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ABSTRACT 

 

In flowering plants, germination is a sophisticated process, which is 

regulated by the cross-talk between endogenous signals and environmental 

cues such as hormones, light, water and temperature. GA hormone is a key 

regulator of seed germination. Many genes are involved in GA-mediated 

seed germination pathway. Among them, RGL2 has been considered to be 

the major negative regulator by repressing germination associated genes. 

Here, we showed that COP1 is closely involved in regulating GA-mediated 

seed germination. We found that the germination rate of cop1 mutants were 

strongly decreased by paclobutrazol (PAC) treatments, that is inhibitor of GA 

biosynthesis, compared with Wild-type. However, germination of COP1 

overexpressed-transgenic plants is insensitive to PAC. Analysis of western 

blot using antibody against COP1 recombinant proteins demonstrated that 

GA affected on COP1 protein stability. While imbibed wild-type seeds under 

GA present condition significantly increased COP1 protein than that in mock 
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(distilled water) condition, COP1 protein was decreased by PAC treatment. 

The genetic study of cop1-4 rgl2 double mutants provided strong evidence 

that COP1 act as upstream negative regulator of RGL2. Further analysis by 

BiFC and in vitro pull-down assay indicated that COP1 physically interacts 

with RGL2. RGL2 protein was degraded in COP1 overexpressed plants. 

These results suggested that COP1 is partially involved negatively regulates 

in RGL2 protein stability. COP1 regulates the transcript levels of the genes 

associated with germination such as GASA6, EXPA1, EXPA2, EXPA8, and 

XTH33. Taken together, our results suggested that COP1 regulates GA-

mediated seed germination through degradation of RGL2 proteins. 
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INTRODUCTION 

 

Seed germination is an immense importance stage initiating the life cycle of 

a plant, is therefore tightly regulated by external factors such as light, water, 

temperature and the major internal factor, phytohormones such as gibberellic 

acid (GA), abscisic acid (ABA), auxin, and ethylene [1, 2]. Among them, two 

classes of phytohormones, ABA and GA, antagonistically regulate seed 

germination. ABA functions to maintain seed dormancy, whereas GA releases 

dormancy and promotes germination [3-8]. 

The GA hormone concentration is important in regulating seed germination. 

At low endogenous GA levels, a group of GA signaling repressor protein, 

DELLA, represses GA responses, such as seed germination, stem elongation, 

leaf expansion, flowering and other GA-mediated processes [9, 10]. Whereas, 

in the presence of bioactive GA, the hormone binds to the GIBBERELLIN 

INSENSITIVE DWARF 1 (GID1) receptor [11]. GA-GID1 complex is trans-

located from the cytoplasm to the nucleus. In the nucleus, the GA-GID1 

complex enhances the interaction between GID1 and DELLA-protein. Then, 

the F-box protein SLEEPY 1 (SLY1;a subunit of SCFSLY1 complex) binds to the 

DELLA-GA-GID1 complex, resulting in DELLA protein is rapidly degraded by 

ubiquitin-proteasome pathway, followed by expressing GA-response genes  

[9, 11-15]. Taken together, the present of GA hormone reduces DELLA protein 

stability for expression of germination-associated genes [16]. 
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DELLA was first identified as the key repressor in GA-dependent manner, 

including seed germination, stem elongation, and transition to flowering [16-

18]. The DELLA protein is a sub-family of the GRAS family, which contains 

negative regulators of GA signaling [17, 19]. DELLA family consists 5 kinds of 

genes as GA INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA), RGA-

LIKE 1 (RGL1), RGA-LIKE 2 (RGL2), and RGA-LIKE 3 (RGL3) [17, 20-23]. 

Based on previous genetic studies, GAI, RGA and RGL1 are involved in stem 

elongation, and RGL3 is involved in jasmonic acid and ethylene-associated 

defense response [16, 24] and RGL2 has a key role in regulating GA-

mediated seed germination [21]. In the defect of GA, ga1-3 mutants or PAC 

(GA synthesis inhibitor) treatment condition, only rgl2 mutation can rescue the 

seed germination rate in the presence of light, but in the dark, GAI and RGA 

are necessary for germination [21, 25, 26]. 

Light is also well-known for a major environmental factor that regulates seed 

germination, in which germination rate is affected by the present or absent of 

light in Arabidopsis. In dark condition, germination rate is less than light 

condition [26]. In previous studies, Phytochromes (photo-receptor) and 

PHYTOCHROME INTERACTING FACTOR 1 (PIF1/PIL5) have a critical role 

in seed germination [1]. The Phytochrome, PHYA and PHYB, play a role in 

perceiving red (R) and far-red (FR) light. Under light condition, Pr changes to 

Pfr, in which PIF1 interacts with the Pfr form of phytochrome [27]. This 

interaction induces degradation of PIF1 protein through the ubiquitin-
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dependent proteolysis [27-29]. PIF1 negatively regulates seed germination 

through inducing the transcription levels of GAI, RGA and SOMNUS (SOM) 

[30], which are negative and positive regulator of GA and ABA biosynthesis, 

respectively, leading to changes in amount of endogenous ABA and GA 

balances [31]. 

