b) Sales Response Function 

Variable True Estimates S.E. 

Market variation 𝑙𝑛⁡(𝜎) -4.6051701 -4.4290700 0.247632 

 

 (c) Utility Function 

Variable  True Estimates S.E. 

Degree of risk 

aversion ln⁡(γ) 
Segment 1 0.9162907 0.8979649 149281.22 

Segment 2 0.8979649 -6.7696002 50200.55 

  - - 0.8979649 113864.30 
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Table 6. Parameter Estimates when the carryover is considered 

(a) Effort Policy Function 

Variable Segment 1 Variable Segment 2 

 estimate s.e.  estimate s.e. 

Segment size 0.600073 3.2298326 Segment size 0.399926 - 

Intercept -0.509415 7.2236407 Intercept 10710.120000 2561.7985191 

𝝆𝟏(𝑸𝑸) 0.068084 2.4367443 𝝆𝟐(𝒍𝑺) -54.184310 79.3302963 

𝝆𝟐(𝑸𝑸) 0.116181 1.4478691 𝝆𝟑(𝒍𝑺) 80.228980 119.2318990 

𝝆𝟑(𝑸𝑸) -0.579343 6.4755045 𝝆𝟒(𝒍𝑺) -66.648260 95.9185972 

   𝝆𝟓(𝒍𝑺) 33.538480 44.7543617 

   𝝆𝟔(𝒍𝑺) -8.923251 10.5407782 

   𝝆𝟏(𝑸𝑸) -43239.860000 4260.7158659 

   𝝆𝟐(𝑸𝑸) 13734.970000 819.7258859 

   𝝆𝟑(𝑸𝑸) -20610.630000 1771.4441268 

   𝝆𝟒(𝑸𝑸) 2844.845000 5420.6278698 

   𝝆𝟓(𝑸𝑸) -3736.519000 1854.5409511 

   𝝆𝟔(𝑸𝑸) -193.953400 2035.0883214 

   𝝆𝟏(𝒍𝑺)𝑫𝟑 113.225000 3927.5961629 

   𝝆𝟐(𝒍𝑺)𝑫𝟑 -75.167370 4592.0007876 

   𝝆𝟑(𝒍𝑺)𝑫𝟑 27.480220 4879.2056869 

   𝝆𝟒(𝒍𝑺)𝑫𝟑 9.374336 3227.2296625 

   𝝆𝟓(𝒍𝑺)𝑫𝟑 -16.051850 1238.6402853 

   𝝆𝟔(𝒍𝑺)𝑫𝟑 7.049693 225.3571797 

   𝝆𝟏(𝑸𝑸)𝑫𝟑 24114.700000 6929.6557366 

   𝝆𝟐(𝑸𝑸)𝑫𝟑 933.646800 2271.6124171 

   𝝆𝟑(𝑸𝑸)𝑫𝟑 12003.410000 871.4757618 

   𝝆𝟒(𝑸𝑸)𝑫𝟑 1420.884000 2107.7915178 

   𝝆𝟓(𝑸𝑸)𝑫𝟑 2366.065000 1077.9405320 

   𝝆𝟔(𝑸𝑸)𝑫𝟑 543.462100 436.8480284 
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1. ρi(x) is a Chebyshev polynomial of x in degree i.  

2. D2 is a dummy for month 2 and D3 is a dummy for month 3. 

3. For the segment size, I re-parameterized it to restrict each segment probability set between 0 and 

1 and to restrict the sum of all probabilities to be 1. In the parenthesis, the numbers represent the 

original 0 to 1 scaled probabilities. The standard errors are estimated from the re-parameterized 

estimates. For segment size s, the degree of freedom in the segment size parameters is (s-1).   
 

 

(b) Sales Response Function 
 

Variable True Estimates S.E. 

Carryover factor 
𝑙𝑛⁡(

𝜆

1 − 𝜆
) 

0 -0.0219450 0.6234153 

Market variation 𝑙𝑛⁡(𝜎) -4.6051701 -4.5803730 0.2043847 

 

  (c) Utility Function 

Variable  True Estimates S.E. 

Degree of risk 

aversion 

 

𝑙𝑛⁡(𝛾) 

Segment 1 0.9162907 0.8560872 0.0003319 

Segment 2 -6.9077553 -6.7304993 0.0002666 

 

 

8. CONCLUSION 

Personal selling is a primary marketing mix tool for research on how the 

compensation plan motivates the sales force and affects performance. But literatures 

have focused mainly on principal-agent framework or certain compositions of 

compensation features to discuss the effect of it. However, this paper allows the 

existence of carryover in sales, which is pervasive in industries. In addition of 

forward-looking behavior derived from quota-based compensation, carryover in 

sales adds up dynamics of sales agent’s effort allocation varying across the level of 

risk aversion of sales agents.  

