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Abstract 

Bearing Incipient Fault Detection, Diagnosis, and 

Unsupervised Prognosis with Failure Thresholding 

 

Byungjoo Jeon 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Bearings are core components in rotating machines. Thus, early 

detection of faults and accurate prediction of a machine’s health 

state is highly desirable throughout the total lifecycle of a bearing. 

Rolling element bearing failure is one of the critical causes of 

breakdowns in rotating machinery; these types of failures are 

common in mechanical systems as well. Such failures can be 

catastrophic and can result in costly downtime. 

Particularly in industrial fields, minimization of downtime is 

critical. Thus, health monitoring of rotating machinery during 

operation is the focus of significant research interest. Accurate 

bearing health prediction is needed for these settings. There remains 

a need for health state prediction that can be accomplished in real-

time, without future data. 

Therefore, a data-driven and real-time algorithm for bearing 

health monitoring is suggested in this thesis. The research objectives 
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pursued to improve the bearing PHM framework include 1) full-time 

health monitoring, 2) definition of a failure threshold for rolling 

elements in general bearings, and 3) life prediction in real-time and 

in unsupervised situations. 

To classify the health state of bearings for detection of incipient 

faults and fault points, the Mahalanobis Distance is applied. For life 

prediction, previous researchers have experienced severe problems, 

particularly when the life prediction required analytic assumptions as 

a prerequisite, for example, those emerged at Particle Filters. To 

solve this problem, the research outlined in this paper suggests a new 

model and a threshold decision method that enables prediction of the 

Remaining Useful Life in real time (i.e., in unsupervised situations). 

This thesis is organized as follows. Section 1 provides an 

introduction, including the research motivation and an overview of 

the research objectives. Next, in Section 2, methodologies for 

detection of incipient anomalies, fault diagnosis, and failure prognosis 

are explained, along with a suggested definition and a trend projection 

model. Then, Sections 3 and 4 validate the suggested threshold and 

model using data acquired from Schaeffler Korea and Seoul National 

University, respectively. Finally, Chapter 5 concludes this thesis with 

a summary of the research contributions and suggestions for future 

work. 

 

Keywords: Incipient Anomaly Detection, Diagnosis and Prognosis, 

Failure Threshold, Asymptotic Model 
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Chapter 1. Introduction 

 

1.1. Background and Motivation 

 

Rolling element bearing failure is one of the critical causes of 

breakdowns in rotating machinery and common mechanical systems. 

Researchers in PHM (Prognostics and Health Management) have 

studied ball bearings for a long time (1), (2), (3). However, little research 

to date has focused on the real-time monitoring. Additionally, full-

time health monitoring – from normal state to failure – is greatly 

needed in industrial fields. This type of health monitoring will allow 

users to be continuously aware of the health status of their rotating 

machines and enable them to make plans to repair and retain 

machinery in working condition. 

Varying failure criteria presents another problem for researchers, 

since different thresholds can be applied for each bearing depending 

on its purpose. For example, bearings that are built for use in 

precision operating machines would require a conservative threshold 

of failure, while others may not. 

According to previous research(4), the evolution of wear in rolling 

bearings progresses sequentially through five stages: the running-

in stage, the steady-state stage, the defect initiation stage, the 

defect propagation stage, and the damage growth stage. In many 

cases, the very first initiation of spall should be detected and the 

health state should be subsequently monitored continuously to 
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ensure productivity of the machine.  

    In prognostics, many researchers have attempted to make more 

effective and generally applicable algorithms to predict Remaining 

Useful Life(9). However, all popular algorithms, such as the Particle 

Filtering method and Artificial Neural Networks, have pros and cons. 

In this thesis, objectives are established, and the most relevant 

algorithm is suggested for the defined objectives.  

 

1.2. Research Objectives 

 

The first motivation for this research is the growing need for 

full-time health monitoring. In many settings, it is desirable to know 

the status of the mechanical system over its total life. Previous 

research has concentrated on the comparison of normal and abnormal 

signals.(10) However, in real-world settings, simultaneous health 

monitoring is desirable during operation of machinery, as it can 

provide information necessary to enable early planning for repairs 

needed to maintain the system in a usable state.  