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is tightly involved in 

light signaling pathway. COP1 is multi-functional gene which is involved in 

plant developmental process including seed germination, skoto-/photo-

morphogenesis, stress response, circadian clock, flowering, and seed 

maturation [32]. COP1 protein has three domains; the zinc-binding motif 

RING domain, coiled-coil region, and the multiple domain WD-40 repeat. Acts 

as RING type E3 ligase [33-36], in which COP1 normally degrades target 

proteins by ubiquitin-proteasome-dependent proteolysis system, such as GI 

and CO for flowering, HY5, HYH, LAF for photomorphogenesis [37-41], and 

others. During seed germination, COP1 negatively regulates PIF1 protein 

stability in the light-dependent [42, 43]. However, the function of COP1 in 

regulating seed germination is not clearly understood yet.  

Therefore, this study uncovers a new GA-mediated germination pathway, 

which COP1 acts as a critical negative regulator of RGL2 in light-

independently 
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MATERIALS AND METHODS 

 

Plant materials and growth conditions 

All Arabidopsis thaliana plants used in this study were Columbia-0 ecotype, 

with the exception of the cop1-5 and fus9-1 mutants in Ws background. 

Arabidopsis mutant lines used in this study; cop1-4 [44] , gai-t6 [45], rga-28 

(SALK_089146), rgl1-SK62 (SALK_136162), rgl2-SK54 (SALK_027654), rgl3-

3 (CS16355), hy5-205 [46], pif1-1 [47]. We generated the cop1-4 rgl2-SK54 

double mutant by genetic cross between cop1-4 and rgl2-SK54, in which cop1 

rgl2 double mutant were selected by the Derived Cleaved Amplified 

Polymorphic Sequence (dCAPS) method for cop1-4 mutant allele, and by 

genotyping with the specific primers for rgl2-SK54 (Table1). To generate the 

35S::COP1-GFP transgenic plant, the full length COP1 cDNA was amplified 

from the first-strand cDNA of WT (Col-0) using gene-specific primers. The 

PCR-amplified COP1 cDNA was ligated into the pDONR221 vector 

(Invitrogen), and then introduced into the pMDC85 vector for the expression 

of GFP-tagged COP1 constructs. For the COP1 overexpressing transgenic 

plants, cloned binary vector was transformed into Col-0, cop1-4, and rgl2-

SK54 mutant plants, using the floral dip transformation method [48]. Plants 

were grown on Murashige-Skoog (MS) medium containing 1% sucrose and 

2mM MES (pH 5.7) buffer or on soil in the growth chambers at constant 22°C 

under cool white fluorescent light (100μmol m-2 s-1) under long days (LD; 16-h 
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light/ 8-h dark) condition. 

 

Germination assay 

Fresh seeds of all genotypes were harvested within a month and stored at 4℃

before testing. Seeds were sterilized with 70% (v/v) ethanol containing 0.1% 

Triton X-100 for 20min, and rinsed three times with 100% ethanol. After air-

dried on auto-cleaved 3M filter paper and seeds were plated on MS solid 

medium (Duchefa) containing 1% sucrose with or without Paclobutrazol (PAC) 

and GA3. The plates were kept at 4oC in darkness for 72h for stratification and 

then transferred to a growth chamber set at 22oC under LD condition. The 

radicle tip emergence was defined as the first sign of seed germination. 

Seeds were scored at indicated time until seed germination rate reached over 

98%. The average germination rate was calculated based on at least three 

independent replicates.  

 

Yeast two-hybrid assays 

The yeast two-hybrid assay was performed according to the instructions 

provided with the Matchmaker GAL4 two hybrid system (Clontech). The full 

and partial (RING; aa 1~104, CC; aa 121~213, WD-40 repeat; aa 371~675) 

cDNAs of COP1 were cloned into the pGBK vector (as bait) [49], and RGL2 

full length cDNA was cloned into pGAD vector (as prey). Corresponding pairs 

of plasmids were transformed into the yeast strain AH109 as described in the 



 

6 

 

Yeast protocols Handbook (Clontech). Yeast- transformants were then plated 

on minimal SD/-Trp,-Leu agar plates for 3d at 30 oC. Finally, well-grown 

colonies were plated onto minimal SD/Gal/Raf/-Trp-Leu-His-Ade agar plates 

containing 5-bromo-4-chloro-3-indolylb-D-galactopyranoside (X-gal) for our 

interaction test. Liquid culture was used for Chlorophenol red-β-D-

galactopyranoside (CPRG) assay to measure β-galactosidase activity 

according to the manufacturer’s protocol. 

