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Abstract

Bearing Incipient Fault Detection, Diagnosis, and

Unsupervised Prognosis with Failure Thresholding

Byungjoo Jeon
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Bearings are core components in rotating machines. Thus, early
detection of faults and accurate prediction of a machine’ s health
state is highly desirable throughout the total lifecycle of a bearing.
Rolling element bearing failure is one of the critical causes of
breakdowns in rotating machinery; these types of failures are
common in mechanical systems as well. Such failures can be
catastrophic and can result in costly downtime.

Particularly in industrial fields, minimization of downtime is
critical. Thus, health monitoring of rotating machinery during
operation is the focus of significant research interest. Accurate
bearing health prediction is needed for these settings. There remains
a need for health state prediction that can be accomplished in real—
time, without future data.

Therefore, a data—driven and real—time algorithm for bearing
health monitoring is suggested in this thesis. The research objectives

i



pursued to improve the bearing PHM framework include 1) full—time
health monitoring, 2) definition of a failure threshold for rolling
elements in general bearings, and 3) life prediction in real—time and
in unsupervised situations.

To classify the health state of bearings for detection of incipient
faults and fault points, the Mahalanobis Distance is applied. For life
prediction, previous researchers have experienced severe problems,
particularly when the life prediction required analytic assumptions as
a prerequisite, for example, those emerged at Particle Filters. To
solve this problem, the research outlined in this paper suggests a new
model and a threshold decision method that enables prediction of the
Remaining Useful Life in real time (i.e., in unsupervised situations).

This thesis is organized as follows. Section 1 provides an
introduction, including the research motivation and an overview of
the research objectives. Next, in Section 2, methodologies for
detection of incipient anomalies, fault diagnosis, and failure prognosis
are explained, along with a suggested definition and a trend projection
model. Then, Sections 3 and 4 validate the suggested threshold and
model using data acquired from Schaeffler Korea and Seoul National
University, respectively. Finally, Chapter 5 concludes this thesis with
a summary of the research contributions and suggestions for future

work.

Keywords: Incipient Anomaly Detection, Diagnosis and Prognosis,

Failure Threshold, Asymptotic Model
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Chapter 1. Introduction

1.1. Background and Motivation

Rolling element bearing failure is one of the critical causes of
breakdowns in rotating machinery and common mechanical systems.
Researchers in PHM (Prognostics and Health Management) have
studied ball bearings for a long time > ®- ¥ However, little research
to date has focused on the real—time monitoring. Additionally, full—
time health monitoring — from normal state to failure — is greatly
needed in industrial fields. This type of health monitoring will allow
users to be continuously aware of the health status of their rotating
machines and enable them to make plans to repair and retain
machinery in working condition.

Varying failure criteria presents another problem for researchers,
since different thresholds can be applied for each bearing depending
on its purpose. For example, bearings that are built for use in
precision operating machines would require a conservative threshold
of failure, while others may not.

According to previous research™, the evolution of wear in rolling
bearings progresses sequentially through five stages: the running—
in stage, the steady—state stage, the defect initiation stage, the
defect propagation stage, and the damage growth stage. In many
cases, the very first initiation of spall should be detected and the

health state should be subsequently monitored continuously to



ensure productivity of the machine.

In prognostics, many researchers have attempted to make more
effective and generally applicable algorithms to predict Remaining
Useful Life”. However, all popular algorithms, such as the Particle
Filtering method and Artificial Neural Networks, have pros and cons.
In this thesis, objectives are established, and the most relevant

algorithm is suggested for the defined objectives.

1.2. Research Objectives

The first motivation for this research is the growing need for
full—time health monitoring. In many settings, it is desirable to know
the status of the mechanical system over its total life. Previous
research has concentrated on the comparison of normal and abnormal
signals.’” However, in real—world settings, simultaneous health
monitoring is desirable during operation of machinery, as it can
provide information necessary to enable early planning for repairs
needed to maintain the system in a usable state.

Prognostics is another significant motivation for this research.
The primary goal of prognostics is to provide useful insight into a
system’s health by combining three aspects: complexities of real—
time systems, accurate and full utilization of data, and variable
operating patterns. However, there are many limitations to
prognostics due to its required assumptions, including the threshold

decision problem. Therefore, an algorithm is needed that provides



data—driven, real—time, and short—calculations for threshold
definition.