 From the simulation, I show that the different levels of risk aversion resulted 

in the different optimal effort policy functions and thus in different patterns of 
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realized sales of sales agents. The highly risk averse set the base line of performance 

while the less risk averse fluctuate their sales above the highly risk averse. The 

frequency of achieving quotas is higher in the less risk averse group compared to the 

highly risk averse group. As the variance and the mean of future sales increase 

because of the presence of carryover, the highly risk averse try not to exert more 

effort to avoid the uncertainty from the increased sales.  

 Moreover, from the two-step estimation of structural parameters in the 

simulated data, I confirm that ignoring the carryover factor in the sales results in the 

wrong segment of sales agents in the first stage and thus the wrong estimates of risk 

aversion in the second stage. Thus, the presence of carryover in sales affects the 

estimation results significantly.  

 As shown in the simulated data, the degree of risk aversion derives the 

different patterns of performance in sales. It is shown that the less risk averse endure 

the uncertainty of increased future sales and exert more effort trying to achieve 

quotas for bonuses. Thus, from the sales data, the managers can easily conclude that 

the less risk averse are high-performers in the firm. For the future research, I want to 

show that in the presence of carryover, if the firm’s quota-bonus plan might function 

as a filter through which only the less risk-averse are let in. By letting the sales agents 

getting in and out of sales agent pool freely, we can check whether the carryover 

affects the function of sales compensation as a filter. Using the contraction theory, 

we could expand our knowledge of carryover effect on sales dynamics. 
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APPENDIX.   Computing the expected utility function  

Expectation and Variance of Wealth in Utility Function 

𝑊𝑡(𝑆𝑡) = {
𝑟𝑆𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚𝑜𝑛𝑡ℎ⁡1, 2

𝐼(𝑄𝑡 ≥ 1)(𝑟𝑞 + 𝐵) + 𝐼(𝑄𝑡 < 1)𝑟𝑆𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚𝑜𝑛𝑡ℎ⁡3⁡⁡
 

𝑄𝑡 = 𝑄𝑡−1 +
𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)

𝑞
 

let, 𝐶1 = 𝑟 ∗ 𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) , 𝐶2 = 𝑟 ∗ 𝑞 + 𝐵⁡𝑎𝑛𝑑⁡𝐶3 = 𝑞 ∗

1−𝑄𝑡−1
𝐶1
𝑟

 

  

Expectation and variance of wealth over market variation, given efft 

 

Month 3 

𝐸(𝑊𝑡) 

= 𝐸(𝐼(𝑄𝑡 < 1) ∗ 𝐶1 ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡) + 𝐼(𝑄𝑡 ≥ 1) ∗ 𝐶2) 

= 𝐶1 ∗ 𝐸(𝐼(𝑄𝑡 < 1) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) + 𝐶2 ∗ 𝑃(𝑄𝑡 ≥ 1) 

= 𝐶1 ∗ 𝐸 (𝐼 ((𝑄𝑡−1 +
𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)

𝑞
) < 1) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) 

+𝐶2 ∗ 𝑃𝑟 ((𝑄𝑡−1 +
𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)

𝑞
≥ 1)) 

= 𝐶1 ∗ 𝐸(𝐼(𝑒𝑥𝑝(√𝜎𝜖𝑡) < 𝐶3) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) + 𝐶2 ∗ 𝑃𝑟(𝑒𝑥𝑝(√𝜎𝜖𝑡) ≥ 𝐶3) 

𝑖𝑓, 𝑄𝑡−1 < 1 

𝐸(𝑊𝑡) = 𝐶1 ∗ 𝐸 (𝑒𝑥𝑝(√𝜎𝜖𝑡) |𝜖𝑡 <
1

√𝜎
𝑙𝑜𝑔(𝐶3)) + 𝐶2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1 ∗ ∫
1

√2𝜋
𝑒𝑥𝑝 (√𝜎𝜖𝑡 −

1

2
𝜖𝑡
2)

1

√𝜎
𝑙𝑜𝑔(𝐶3)

−∞

𝑑𝜖𝑡 + 𝐶2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 
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= 𝐶1 ∗ 𝑒𝑥𝑝⁡(
𝜎

2
) ∗ ∫

1

√2𝜋
𝑒𝑥𝑝⁡(−

1

2
⁡(𝜖𝑡 − √𝜎)

2

1

√𝜎
𝑙𝑜𝑔(𝐶3)