 

Biomolecular Fluorescence Complementation (BiFC) assay 

The full length cDNAs of COP1 and RGL2 were amplified and cloned into 

the pCR8/GW/TOPO vector (Invitrogen), followed by subcloning into the 

pCR8/GW/TOPO vector (Invitrogen, USA). LR recombinants using the 

Lambda integrase/excisionase (Elpis-Biotech) were introduced into the BiFC 

plasmid sets: pSAT5-DEST-cEYFP(175-end)-C1 (pE3130), pSAT5(A)-DEST-

cEYFP(175-end)-N1 (pE3132), pSAT4(A)-DEST-nEYFP(1-174)-N1 (pE3134) 

and pSAT4-DEST-nEYFP(1-174)-C1 (pE3136). Each pair of recombinant 

plasmids encoding nEYFP or cEYFP fusion proteins was co-bombarded into 

onion epidermal cell layers using a DNA particle delivery system (Biolistic 

PDS-1000/He, Bio-Rad), and incubated with 50μM MG132 in MS phytoagar 

medium for 16 h at 22°C under darkness, followed by image analysis using 

confocal laser scanning microscopy (SP8 X STED, Leica, Germany). 

pEarleyGate104 (YFP vector), pEarleyGate104-COP1 (COP1-YFP) and 
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pEarleyGate104-RGL2 (RGL2-YFP) clones were used as positive controls.  

 

Western-Blot Analysis 

Total soluble protein from imbibed seeds was extracted using UREA buffer 

[50mM Tris-HCl pH 6.8, 150mM NaCl, 1mM DTT, 1Mm EDTA, 50μM MG132, 

protease inhibitor cocktail]. 100μg of total protein was sperated on 12% SDS-

PAGE gels, and transferred to an Immobilon-P PVDF transfer membrane 

(Millipore). The membrane was blocked with 2% bovine serum albumin in 

phosphate-buffered saline (pH 7.5), and incubated overnight with primary 

antibody. After washing three times for 10 min each, the membrane was 

incubated with secondary antibody.  

. 

In vitro GST pull-down assays 

Full length cDNA of RGL2 was cloned into pGEX-4T-1 vector (Pharmacia) 

for GST-RGL2 fusion protein, and transformed into the BL21-CodonPlus 

(Stratagene) E. coli strain. GST and GST-RGL2 were induced by IPTG 

method, and purified using Glutathione Sepharose resin beads (ELPIS 

biotech, Korea) according to the manufacturers’ instruction. MBP and MBP-

COP1 fusion protein were induced in BL21-CodonPlus (Stratagene) E. coli 

strain [50], and purified using Amylose resin beads (ELPIS bioteth, Korea). 

For pull down assay, 2ug of GST and GST-RGL2 protein were incubated with 

immobilized MBP and MBP-COP1 protein in the binding buffer (50mM Tris-
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HCl [pH 8.0], 150mM NaCl and 1mM EDTA), and incubated at 4°C for 2h. 

After washing three times with binding buffer, protein retained beads were 

resolved by SDS sample buffer, and immunoblotted using anti-GST and anti-

MBP antibodies (Santacruz). 

 

Cell free degradation assay 

GST-tagged RGL2 protein was prepared from BL21-CodonPlus (Stratagene), 

and purified using Glutathione Sepharose resin beads (ELPIS biotech, Korea) 

according to the manufacturers’ instruction. GST-RGL2 protein was incubated 

at 30°C with 100ug total soluble protein in assay buffer [50mM Tris-HCl 

(pH7.5), 100mM NaCl, 10mM MgCl2, 5mM DTT, and 5mM ATP] from Col-0, 

cop1-4 and 35S::COP1-GFP seedling. The plants were grown in LD for 

10days and harvested at ZT 0. The reaction was stopped by adding of SDS 

sample buffer at each indicated time. 

 

Quantitative RT-PCR 

Seeds were grown under 3days dark condition and 1day under light 

condition, 22℃ with soaking. Total RNA was extracted from germinating 

seeds using the Fruit-mate™ (Takara, Japan) and MG™ RNAsol (Macrogen, 

korea) according to the Takara’s instructions. First strand cDNA was 

synthesized from 2ug total RNA using oligo (dT)15 primer and M-MLV reverse 

transcriptase (Promega, Madison, WI, USA), and diluted with water to 70ul. 
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Total 20ul of mixture included 1ul of 0.5uM primer, 3ul of cDNA mixture and 

10ul of 2X QuantiTect LightCycler 480 SYBR Green I Master mix (Roche). 

PCR was performed by Light Cycler 480 Real-Time PCR System (Roche, 

Basal, Switzerland), using the following program : 95℃ for 2 min, 50 cycles of 

95℃ for 10 sec, 59℃ for 10 sec and 72℃ for 10 sec. Relative expression 

levels of each genes were measured by RT-qPCR using gene-specific 

primers and Actin2 (ACT2) was used for an internal control. All real-time PCR 

were repeated at least three times (biological replicates). Primer sequences 

used were listed in Table 1. 
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Table1. Primers information used for this experiment 

 

Gene   Forward primer(5'→3')    Reverse primer(5'→3') 