Inspired by these motivations, the research objectives of this
project are defined as follows: 1) full-time health monitoring for
bearings, 2) suggestion of a failure threshold decision algorithm, and

3) real—time, unsupervised life prediction.
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1.3. Thesis Layout

In order to solve problems and accomplish the research
objectives, overall PHM procedures for bearings are conducted
throughout normal, incipient fault, and failure states. This thesis is
organized as follows. Section 2, explains the methodologies of
bearing fault detection throughout incipient anomaly, fault, and failure,
which 1s followed by suggestions of life prediction algorithm. Next,
Section 3 provides a case study of prognostics with bearing dataset
from Schaeffler Korea. In Sections 4, another case study of bearing
dataset with SNU Bearing Testbed is explained. Finally, section 5

concludes thesis with contributions and future works.
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Chapter 2. Methodology

2.1. Overall PHM Flowchart for a Bearing

Previous PHM research has mainly focused on diagnosis and
prognosis for a specific application. In the research described here,
the application is a bearing. This research outlined here covers the
entire range of life: from normal state to failure. In order to classify
the life stages, the bearing state is defined in four states: normal,
incipient anomaly, fault, and failure. These states represent
increasing levels of severity of health defects.

The PHM process should define how far the bearing has come
and how long it will take for eventual failure. To do so, vibration
signals are used for analysis. After a vibration signal is acquired,
preprocessing and feature extraction stages follow. Next, based on a
health index, which is also called Mahalanobis Distance, the health
monitoring system will detect incipient fault features. The diagnosis
stage and prognosis stage follow. These procedures form the real—
time health monitoring system.

To be more specific, features are selected for each step of
incipient anomaly detection, fault diagnosis, and failure prognosis.
Blue—lined boxes in the PHM flowchart on figure 2—1 indicate the
selected features. Yellow boxes show the results of each section. In

this research, a health index (HI) with Mahalanobis Distance, a

threshold decision method, and a degradation model are all suggested.



As shown in the figure, the results from each step are used for each
subsequent step. During the incipient anomaly detection step, the
health index is calculated continuously. Here, if HI increases over 5
(i.e., moves into the fault range) the bearing monitoring system
process moves on to fault diagnosis. Next, after a faulty part of a
bearing - among the outer race, the inner race, or the ball - is
diagnosed, failure prognosis for predicting RUL is conducted. The

following sections explain each of the procedures.
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2.2. Preprocessing and Feature Extraction

Features are extracted using the rearrangement method defined
by the Bearing PHM team of Seoul National University. The bandpass
filtering method, Hilbert transform, and envelope processing are
applied to obtain fault—related frequency domain features. Ball Pass
Frequency of Outer race(BPFO), Ball Pass Frequency of Inner
race (BPFD), and Fundamental Train Frequency(FTF) frequencies
are calculated in a certain range of frequency band (1000~4000 Hz)
to get high frequency range features. Then, as shown in the bearing
health monitoring flowchart, features are selected for diagnosis and
prognosis.

Each frequency domain feature expresses the health state of one
part of the bearing: inner race, outer race, and ball. BPFO, BPFI, and
FTF frequency features represent the outer race, inner race, and ball,
respectively. For each part of the bearing, energy features are
calculated using the power series of the characteristic’s frequencies.
Due to deviations from the exact calculated values of the
characteristic frequencies and real data Fast Fourier Transform

(FFT) results, a certain range of error term is considered.
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2.3. Bound Decision for Incipient Anomaly and Fault

Diagnostic and prognostic results for PHM in bearings depends

on the range of the dataset; this range has varied in previous research.

Thus, in this research, we used data from the normal state to the time
of the emergence of actual spall initiation. Spall initiation can be
determined by analyzing the root mean square (RMS) value.