Prognostics is another significant motivation for this research. 

The primary goal of prognostics is to provide useful insight into a 

system’s health by combining three aspects: complexities of real-

time systems, accurate and full utilization of data, and variable 

operating patterns. However, there are many limitations to 

prognostics due to its required assumptions, including the threshold 

decision problem. Therefore, an algorithm is needed that provides 
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data-driven, real-time, and short-calculations for threshold 

definition. 

Inspired by these motivations, the research objectives of this 

project are defined as follows: 1) full-time health monitoring for 

bearings, 2) suggestion of a failure threshold decision algorithm, and 

3) real-time, unsupervised life prediction. 
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Figure 1-1 Research objectives throughout the life of a bearing  
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1.3. Thesis Layout 

 
In order to solve problems and accomplish the research 

objectives, overall PHM procedures for bearings are conducted 

throughout normal, incipient fault, and failure states. This thesis is 

organized as follows. Section 2, explains the methodologies of 

bearing fault detection throughout incipient anomaly, fault, and failure, 

which is followed by suggestions of life prediction algorithm. Next, 

Section 3 provides a case study of prognostics with bearing dataset 

from Schaeffler Korea. In Sections 4, another case study of bearing 

dataset with SNU Bearing Testbed is explained. Finally, section 5 

concludes thesis with contributions and future works. 
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Chapter 2. Methodology 

 

2.1. Overall PHM Flowchart for a Bearing 

 
Previous PHM research has mainly focused on diagnosis and 

prognosis for a specific application. In the research described here, 

the application is a bearing. This research outlined here covers the 

entire range of life: from normal state to failure. In order to classify 

the life stages, the bearing state is defined in four states: normal, 

incipient anomaly, fault, and failure. These states represent 

increasing levels of severity of health defects. 

The PHM process should define how far the bearing has come 

and how long it will take for eventual failure. To do so, vibration 

signals are used for analysis. After a vibration signal is acquired, 

preprocessing and feature extraction stages follow. Next, based on a 

health index, which is also called Mahalanobis Distance, the health 

monitoring system will detect incipient fault features. The diagnosis 

stage and prognosis stage follow. These procedures form the real-

time health monitoring system. 

To be more specific, features are selected for each step of 

incipient anomaly detection, fault diagnosis, and failure prognosis. 

Blue-lined boxes in the PHM flowchart on figure 2-1 indicate the 

selected features. Yellow boxes show the results of each section. In 

this research, a health index (HI) with Mahalanobis Distance, a 

threshold decision method, and a degradation model are all suggested. 
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As shown in the figure, the results from each step are used for each 

subsequent step. During the incipient anomaly detection step, the 

health index is calculated continuously. Here, if HI increases over 5 

(i.e., moves into the fault range) the bearing monitoring system 

process moves on to fault diagnosis. Next, after a faulty part of a 

bearing – among the outer race, the inner race, or the ball – is 

diagnosed, failure prognosis for predicting RUL is conducted. The 

following sections explain each of the procedures.  
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Figure 2-1 PHM flowchart for health monitoring of bearings  
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2.2. Preprocessing and Feature Extraction 

 

Features are extracted using the rearrangement method defined 

by the Bearing PHM team of Seoul National University. The bandpass 

filtering method, Hilbert transform, and envelope processing are 

applied to obtain fault-related frequency domain features. Ball Pass 

Frequency of Outer race(BPFO), Ball Pass Frequency of Inner 

race(BPFI), and Fundamental Train Frequency(FTF) frequencies 

are calculated in a certain range of frequency band (1000~4000 Hz) 

to get high frequency range features. Then, as shown in the bearing 

health monitoring flowchart, features are selected for diagnosis and 

prognosis. 