A. dCAPS primers 

cop1-4 
 

AGAAGGATGCGCTGAGTGGGTCAGACTAG TGCCATTGTCCTTTTACCATTTCAGC 

B. Genotyping primers 

RGL2 
 

CTGCGTTTCCAAAGGAAGAG 
 

GTCGGATCCTCTTGCTGCTA 

C. quantitative real-time PCR primers 

UBQ1 
 

CGCCAAGATCCAAGACAAAG 
 

GTTGACAGCTCTTGGGTGAA 

ACT2 
 

TGGGATGAACCAGAAGGATG 
 

AAGAATACCTCTCTTGGATTGTGC 

COP1 
 

TTCAGCCAACATTGTATCAAGC 
 

AAACACCAGCAGTGGCAAA 

RGL2 
 

GGTAGAGATGACTCGCCTGA 
 

CAAAGATACGCACAAGGTCC 

GASA6 
 

AGAAACCCCAATCTGTTTCC 
 

GAAGGTCCATACACATTTCG 

ABI5 
 

ATGAGGAACCCGAGTTGTCC 
 

CAGATGGTGTTCCTCCTACC 

EXPA1 
 

GTCCTTTCTTTCAATTGAGG 
 

CAACTCAATACCTCTGC 

EXPA2 
 

TCGTTCCTGTCGCATTCAG 
 

GATTCCCGTTTATCGTAAACCTT 

EXPA8 
 

GACGTGGCTCCTTCTAATTG 
 

GGCACAATGAAAATACAACC 

XERICO   CTATTGGAACATCACTTGCC   ATCTGCTCGAGAATCAACCG 
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RESULTS 

 

COP1 is involved in GA-mediated seed germination. 

The strong allele mutant of COP1, cop1-5, has a dark purple color seed, 

very late or failed germination, abnormal seedling and lethal phenotype [1]. To 

investigate a cause of late germination phenotype, we measured germination 

rate of wild-type (Ws), cop1-5, and fus9-1 seeds imbibed in untreated (1/2MS) 

(Figure 1A) or 10μM GA treated medium (Figure 1B). fus9-1 is used as a 

seed color negative control of cop1-5. The seeds were incubated in chilling 

condition for 3days after plating, and transferred to LD condition. After-

ripening of seeds for 20 days resulted in the late germination phenotype of 

cop1-5 was partially rescued and total germination rate was increased under 

GA treatment condition. However, the fus9-1 seeds were not showed different 

germination phenotype with wild-type under both 1/2MS and GA treatment 

conditions, indicating that COP1 may involve in GA-mediated germination 

pathway. 

We then wondered whether different allele cop1 mutant also shows same 

phenotype in response to GA. We measured germination rate of the COP1 

weak allele mutant, cop1-4 (Columbia background), and COP1 

overexpression 35S::COP1-GFP seeds comparing with Wild-type (Col-0) 

imbibed in supplementation 10μM GA (Figure 2B) or 10μM PAC (Figure 2C) 
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and untreated condition (Figure 2A). The cop1-4 mutant has a slightly late 

germination phenotype. Consistently, we found that the cop1-4 germination 

rate also recovered to WT levels in response to GA. Furthermore, the cop1-4 

mutant showed PAC hyper-sensitive phenotype. In contrast, 35S::COP1-GFP 

plants showed early germination phenotype in 1/2MS condition, and exhibited 

PAC insensitive phenotype. These results show that COP1 is involved in GA-

mediated germination. 
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Figure 1. Germination phenotype of cop1 strong allele mutant, cop1-5, 

under GA and PAC treatment condition. 

Time-course seed germination analysis of the wild-type (Ws), cop1-5 mutant 

and fus9-1 mutant in (A) control (1/2MS) or (B) 10μM GA treatment condition. 

The data show the rate of germinated seed compared to the corresponding 

controls on the same day of germination. Each value represents the mean 

±SD of three independent experiments. Error bars represent the standard 

deviation.  
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Figure 2. Germination phenotype of cop1 weak allele mutant, cop1-4 and 

COP1 over-expression transgenic line, 35S::COP1-GFP, under GA and 

PAC treatment condition. 

Time-course seed germination analysis of the wild-type (Col-0), cop1-4 

mutant and 35S::COP1-GFP in (A) control (1/2MS) or with (B) 10μM GA and 

(C) 10μM PAC treatment. (D) Statistical analysis of seed germination and (E) 

morphological observations of seed germination after 3days of incubation in 

MS medium supplemented with 10μM PAC. P-values were determined with a 

two-tailed student’s t-test assuming equal variances (*p<0.05). The data show 

the rate of germinated seed compared to the corresponding controls on the 

same day of germination. Each value shown represents the mean ±SD of 

three biological experiments. Error bars represent the standard deviation.  
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PIL5/PIF1 and HY5 are not involved in the regulation of GA-

mediated germination. 

Previous studies have suggested that GA regulates seed germination 

through PIL5/PIF1, is involved in light-dependent manner. PIL5/PIF1 acts as 

negative regulator of DELLA, DAG1, and SOM proteins, which modulates GA 

responsiveness [1, 51]. Moreover, a recent study revealed that the COP1 

negatively regulates PIL5/PIF1 protein stability for photomorphogenesis, 

including seed germination [43]. HY5 also a target protein of COP1 is involved 

in ABA signaling pathway [52] and possibly involved in seed germination. 

Thus, we hypothesized that COP1 acts as a positive regulator of seed 

germination by inhibiting PIL5/PIF1 protein stability. 