In the research described in this thesis, incipient anomaly
detection, diagnosis, and prognosis procedures are conducted
sequentially. First, incipient anomaly, fault, and failure are defined.
Incipient anomaly means finding the signal of a fault. Fault diagnosis
means classifying the fault source. Failure prognosis is the procedure
of predicting Remaining Useful Life (RUL). Definition of an incipient
anomaly, fault, and failure are based on the Mahalanobis Distance
(MD), which calculates the distance of datapoints from the normal
state. Datapoints that are far in MD scale from normal—state

datapoints can reasonably be determined to be abnormal. MD is

calculated by Dy(#) = (X —@)TS"1(¥ — i), which indicates the
distance between the current datapoint and the distribution of normal
data collected from the earlier stage of the experiment. MD calculates
the dissimilarity between random variables x and y. For an incipient
anomaly, a fault is defined as a Mahalanobis Distance value of
between 3 and 5 sigma. These values represent a possibility of
deviation of 99.73% and 99.9999%, respectively. These values are

also verified on the pre—test results.

12
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When an incipient anomaly is detected, fault diagnosis is initiated
to determine which part of the bearing is causing the faulty signals.
This procedure is defined as fault diagnosis. Consequently, when MD
increases and reaches above the value of 5, the algorithm starts to
predict RUL using the selected prognostic feature. The issue of the
failure threshold will be covered in a subsequent section, section

2.6.3.

14
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2.4. Incipient Anomaly Detection

An incipient anomaly is mainly caused by a sub—surface crack or

W 1t i{s the state before any spall propagation is

spall initiation.
generated and before extension of spall and failure emerge. Although
an incipient anomaly is a less severe state than fault or failure, it is
obviously an ‘abnormal’ state. As such, this indicates that signals
from the application during an incipient anomaly should be clearly
different from normal state signals.

As defined above, an incipient fault can be detected when MD is
equal to 3. An accelerometer measures acceleration data; this
includes noise from external sources that raises outliers up. To
alleviate the effect of outliers that emerge through this noise, a
moving average of 11 points can be calculated. The moving average
includes the previous 5 points, the current point, and the posterior 5
points. The moving average is calculated after the posterior 5 points
are acquired.

When a bearing fault is detected early, it means that the current
state has deviated significantly from the normal state that was
gathered in the earlier part of the experiment. At this stage, detailed
information about which fault has emerged and why is undetermined.
Instead, by detecting the fault earlier, it is possible to prepare a repair
plan for the device.

Using a bearing dataset from Schaeffler Changwon Research

Center, incipient anomaly detection was conducted, as shown in

16



Figure 2—6. Specific data descriptions will be introduced in Section
3.1 because the description of how the dataset is primarily processed
1s outlined in that section. Here, the HI plot shows that the incipient
anomaly is detected far before failure (30 days). One time unit means
100 minutes on the x axis. As suggested above, MD with a moving
average 1s applied; this evidently points out the instant of energy

fluctuation.

17
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Figure 2—6 Results of incipient anomaly detection
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2.5. Fault Diagnosis

This section describes the process of bearing fault diagnosis.
Diagnosis 1s used to determine which component is in an abnormal
state, among the inner race, outer race, and ball components. Fault
diagnosis also enables determination of any sudden failure that
occurs due to a slip between the axis and the bearing. However, this
is not meaningful, because sudden failure is not predictable. Slip
failure is an accident. It is impossible to plan for repair or exchange
that is needed based on an accident in an industrial field.

The research described in this thesis focuses on three main parts
of a bearing: the outer race, the inner race, and the ball of the bearing.
They are the primary parts of a bearing, parts that are found in almost
every bearing. The cage is excluded for two reasons. First, the health
of the cage is usually dependent on the ball. When a cage is faulty, it
mostly occurs with and is caused by a faulty ball. Health features of
a cage are extracted from a characteristic frequency that is shared
with the ball features. Second, cage faults are an unusual situation. A
cage 1s typically only in a faulty state when slip or axis distortion
occurs.

Using the same dataset as in Section 2.4, the data is processed
in an algorithmic flow. The diagnostic HI plot shows the health indices
for inner race, outer race, and ball. The diagnostic result of each part
shows bar—shaped results that indicate how healthy (or faulty) each

index indicates. The inner race index shows the most dramatic

20



increase in both of the plots; this is the same result as was observed

with the disassembly of the bearing after the acceleration test.