−∞

)𝑑𝜖𝑡 + 𝐶2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1 ∗ 𝑒𝑥𝑝⁡(
𝜎

2
) ∗ ∫

1

√2𝜋
𝑒𝑥𝑝⁡(−

1

2
⁡(𝑢𝑡)

2

1

√𝜎
𝑙𝑜𝑔(𝐶3)−√𝜎

−∞

)𝑑𝑢𝑡 + 𝐶2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1 ∗ 𝑒𝑥𝑝⁡(
𝜎

2
) ∗ 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3) − √𝜎) + 𝐶2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

 

𝑖𝑓, 𝑄𝑡−1 ≥ 1 

𝐸(𝑊𝑡) = 𝐶2 

 

𝐸(𝑊𝑡
2) 

= 𝐸(𝐼(𝑄𝑡 < 1) ∗ 𝐶1
2 ∗ 𝑒𝑥𝑝(2√𝜎𝜖𝑡) + 𝐼(𝑄𝑡 ≥ 1) ∗ 𝐶2

2) 

= 𝐶1
2 ∗ 𝐸(𝐼(𝑄𝑡 < 1) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) + 𝐶2

2 ∗ 𝑃(𝑄𝑡 ≥ 1) 

= 𝐶1
2 ∗ 𝐸 (𝐼 ((𝑄𝑡−1 +

𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)

𝑞
) < 1) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) 

+𝐶2
2 ∗ 𝑃𝑟 ((𝑄𝑡−1 +

𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)

𝑞
≥ 1)) 

= 𝐶1
2 ∗ 𝐸(𝐼(𝑒𝑥𝑝(√𝜎𝜖𝑡) < 𝐶3) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) + 𝐶2

2 ∗ 𝑃𝑟(𝑒𝑥𝑝(√𝜎𝜖𝑡) ≥ 𝐶3) 

𝑖𝑓, 𝑄𝑡−1 < 1 

𝐸(𝑊𝑡
2) = 𝐶1

2 ∗ 𝐸 (𝑒𝑥𝑝(√𝜎𝜖𝑡) |𝜖𝑡 <
1

√𝜎
𝑙𝑜𝑔(𝐶3)) + 𝐶2

2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1
2 ∗ ∫

1

√2𝜋
𝑒𝑥𝑝 (√𝜎𝜖𝑡 −

1

2
𝜖𝑡
2)

1

√𝜎
𝑙𝑜𝑔(𝐶3)

−∞

𝑑𝜖𝑡 + 𝐶2
2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1
2 ∗ 𝑒𝑥𝑝⁡(

𝜎

2
) ∗ ∫

1

√2𝜋
𝑒𝑥𝑝⁡(−

1

2
⁡(𝜖𝑡 − √𝜎)

2

1

√𝜎
𝑙𝑜𝑔(𝐶3)

−∞

)𝑑𝜖𝑡 + 𝐶2
2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3))) 
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= 𝐶1
2 ∗ 𝑒𝑥𝑝⁡(

𝜎

2
) ∗ ∫

1

√2𝜋
𝑒𝑥𝑝⁡(−

1

2
⁡(𝑢𝑡)

2

1

√𝜎
𝑙𝑜𝑔(𝐶3)−√𝜎

−∞

)𝑑𝑢𝑡 + 𝐶2
2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

= 𝐶1
2 ∗ 𝑒𝑥𝑝⁡(

𝜎

2
) ∗ 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3) − √𝜎) + 𝐶2

2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

 

𝑖𝑓, 𝑄𝑡−1 ≥ 1 

𝐸(𝑊𝑡) = 𝐶2
2 

 

 

𝑉𝑎𝑟(𝑊𝑡) = 𝐸(𝑊𝑡
2) − 𝐸(𝑊𝑡)

2 

𝑖𝑓, 𝑄𝑡−1 < 1 

𝑉𝑎𝑟(𝑊𝑡) = 𝐶1
2 ∗ 𝑒𝑥𝑝⁡(

𝜎

2
) ∗ 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3) − √𝜎) + 𝐶2

2 ∗ (1 − 𝛷 (
1

√𝜎
𝑙𝑜𝑔(𝐶3))) 

−{𝐶1 ∗ 𝑒𝑥𝑝 (
𝜎

2
) ∗ 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3) − √𝜎) + 𝐶2 ∗ (1 − 𝛷 (

1

√𝜎
𝑙𝑜𝑔(𝐶3)))}

2

 

𝑖𝑓, 𝑄𝑡−1 ≥ 1 

𝑉𝑎𝑟(𝑊𝑡) = 𝐶2 − 𝐶2
4 

 

Month 1,2 

𝐸(𝑊𝑡) 

= 𝐸(𝑟 ∗ 𝑆𝑡−1
𝜆 ∗ 𝑒𝑥𝑝(𝑒𝑓𝑓𝑡) ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) 