To test whether COP1 regulates seed germination through PIL5/PIF1 or HY5, 

we examined seed germination assays in response to PAC. If they act in 

same pathway, PIF1/PIL5 and HY5 will show PAC insensitive phenotype like   

35S::COP1-GFP. The seed germination assays was performed using the pif1 

and hy5-205 mutant under no-treatment condition (1/2MS) (Figure 3A) or PAC 

treatment condition (Figure 3B). Unexpectedly, pif1 and hy5-205 mutant 

seeds did not show PAC insensitive phenotype as 35S::COP1-GFP plants, in 

which these mutants showed normal germination phenotype in MS and PAC 

conditions as Wild-type (Col-0) plants. These results indicate that PAC-

insensitive germination phenotype of COP1 is not due to PIL5/PIF1 and HY5. 

Thus, those genes are not involved in GA-mediated germination 
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Figure 3. PIL5/PIF1 and HY5 are not involved in GA-mediated 

germination. 

Time-course seed germination analysis of the wild type (Col-0), cop1-4 

mutant, 35S::COP1-GFP, pif1-1 mutant and hy5-205 mutant in (A) control 

(1/2MS) or with (B) 10μM PAC treatment. The data show the rate of 

germinated seed compared to the corresponding controls on the same day of 

germination. Each value shown represents the mean ±SD  of three 

independent biological experiments. Error bars represent the standard 

deviation.    

 

 

 

 

 



 

17 

 

COP1 protein is stabilized by GA hormone. 

 The above results suggest that COP1 is involved in GA-mediated seed 

germination, which is light-independent manner. We therefore next asked how 

COP1 acts in GA-mediated germination. At first, we measured the transcript 

accumulation of COP1 during seed germination from Wild-type (Col-0) seeds 

treated with 10μM GA and 10μM PAC or without (control). However, the 

transcript level of COP1 was not altered by GA (Figure 4). We next examined 

whether the COP1 protein expression level is regulated by GA. To this end, 

seeds were imbibed in distilled water (DW), 10μM GA and 10μM PAC solution. 

Protein extracts were prepared from the time-course harvested seeds. The 

protein concentration was normalized, and the levels of COP1 protein were 

assayed by Western blot using COP1 specific antibody. The result shows that 

COP1 protein is early accumulated under GA treated condition than DW 

condition. Oppositely, PAC treatment leads to late accumulation of COP1. 

These results indicate that GA induces COP1 protein stability and then COP1 

negatively regulates RGL2 protein stability in the regulation of seed 

germination (Figure 5). 
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Figure 4. GA does not regulate COP1 transcription. 

Time-course mRNA expression levels of COP1. Col-0 seeds were treated with 

or without GA and PAC under LD condition, and were harvested at each time 

point. The expression levels of COP1 were measured by qRT-PCR, and 

determined by ACT2. Each value shown is the mean ±SD  of three 

independent biological replicates. Error bars represent the standard deviation. 
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Figure 5. GA modulates the stabilization of COP1 protein 

Time-course protein levels of COP1. Col-0 seeds were treated with or without 

GA or PAC under LD condition. Total proteins were extracted at each time 

point, and COP1 accumulation was analyzed by western blotting using Anti-

COP1 antibody [44]. The levels of histone H3 were used as a loading control. 

cop1-4 used as a negative control for Anti-COP1 
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COP1 Functions upstream of RGL2 to regulate seed germination 

in GA-mediated pathway. 

To understand germination phenotype of COP1 overexpression plant, we 

searched PAC-insensitive phenotype in GA-mediated germination pathway. 

Previous studies have demonstrated that the rgl2 mutant shows insensitive 

germination phenotype under PAC treatment condition [21]. It prompted us to 

examine whether COP1 might be genetically related with RGL2 in GA-

mediated germination. To do this, we first confirmed germination phenotype of 

5 kinds of della mutants, and we found that only rgl2 mutant showed PAC-

insensitive phenotype (Figure 6A and 6B). Thus, we hypothesized that COP1 

may be associated with RGL2 in the regulation of seed germination. To 

investigate the hypothesis, we generated the cop1-4 rgl2 double mutant by 

crossing two homozygous, and we compared the germination rate among 

Col-0, cop1-4, rgl2, and cop1-4 rgl2 mutant seeds. cop1-4 mutant showed 

PAC-sensitive phenotype (Figure 2C), and the rgl2 mutant showed PAC-

insensitive phenotype (Figure 6B). And interestingly, PAC-hypersensitive 

phenotype of cop1-4 was rescued by rgl2 mutant in the cop1-4 rgl2 double 

mutant (Figure 7A and 7B). Furthermore, we generated 35S::COP1-GFP/rgl2 

plant which also crossed the 35S::COP1-GFP transgene into rgl2 mutant 

background and investigated seed germination analysis. Germination rate of 

35S::COP1-GFP/rgl2 seeds were similar to both 35S::COP1-GFP and rgl2 

mutant seeds under PAC treatment condition (Figure 8A and 8B). Taken 
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together, these data suggest that RGL2 is epistatic to COP1, and these genes 

act together in GA-mediated pathway. 
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Figure 6. Germination rate of 5 kinds of della mutants under PAC 

treatment condition. 