Diagnostic HI plot in time domain
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Figure 2—8 Fault diagnosis plot for inner race, outer
race, and ball

21



Diagnostic result of each part

Prediction/True

- AT, g * R T "
Outerindex ey ///A Spall / X

AT
e
NG

o
o
Sy
SRS
sttty

Inner index

A Spall / Spall

O, =

{Hi
SRS

<

KR IIR IR KRR K K TR KR KRR KX
e o o ot S Lo Lt Dot
B T T T L

& Sttt

]
PRt Lt
aisteraists ]

Ball index X/X

v

Time
“% Normal ||| Warning(detected) 7/ Failure

Figure 2—9 Results of Fault diagnosis

22



2.6. Failure Prognosis

Bearing prognosis has been researched using various methods.
In the research described in this thesis, bearing prognosis study
mainly focused on the trend projection model with selected
prognostic features. This section focuses on two suggestions: trend
projection using an asymptotic model as the Sigmoid model, and a
threshold decision methodology based on the ratio of the diagnosed

point and the failure point.

2.6.1 Background

) ® have studied conventional

Many previous researchers®
methods to predict Remaining Useful Life (RUL). There exist pros
and cons of each data—driven prognostic model.

First, the Particle Filtering (PF) method does not require large
amounts of historical failure data and is able to generate probabilistic
results. However, it requires significant resources for higher
dimensions and needs to define an analytic model. Another
conventional method, exponential projection using an Artificial Neural
Network (ANN), enables estimation of the actual failure time, instead
of providing a condition index at future time steps. ANN has a longer
prediction horizon; however, it assumes that all bearing degradation
follows an exponential pattern and requires training on ANN for each

historical dataset. Regression analysis and fuzzy logic do not provide

time to failure (TTF) or probability of failure, although they
23



emphasize the most recent condition information.

Based on the disadvantages described above, in this research,
the trend projection model was selected to predict the RUL of
bearings. Trend projection has the advantage of easy calculation,
which is highly desirable for real—time RUL calculation. Additionally,
trend projection is a better approach for unsupervised RUL prediction,

since it does not require a large amount of training data.

2.6.2 Trend Projection

Conventional research has primarily focused on the use of
exponential or linear models to predict life, primarily based on the
Root Mean Square (RMS) value. However, some previous
researchers have shown that certain features, such as entropy
features or spectral flatness, do not follow an exponential trend® ® |
In this research, an asymptotic model is suggested. Unlike an
exponential model, the asymptotic model has a static range that

converges to a certain asymptotic value. The model suggested in this

paper is a sigmoid model, as defined below.

1 1
(Feature) = a <(b - exp(—dt)) oy c>

This model converges to an asymptotic line, which means it has
an obvious static range. Consequently, when a feature’s tendency

decreases, that component can be regarded as faulty. This conclusion
2 4



1s reasonable because the projection does not fit the tendency before
the actual failure. There are other asymptotic or semi—asymptotic
models, such as the inverse exponential model and the bi—
exponential model. The following section outlines the advantage of
the sigmoid model over these other models. In trend projection, the
nonlinear least square is calculated to find the curve using the

bisquare weights method.

2.6.3 Threshold Decision

This research suggests a ratio—based thresholding methodology.
First, a dataset from a bearing of interest is needed to derive the
relevant ratio. The ratio of a to b is calculated, where a is an average
of the last 100 points immediately before failure and b is a diagnosed
point health feature value from the fault diagnosis section.
Afterwards, b' can be found; b' is a diagnostic result of the test

dataset. Next, the value a’ = b’ x% is found, which is decided as the

failure threshold. If there is no intersection point between the fitted
curve and the threshold, the RUL value remains as the NaN at the
point. The procedure is depicted in Figure 2—10.