= 𝐸 (𝐶1 ∗ 𝑒𝑥𝑝(√𝜎𝜖𝑡)) 

= 𝐶1 ∗ 𝐸(𝑒𝑥𝑝(√𝜎𝜖𝑡)) 

= 𝐶1 ∗ 𝑒𝑥𝑝⁡(
𝜎

2
) 
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𝐸(𝑊𝑡
2) 

= 𝐸 (𝐶1
2 ∗ 𝑒𝑥𝑝(2√𝜎𝜖𝑡)) 

= 𝐶1
2 ∗ 𝐸(𝑒𝑥𝑝(2√𝜎𝜖𝑡)) 

= 𝐶1
2 ∗ 𝑒𝑥𝑝(2𝜎) ∗ ∫

1

√2𝜋
𝑒𝑥𝑝⁡(−

1

2
⁡(𝜖𝑡 − 2√𝜎)

2
∞

−∞

)𝑑𝜖𝑡 

= 𝐶1
2 ∗ 𝑒𝑥𝑝(2𝜎) 

 

 

𝑉𝑎𝑟(𝑊𝑡) = 𝐸(𝑊𝑡
2) − 𝐸(𝑊𝑡)

2 

= 𝐶1
2 ∗ 𝑒𝑥𝑝(2𝜎) − {𝐶1 ∗ 𝑒𝑥 𝑝 (

𝜎

2
)}

2
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판매 이월 효과와 위험 회피도 

: 영업사원 보상 체계에서의 동적 인센티브 
 

천하영 

경영학과 경영학 전공 

서울대학교 

 
 

지난 시기로부터 판매의 이월 효과가 있는 경우, 쿼터-보너스 결합의 

보상체계 하에서 영업사원이 본인의 영업 노력 배분을 이산적 (discrete), 

동태적 (dynamic)으로 어떻게 결정하는지 풀어 보았다. 다이나믹 

프로그래밍 (dynamic programming)을 통해 얻은 해를 바탕으로 영업 

사원을 두 가지 그룹으로 구분하여 영업 데이터를 만들었다: 한 그룹은 위험 

회피 정도가 높고, 다른 한 그룹은 위험 회피 정도가 낮게 설계하였다. 판매의 

이월효과가 다음 시기 판매량의 기대값 뿐만 아니라 그 분산도 높이기 때문에, 

영업사원에게 최적의 영업 노력 배분과 이에 따른 판매량 형태는 위험 회피 

정도에 따라 달라진다. 위험 회피 정도가 높은 그룹의 영업 사원이 판매량의 

기본을 맞추고, 위험 회피 정도가 낮은 그룹의 영업사원이 전자의 판매량을 

넘어 요동치는 판매량을 기록한다. 또한 쿼터 달성 빈도도 위험 회피 정도가 

낮은 그룹이 그렇지 않은 그룹에 비해 더 높았다. 이렇게 다른 판매량 추이는 

위험 회피 정도가 높은 집단이 판매량을 늘릴 때 증가하는 불확실성 



 

 

(uncertainty)를 피하기 위해 노력을 더 많이 투입하지 않도록 조절하는 

것으로 설명 가능하다.  

Arcidiacono and Miller (2011)를 따라 그룹마다 최적 노력 배분 함수와 

효용 함수를 두 단계에 걸쳐 추정해 보았다: 비모수 함수를 통해 조건부 선택 

확률 (conditional choice probability)를 계산하고, EM 알고리즘을 통해 

구조적 모수 (structural parameters)를 추정하였다. 추정 결과는 판매의 

이월 효과가 존재하는데 이를 무시하고 추정했을 경우 영업사원의 그룹을 

그 수와 크기 모두에 있어서 잘 추정하지 못한다는 것이다. 그 이유는 판매의 

이월 효과를 무시하면 첫 번째 추정 단계에서 영업사원을 제대로 그룹화하지 

못하고 따라서 이어지는 두 번째 추정에도 영향을 미치기 때문이다. 추정 

결과는 판매의 이월 효과가 존재하는 경우에 영업부의 판매량 추이를 제대로 

이해하기 위해선 판매의 이월 효과를 충분히 검토해야 한다는 것을 강조한다. 

판매의 이월 효과를 무시하게 되면, 영업 사원을 세분화 하지 못해서 세분 

그룹별 보상 체계를 설계할 때 비효율성을 낳게 된다.  

 

주요어: 영업사원 보상체계, 다이나믹 프로그래밍, 이월효과, 위험회피도, 

이질성, 2 단계 CCP 측정, 시뮬레이션 

학   번: 2015-20678 
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