Germination analysis of the 5 kinds of della mutants comparing with wild-type 

(Col-0). All of seeds were imbibed in untreated (1/2MS) or 10μM PAC 

treatment medium. Morphological observations of seed germination after 

5days of incubation in MS medium supplemented with 10μM PAC. Each value 

represents the mean ±SD  of three independent experiments. Error bars 

represent the standard deviation.   
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Figure 7. RGL2 is epistatic to COP1 in GA-mediated germination. 

Time-course seed germination analysis of the Wild-type (Col-0), cop1-4, rgl2 

and cop1-4 rgl2 seeds in (A) control (1/2MS) or with (B) 10μM PAC treatment. 

The data show the rate of germinated seed compared to the corresponding 

controls on the same day of germination. Each value shown is the mean ±SD 

of three independent biological replicates. Error bars represent the standard 

deviation. 
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Figure 8. Germination phenotype of rgl2, 35S::COP1-GFP, and 

35S::COP1-GFP/rgl2 seeds under PAC treatment condition. 

Time-course seed germination analysis of the Wild-type (Col-0), rgl2, 

35S::COP1-GFP and 35S::COP1-GFP/rgl2 seeds in (A) control (1/2MS) or 

with (B) 10μM PAC treatment. The data show the rate of germinated seed 

compared to the corresponding controls on the same day of germination. 

Each value shown is the mean ±SD  of three independent biological 

replicates. Error bars represent the standard deviation. 
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COP1 does not regulate mRNA expression level of RGL2  

The genetic analysis showed that COP1 acts as an upstream negative 

regulator of RGL2, in which it is possible that COP1 negatively regulates 

RGL2 in transcription or post-translation-step. To examine whether COP1 

regulates RGL2 transcript expression level, we measured the mRNA 

expression levels of RGL2 in cop1-4 and 35S::COP1-GFP plants compared 

with WT (Col-0) using qRT-PCR (Figure 9). The transcription levels of the 

RGL2 were not affected by COP1. These observations raise the possibility that 

COP1 may negatively regulate the protein levels of RGL2. 
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Figure 9. COP1 does not regulate RGL2 expression. 

Expression level of RGL2 in Col-0, cop1-4, and 35::COP1-GFP seeds. All of 

the imbibed seeds were incubated at 4℃ for 2 days, and transferred to LD 

condition growth chamber for 1day, and harvested for RNA extraction. 

Expression level of RGL2 was measures by qRT-PCR, and calculated by 

ACT2. Each value shown is the mean ±SD of three independent biological 

replicates. Error bars represent the standard deviation. 
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COP1 physically interacts with RGL2  

Since COP1 and RGL2 does not regulate in transcription level. We next 

investigate whether COP1 regulates RGL2 in post-translation step. To 

examine this idea, we first used yeast two-hybrid assays to identify protein-

protein interactions. To this end, we cloned the full length (aa1-2028) and 

partial (RING; aa 1~104, CC; aa 121~213, WD-40 repeat; aa 371~675) 

cDNAs of COP1 into the pGBK vector (as bait), and full length of RGL2 also 

cloned into the pGAD vector (as prey). The results show that the RGL2 

strongly interact with RING domain of COP1 and also weakly binds to WD-40 

repeat domain (Figure 10A). 

 To further confirm interaction between COP1 and RGL2 in-vivo. We 

conducted bimolecular fluorescence complementation (BiFC) assays (Figure 

10B). For this experiment, we generated constructs of COP1 fused with C-

terminal of YFP (cYFP-COP1) and RGL2 fused with N-terminal of YFP (nYFP-

COP1). YFP vector and YFP-COP1, YFP-RGL2 were used as positive 

controls. When cYFP-COP1 and nYFP-RGL2 were bombarded into onion 

epidermal cells, we observed strong YFP fluorescence signals in the nucleus, 

indicating that COP1 interact with RGL2 in nucleus. 

 Moreover, we wondered whether the interaction of COP1 and RGL2 is direct 

or indirect To examine that, in-vitro pull-down assay were performed using 

MBP-COP1 and GST-RGL2 recombinant proteins. In this experiment, we 

used MBP and GST as negative control. MBP-COP1 was shown to interact 
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with GST-RGL2 (Figure 10C). Taken together, these results demonstrate that 

COP1 is genetically and physically interacts with RGL2, and this interaction is 

direct. 
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Figure 10. COP1 directly interacts with RGL2 

(A) Relative β-galactosidase (β-gal) activity was assayed for each strain and 

is presented relative to that obtained for the COP1-RGL2 interaction. The 

empty vector was employed in the negative control. Error bars represent the 

standard deviation. 

(B) BiFC assays show the interaction between COP1 and RGL2 in onion 

epidermal cells. Full-length RGL2 and COP1 were fused to the split N- or C- 

terminal (YN or CN) fragment of YFP. Dic, differential interference contrast in 

microscope mode; Merge, merged imaged of YFP channel and DIC, scale 

bar=50μm. 