The curve fit is compared between the suggested sigmoid model,
the inverse exponential model, and the bi—exponential model. The
Root Mean Squared Error (RMSE) is calculated to indicate the
performance of each model. As indicated in the table and graphs, the

suggested sigmoid model shows the least error among the three

25



models. The linear model was ignored because it does not make
sense with the suggestions in this research. In other words, linear
model is unable to reflect feature trend of prognostic features, as well
as the fact that a bearing does not degrade infinitely. In the graphs,
the outer feature and the inner feature trends are compared with the
true RUL line. If the feature RUL prediction curve shows a tendency
of —1 gradient, it indicates that the RUL is predicted with great
accuracy. Inthe graphs, the outer feature RUL curve seems to show
better performance of the —1 gradient. This is because the training
data used for the decision of the ratio threshold (TBS#2—1) has an
outer race fault. Thus, the calculated threshold is highly dependent
on the bearing’s outer race characteristic frequency. Although outer
race features are dominating, the inner race also follows the trend of
failure, which makes it reasonable to predict the RUL by applying
outer race fault data (TBS #2—1) to inner race fault data (TBS#2—

2).

26
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Table 2—1 Errors for each trend projection model

Model Curve Equation RMSE

Sigmoid a( 1 - 1 > 56.06
(b +c- exp(—dt)) b+c

Inv—exp a—b-exp(—ct) 57.98

Bi—exp aexp(bt) + cexp(dt) 118.07

27




g x10% P BPFORes

14| @:mean of{ast 1(_30_'_[3‘;3'31{5 .

1271 Y:0.000132
o (BB IS i
14 % e :

0al.P : didgnosed point

e o DGR

ekl Y:7.738e-05
0.6 .3tk
X: 49
& Y: 6.104e-05
G i
04"

0 100 200 300 400 500 600
Training data (TBS#2-1)

g 107 . P BPF.O Res
a’ = (a/b)*b’
RIS 7' —
08¢ o g Y:7.185005 | ° threshold
———————————— % ,‘,‘f{()&,‘- - - ———
06} szl
b' :-,_l_iliagnOSEd poi-r&;:;[é?eﬂﬁ
04 {.‘.i::.:“' -.,' - s ..:' I—
1_:‘-;\? . . :’-. :. A ._-A‘
s S g
0.2 207 |
Y:2.416e-05 Range of
6 . . ‘ prognostics
0 200 400 600 800

Test data (TBS#2-2)
Figure 2—10 Ratio—based threshold decision method

28



Sigmoid model RUL curve
Feature#1,2 RUL

300

-G- RUL(outer feature)
—»= RUL(inner feature)
—RUL(true)

200 1

—1 100+
>}
x
0 @%%
o,
100 -
0 50 100 150 200 250

time
Figure 2—11 Sigmoid model RUL prediction result
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Bi-exponential model RUL curve
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Figure 2—12 Bi—exponential model RUL prediction result
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Inv-exp model RUL curve
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Figure 2—13 Inverse exponential model RUL prediction result
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Chapter 3. Case Study 1: Schaeffler Bearing Data

3.1. Data Description

Life endurance test data from Schaeffler Korea was collected
from a deep—groove ball bearing. The specifications of the ball
bearing are listed in the table. Additionally, four datasets were
collected from the testbed; three pre—tests and one validation test.
Among pre—tests, one stopped due to a sudden problem that was
caused by slip between the axis and the inner race. Another one had
a power failure (blackout) problem. Therefore, in this research one
pre—test and one validation test were applied to test the suggested
diagnostic and prognostic techniques.

The sampling number was 10240 Hz and the interval between
samplings was 60 seconds. For faster calculation, data points for
every 100 points were selected, which indicates that the interval
between data points is 100 minutes. In other words, 1 time unit means
100 minutes.

Table 3—1 Schaeffler bearing test specification

Item Specification

Bearing designation Deep groove 6204

Equivalent load (%) 45% of dynamic load rating
Rotating speed 3,982 RPM

Lubrication Oil
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Table 3—2 Schaeffler bearing experiment description

Category

Pre—test

TBS #2-1

Validation test

TBS #2-2

Fault mode

Total lifetime

Early detection

Etc.

Outer spall

66 days

—30 days

Sudden fault
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Inner spall

46 days

—16 days

Gradual fault



Life endurance tester
(Schaeffler Korea, Changwon)

P TBS #2-1 bearing fault 4 TBS #2-2 bearing fault
(outer Race) (inner Race)

Figure 3—1 Life endurance tester and bearing spalls
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3.2. Prognostic Result

A full-time RUL curve is generated in the time domain, which
means it only uses data collected before the moment. It shows the
RUL during the whole life of the bearing. Before the diagnostic result
is achieved, the RUL is calculated with fating fatigue life Lio, based
on the International Standard Organization’s, ISO 281. According to

1SO 281, Lyg = o (&

3
P) , showing the fating fatigue of life to be 1240.3

hours, which means the 744.1639 time unit.