(C) Pull-down assays show direct interaction between COP1 and RGL2 in-

vitro. GST and GST-RGL2 protein were incubated with immobilized MBP and 

MBP-COP1 proteins, and fractions were detected by anti-GST and anti-MBP 

antibodies.  
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COP1 negatively regulates RGL2 protein stability. 

Our genetic and physical results strongly suggest that COP1 may 

negatively regulate RGL2 protein stability. Because it has been reported that 

RGL2 is inactivated by GA hormone [26] and protein stability also affected by 

GA signaling component, including SLY1 [53]. In addition, COP1 

downregulates target genes to regulate phtomorphogenesis [37-41]. Thus, we 

examined whether COP1 negatively regulates RGL2 protein stability. To this 

end, Cell-free degradation assays was performed to illustrate the changing of 

RGL2 protein stability. GST-RGL2 proteins were incubated with total soluble 

proteins from WT, cop1-4 and 35S::COP1-GFP plants, and detected GST-

RGL2 protein at indicated time point (Figure. 11). GST-RGL2 proteins were 

rapidly degraded in 35S::COP1-GFP condition, GST-RGL2 were more 

stabilized in cop1-4 condition. These results suggest that COP1 is partially 

involved in regulating RGL2 protein stability during seed germination. 
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Figure 11. COP1 regulates RGL2 protein stability. 

Cell free degradation assay of RGL2 recombinant proteins. Purified GST-

RGL2 proteins were incubated with each soluble fractions from Col-0, cop1-4, 

and 35S::COP1-GFP plants. Samples were harvested at each time point, and 

detected by anti-GST antibody. Error bars represent the standard deviation. 
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COP1 regulates the expression levels of germination-associated 

genes during seed germination  

In previous studies, it had been reported that RGL2 negatively regulates 

expression levels of germination-associated genes in GA-mediated manner 

[54]. Therefore, we examined whether COP1 also regulates the transcript 

expression of down-stream genes, which are regulated by RGL2 such as 

GASA6, EXPA1, EXPA2, EXPA8, and XTH33. The mRNA levels of those 

genes in cop1-4, 35S::COP1-GFP, and rgl2 imbibed seeds were measured by 

qRT-PCR (Figure 12). The results show that transcript levels of germination-

associated genes were down-regulated in rgl2 mutant seeds, consistent with 

the observation in previous reports [54], whereas those were up-regulated in 

cop1-4 mutant seeds. Interestingly, the expression level were down-regulated 

in cop1-4 rgl2 double mutant same as that of rgl2 mutant. The expression 

pattern in cop1-4 rgl2 is similar to rgl2. These data indicate that COP1 

positively regulates germination-associated genes by repressing RGL2.  
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Figure 12. Transcript expression analysis of germination associated 

genes by qRT-PCR. 

Seeds of wild-type, cop1-4, rgl2 and cop1-4 rgl2 double mutant were imbibed 

in distilled water or 10μM PAC treatment. Total RNA was extracted from 

germinating seeds and transcript levels of GASA6 (A), EXPA1 (B), EXPA2 (C), 

EXPA8 (D), and XTH33 (E) were quantified by qRT-PCR relative to ACT2. 

Each value shown is the mean ±SD  of three independent biological 

replicates. Error bars represent the standard deviation. 
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DISCUSSION 

 

GA is a pivotal phytohormone, which regulates a wide range of plant life 

cycle including seed germination, stem elongation and flowering. Among GA 

signaling components, RGL2 plays a major role in repressing GA-mediated 

seed germination. Under low GA level, RGL2 protein is degraded by 26S 

proteasome [55], causing enhanced expression of germination-associated 

genes including GASA6 and EXPA1 [54].  

Light signal is also a key external factor of seed germination. Among the 

light-mediated seed germination pathway, the stability of PIF1/PIL5, which 

acts as negative regulator in seed germination can be determined by light [45]. 

In previous study reported that light-signal affects to the reversible localization 

of COP1 from nucleus to cytoplasm [35]. In darkness, COP1 is translocated to 

the nucleus and COP1 degrades target proteins by ubiquitin-proteasome-

dependent proteolysis system [41]. 

Various mechanisms of seed germination have been reported, but the 

regulatory mechanism by both COP1 and RGL2 has not been revealed in 

light-independent/GA-mediated germination pathway. 

In this study, we provide several pieces of evidence that GA regulates seed 

germination through COP1 in light-independently. First, GA induces COP1 

protein stability during seed germination. The germination phenotype of cop1 

null-mutant, cop1-5, is extremely low and lethal germination. We wonder 
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whether the low germination rate is related to GA hormone. To determine this, 

we treated GA and GA synthesis inhibitor PAC to each cop1-5 and cop1-4 

mutant seeds. The result showed that the germination phenotype of cop1 

mutant is recovered by GA treatment (Figure 1 and Figure 2). Thus, we 

postulate that COP1 is related to GA hormone in regulating seed germination. 

Next we investigated whether GA affects COP1 transcription or translation 

level, and we found that GA induces COP1 protein level (Figure 5) without 

changes in transcript expression (Figure 4). Second, this mechanism is light-

independent manner. Previously, On Sun Lau (Plant hormone signaling 

lightens up: integrators of Light and hormones) [51] suggested that seed 

germination regulated by GA hormone under light condition, in which 

PIF1/PIL5 protein stability is decreased. These reactions result in inducing GA 

synthesis genes and promoting seed germination. In addition, COP1 acts as 

negative regulator of PIF1/PIL5 We then wondered whether COP1 regulates 

seed germination via PIF1/PIL5 pathway. We performed seed germination 

assays using PIF1 and HY5 mutants (Figure 3). We found that germination 

regulate pathway of COP1 is not associated with PIF1 or HY5. These results 

indicate that COP1 controls GA-mediated germination, light independently. 

Third, COP1 directly interacts with RGL2 (Figure 10) through reducing its 

protein stability. Our results indicated that this mechanism is light-independent 

and GA-mediated manner. We wonder how COP1 regulates germination in 

GA pathway, and the result showed that COP1 is negatively regulates RGL2 
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protein stability (Figure 11). Additionally, many germination-associated genes 

are changed by COP1 expression (Figure 12), and we found that this 

mechanism is regulated by COP1 and RGL2 respectively. Various genetic 

experiments showed COP1 acts upstream of RGL2 and they are directly 

regulates seed germination via degrades RGL2 protein.  

In conclusion, we suggest that the simple scheme of new germination 

pathway regulated by GA hormone (Figure 13). Our results provide an 

expanded understanding for regulatory mechanism of seed germination. 
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Figure 13. The proposed model of COP1 for seed germination. 

In the presence of GA, GA promotes COP1 protein expression. The COP1 

interact with the RGL2 protein. Then, COP1 repress the protein levels of 

RGL2. Subsequently, the germination is achieved by inducing downstream 

genes. This consecutive process is occurred light independently.  
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국 문 초 록 

  

식물의 발아과정에는 여러 요인이 관여한다. 크게 외부적 요인으로는, 빛, 온도 

그리고 물이 작용하며, 내재적 요인으로는 GA (Gibberellic acid), ABA (Abscisic 

acid), ethylene과 같은 식물호르몬이 작용한다. 이 중에서, GA는 종자의 발아를 

촉진시키는 대표적인 호르몬으로 알려져 있다. GA에 의한 발아 조절 메커니즘 

연구는 오랜 기간 진행되고 있으나, 아직도 많은 부분 밝혀지지 않았다. 암 조건

에서 식물의 광 형태형성 (photomorphogenesis)을 억제시키는 대표적인 유전자

로 알려진 COP1  (CONSTITUTIVE PHOTOMORPHOGENIC 1)은 유비퀴틴 기작을 

통해 표적 유전자들의 기능을 억제한다. 본 연구에서는 GA에 의한 발아 조절 

메커니즘에 COP1 유전자가 관여한다는 것을 규명하였다. 먼저, COP1 돌연변이

체가 야생형에 비해 발아율이 현저히 낮은 것을 발견하였고, 발아관련 호르몬인 

GA호르몬과 GA생합성 억제제인 PAC (PACLOBUTRAZOL)을 처리한 후 COP1 돌

연변이체와 과다발현체의 발아율을 측정하였다. 결과, GA처리시 COP1 돌연변이

체의 발아율이 야생형 수준으로 회복되는 것을 확인하였다. 또한 PAC처리시 돌

연변이체는 sensitive한 표현형을 보였고, 과다발현체는 insensitive한 표현형을 
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보였다. 이 결과를 통해 발아과정에서 COP1과 GA호르몬의 연관성을 보았다. 

GA호르몬이 COP1에 어떤 영향을 끼치는지 보기 위해, GA와 PAC을 처리하여 

COP1의 RNA와 단백질 함량 변화를 보았다. 결과, GA호르몬이 COP1의 단백질 

발현을 촉진시킴을 확인하였다. 또한 기존의 연구 결과를 토대로, GA와 COP1 

모두 빛에 의한 발아조절과정에서 PIF1/PIL5 유전자를 매개하므로 이 메커니즘 

또한 빛 신호에 의한 GA메커니즘일 가능성을 확인해보았다. PIF1과 COP1의 표

적 유전자인 HY5 돌연변이체에 PAC을 처리한 후의 그 표현형의 변화를 관찰하

였다. 결과, 두 유전자 모두 PAC에서 COP1 과다발현체와 같은 표현형을 보이지 

않았고, 이로써 빛에 의한 조절 가능성을 배제하였다. RGL2는 GA의 발아조절과

정에 관여하는 대표적인 유전자이며, PAC에 insensitive한 표현형을 보인다. 여러 

단백질 상호작용 실험을 통해, COP1과 RGL2가 GA에 의한 발아과정에 함께 작

용함을 확인하였다. 마지막으로 COP1이 RGL2의 단백질의 발현을 억제함으로써, 

발아관련 하부유전자들의 발현을 조절하여 발아를 유도시킨다는 결과를 얻었다. 

이로써 COP1이 빛 신호와는 무관하게 GA호르몬에 의한 발아 조절과정에 관여

한다는 사실을 확인하였다. 
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