The feature trend was projected using the sigmoid model. Since
the sigmoid model is a revised version of the exponential model,
sufficient data is needed to fit the curve equation. Thus, a curve
fitting preparation range is required. The algorithm predicts the RUL
based on the fating fatigue life in this range. To specify the region,
the RUL curve is divided into two regions: the RUL prediction curve
without PHM and the RUL prediction curve calculated based on PHM

techniques.
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All-time RUL curve
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Figure 3—2 Full-time RUL curve with fating fatigue life Lqq
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Chapter 4. Case Study 2: SNU Bearing Testbed Data

4.1. Data Description

To verify the RUL prediction method proposed in this research,
the suggested method was applied to bearing data gathered from the
testbed of Seoul National University’s System Reliability and Health
Monitoring laboratory. This Seoul National University Bearing Data
(SNU data) is based on experiments with NSK angular contact ball
bearing 7202A with a rotating speed of 1457 RPM. The experiment
proceeded through three stages, with input axial loads of 0.1, 0.35,
0.1 MPa, respectively. Meanwhile, an input radial load of 0.1 MPa is
applied.

The number of samples for the experiment was 100,000, and
the sampling rate was 10,000 Hz; this indicates a sampling time of 10
seconds. The interval between samplings is 15 seconds. For faster
calculation, data from every 20th point is selected; this indicates an

interval between data points of 300 seconds.
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SNU testbed
(SHRM Lab.)

Figure 4—1 SNU testbed for small bearings

38



Table 4—1 Schaeffler bearing test specification

Item

Specification

Data name

Bearing designation
3—stage axial load
Radial load

Rotating speed
Lubrication

Sampling rate/number

Interval

4.2. Prognostic Result

The dataset is comprised of three stages; however, only the

Normal #12, 13, 14, 17
Angular Contact 7202A
0.1, 0.35, 0.1 MPa

0.1 MPa

1457 RPM

Rolling bearing grease

10,000Hz / 100,000

15 sec(sampling) x 20 (points)

third stage dataset was utilized because previous two stages

represent the normal stage and the stage of degrading from normal

to abnormal, respectively. In this case, a RUL curve with a bandpass—

filtered RMS feature was derived to check the overall prognostic

ability. This approach is meaningful, under the assumption of an

undiagnosed situation. Two predictions were set: one 1s learning

Normal #12 data and test Normal #17 data(Figure 4—3, 4—4, 4—5,

4—6); the other is learning Normal #13 data and test Normal #14

data(Figure 4—7, 4—8, 4—9, 4—10).
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Feature/RMS | Stop rule Stop rule
| v
¥
» Time

Operating condition 1 Operating condition 2
- Low RPM, Load - High RPM, Load
- Field condition - Accelerated condition
- Hard to detect fault - Easy to detect fault

Figure 4—2 SNU bearing test sequence
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RUL curve
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Figure 4—3 RUL prediction result with inner race feature and
bandpassed RMS feature
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Inner feature
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Figure 4—4 Inner race feature trend and projected curves
of Normal #17 with threshold from Normal #12 data
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OQuter feature
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Figure 4—5 Outer race feature trend and projected curves
of Normal #17 with threshold from Normal #12 data
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bandpassed RMS
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Figure 4—6 Bandpass—filtered RMS feature trend and

projected curves of Normal #17 with threshold from
Normal #12 data
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RUL curve
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Figure 4—7 RUL prediction result with inner race feature and
bandpassed RMS feature (Normal #13, 14)
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4—8 Inner race feature trend and projected curves

of Normal #14 with threshold from Normal #13 data
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Figure 4—9 Outer race feature trend and projected curves
of Normal #14 with threshold from Normal #13 data
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bandpassed RMS
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Figure 4—10 Bandpass—filtered RMS feature trend and
projected curves of Normal #14 with threshold from
Normal #13 data
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Chapter S. Conclusion

5.1. Conclusions and Contributions

Incipient anomaly detection, fault detection, and failure prognosis
are studied in this research for the overall life of a bearing. To enable
real—time monitoring and obtain relevant results, decisions about
incipient fault, fault, and failure were decided using Mahalanobis
Distance (MD). Moreover, a threshold decision methodology was
suggested using the ratio of normal and abnormal signals. As a result,
the prediction of overall bearing life was calculated for every data
point.

As described in research objectives, industrial fields require
full-time and real—time diagnosis and prognosis. However, prior
research has focused on the comparison between normal and failure
data using whole—life data; these prior approaches are not suitable
for real—time diagnosis and prognosis. This paper solves the problem
of separation between academic researchers and industrial fields and
finally generates a full-time RUL prediction curve using PHM
techniques and the fating fatigue life L;o value from the International
Standard Organization.

In addition, the research outlined in this thesis suggests an
asymptotic model for trend projection of the feature trend as a
substitute for the currently popular exponential model. The

disadvantage of the exponential model is that features extracted from
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the frequency domain do not follow an exponential tendency.
Although the trend reasonably ascends, the exponential model does
not appropriately reflect the static tendency of a bearing’s
characteristic frequency features.

The contributions of this paper are mainly concentrated in two
areas. One contribution 1s the suggested threshold decision
methodology. The other is the asymptotic line, which is suggested
for trend projection of features for prognosis to generate an RUL
prediction curve. This approach 1is suggested to replace the

conventional exponential or linear model.

5.2. Future Work

Future work should explore the Extended Kalman Filter or
Particle Filter method with fitted trend projection curve as an analytic
model for prognosis features. In future research, a broad variation of
prognostic features near failure will also be considered by relating
the aspect with Cook’s distance. Likewise, future work should be
pursued to further develop a fitted curve convergence value
threshold method to suggest a more general threshold decision
methodology.

Finally, in future work, additional experiments will be conducted
with the SNU bearing testbed in a full-time, one stage condition.
Here, another threshold decision method will be developed based on

the convergence value of the asymptotic model.

50



Bibliography

(1) Zhang, Bin, et al. "A probabilistic fault detection approach:
Application to bearing fault detection." IEEE Transactions on

Industrial Electronics 58.5 (2011).

(2) Randall, Robert B., and Jerome Antoni. "Rolling element bearing
diagnostics—a tutorial." Mechanical systems and signal processing

25.2 (2011): 485—-520.
(3) Zhang, Bin, et al. "A probabilistic fault detection approach:
Application to bearing fault detection." IEEE Transactions on

Industrial Electronics 58.5 (2011).

(4) El-Thalji, Idriss, and Erkki Jantunen. "Dynamic modelling of

wear evolution in rolling bearings." Tribology International 84 (2015):

90—-99.

(5) Qian, Yuning, and Rugiang Yan. "Remaining useful life prediction
of rolling bearings using an enhanced particle filter." IEEE
Transactions on Instrumentation and Measurement 64.10 (2015):

2696-2707.

(6) Singleton, Rodney K., Elias G. Strangas, and Selin Aviyente.

"Extended Kalman filtering for remaining—useful—life estimation of

51

.-"\.\.I .y



bearings." IEEE Transactions on Industrial Electronics 62.3 (2015):

1781-1790.

(7) Sadeghi, Farshid, et al. "A review of rolling contact fatigue."

Journal of tribology 131.4 (2009): 041403

(8) Loutas, Theodoros H., Dimitrios Roulias, and George Georgoulas.
"Remaining useful life estimation in rolling bearings utilizing data—
driven probabilistic e—support vectors regression." IEEE

Transactions on Reliability 62.4 (2013): 821—832

(9) Li, Xiaochuan, et al. "Multidimensional prognostics for rotating
machinery: A review." Advances in Mechanical Engineering 9.2

(2017): 1687814016685004.

(10) Heng, Aiwina, et al. "Rotating machinery prognostics: State of
the art, challenges and opportunities." Mechanical systems and signal

processing 23.3 (2009): 724-739.

(11) K. Kim, T. Hwang, et al. “Four—Stage Degradation Physics of

Rolling Element Bearings.” Asia Pacific Conference of the

Prognostics and Health Management Society 2017 proceeding.

52



Wolg e FAA A AzAA WA Ptk uhebA
Woly Aol A PAs el AWA Aol =2 woly W
e EB0] Fo® oxolth QA 24 Wodd nge A
A AAE W ol we Al AAE AAY wgEe dosn
W Fed edolth od 1S AAH W dde] ZdeA
519 3t

U #E AlZF(downtime) & #H 43} sk o] wi T3t o= PHM

>

7142 (Prognostics and Health Management) wWekx] 3 FojA=
S|AA7E ZHgske wobel AAre=m Al AHE EYHPs
dord FHs AdFcs ol o & FeAde ZA dn Adrt
A4 el r=A ] dHlolE] glo] & AEiZbA FAE dHolErt
7HA AL AbEE o of FhT)

kA, wlo]gs Z3skE 1A AIAES] RUEE AR
dolg] 7Ivke] AN duulgs AFsor Itk ol WHIE &
A9 H42 a3 2o AA, AFT1E dd4 BUHYE, =4,

Antr = AofH el e G VIE G WA, AA, REE GE M 9

Hojge]l AW duE wRste] 1 A, AdF 8 uFgs

Aolst7] flste]l ¥ ATG-ellA= Mahalanobis Distanced 2 -83}Sit}.

o

ot v dF9 Ag, B2 oA dAFEo] VMR = EARE
gpoteta At x| v ¢uEEY EES AAEiT odE =
Particle Filter?] Zd-% v]g] Aol¥ analytic modele] EA]sfoF )=

53



A4 (asymptotic)

e,

°

_?4

REE

j=ii | N
. 2 =

)

EUz Ho]wy o]
= b

e

H

0|
=1

npx]

ARA =

=

;l_l__

oe) g

747 ¢}

=y
-

] A Eo] gl
A

I

o

ol ojol Aol o

al

N

Fot e,

°©

Heord = A

-

°
pal

of i

=i =)
=

39 &2

o]
=

==
LN

]

o 7

)

A4 29 (exponential model)
7

‘& el A €]

al

i

2016—-20712
54

Isig



	Chapter 1. Introduction 
	1.1 Background and Motivation 
	1.2 Research Objectives 
	1.3 Thesis Layout 

	Chapter 2. Methodology 
	2.1 Bearing Overall PHM Flowchart 
	2.2 Preprocessing and Feature Extraction 
	2.3 Bound Decision for Incipient Anomaly and Fault 
	2.4 Incipient Anomaly Detection 
	2.5 Fault Diagnosis 
	2.6 Failure Prognosis 
	2.6.1 Background 
	2.6.2 Trend Projection 
	2.6.3 Threshold Decision 


	Chapter 3. Case Study 1: Schaeffler Bearing Data 
	3.1 Data Description 
	3.2 Prognostic Result 

	Chapter 4. Case Study 2: SNU Bearing Testbed Data 
	4.1 Data Description 
	4.2 Prognostic Result 

	Chapter 5. Conclusion 
	5.1 Conclusion and Contribution 
	5.2 Future Work 

	Bibliography 
	Abstract in Korean 


<startpage>12
Chapter 1. Introduction  1
 1.1 Background and Motivation  1
 1.2 Research Objectives  2
 1.3 Thesis Layout  5
Chapter 2. Methodology  6
 2.1 Bearing Overall PHM Flowchart  6
 2.2 Preprocessing and Feature Extraction  9
 2.3 Bound Decision for Incipient Anomaly and Fault  12
 2.4 Incipient Anomaly Detection  16
 2.5 Fault Diagnosis  20
 2.6 Failure Prognosis  23
  2.6.1 Background  23
  2.6.2 Trend Projection  24
  2.6.3 Threshold Decision  25
Chapter 3. Case Study 1: Schaeffler Bearing Data  32
 3.1 Data Description  32
 3.2 Prognostic Result  35
Chapter 4. Case Study 2: SNU Bearing Testbed Data  37
 4.1 Data Description  37
 4.2 Prognostic Result  39
Chapter 5. Conclusion  49
 5.1 Conclusion and Contribution  49
 5.2 Future Work  50
Bibliography  51
Abstract in Korean  53
</body>