Each frequency domain feature expresses the health state of one 

part of the bearing: inner race, outer race, and ball. BPFO, BPFI, and 

FTF frequency features represent the outer race, inner race, and ball, 

respectively. For each part of the bearing, energy features are 

calculated using the power series of the characteristic’s frequencies. 

Due to deviations from the exact calculated values of the 

characteristic frequencies and real data Fast Fourier Transform 

(FFT) results, a certain range of error term is considered.  
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Figure 2-2 Feature extraction from a raw acceleration 
signal to the frequency domain  
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Figure 2-3 Flowchart of the process from 
preprocessing to defining the health index 
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2.3. Bound Decision for Incipient Anomaly and Fault 

 
Diagnostic and prognostic results for PHM in bearings depends 

on the range of the dataset; this range has varied in previous research. 

Thus, in this research, we used data from the normal state to the time 

of the emergence of actual spall initiation. Spall initiation can be 

determined by analyzing the root mean square (RMS) value. 

 In the research described in this thesis, incipient anomaly 

detection, diagnosis, and prognosis procedures are conducted 

sequentially. First, incipient anomaly, fault, and failure are defined. 

Incipient anomaly means finding the signal of a fault. Fault diagnosis 

means classifying the fault source. Failure prognosis is the procedure 

of predicting Remaining Useful Life (RUL). Definition of an incipient 

anomaly, fault, and failure are based on the Mahalanobis Distance 

(MD), which calculates the distance of datapoints from the normal 

state. Datapoints that are far in MD scale from normal-state 

datapoints can reasonably be determined to be abnormal. MD is 

calculated by D୑ሺݔԦሻ ൌ 	 ඥሺݔԦ െ ԦݔԦሻ்ܵିଵሺߤ െ Ԧሻߤ , which indicates the 

distance between the current datapoint and the distribution of normal 

data collected from the earlier stage of the experiment. MD calculates 

the dissimilarity between random variables x and y. For an incipient 

anomaly, a fault is defined as a Mahalanobis Distance value of 

between 3 and 5 sigma. These values represent a possibility of 

deviation of 99.73% and 99.9999%, respectively. These values are 

also verified on the pre-test results. 
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Figure 2-4 3-sigma rule 
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When an incipient anomaly is detected, fault diagnosis is initiated 

to determine which part of the bearing is causing the faulty signals. 

This procedure is defined as fault diagnosis. Consequently, when MD 

increases and reaches above the value of 5, the algorithm starts to 

predict RUL using the selected prognostic feature. The issue of the 

failure threshold will be covered in a subsequent section, section 

2.6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 １５

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Bound definition of incipient anomaly and fault based on MD
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2.4. Incipient Anomaly Detection 

 

An incipient anomaly is mainly caused by a sub-surface crack or 

spall initiation.(4) It is the state before any spall propagation is 

generated and before extension of spall and failure emerge. Although 

an incipient anomaly is a less severe state than fault or failure, it is 

obviously an ‘abnormal’ state. As such, this indicates that signals 

from the application during an incipient anomaly should be clearly 

different from normal state signals.  

As defined above, an incipient fault can be detected when MD is 

equal to 3. An accelerometer measures acceleration data; this 

includes noise from external sources that raises outliers up. To 

alleviate the effect of outliers that emerge through this noise, a 

moving average of 11 points can be calculated. The moving average 

includes the previous 5 points, the current point, and the posterior 5 

points. The moving average is calculated after the posterior 5 points 

are acquired.   

When a bearing fault is detected early, it means that the current 

state has deviated significantly from the normal state that was 

gathered in the earlier part of the experiment. At this stage, detailed 

information about which fault has emerged and why is undetermined. 

Instead, by detecting the fault earlier, it is possible to prepare a repair 

plan for the device. 

Using a bearing dataset from Schaeffler Changwon Research 

Center, incipient anomaly detection was conducted, as shown in 
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Figure 2-6. Specific data descriptions will be introduced in Section 

3.1 because the description of how the dataset is primarily processed 

is outlined in that section. Here, the HI plot shows that the incipient 

anomaly is detected far before failure (30 days). One time unit means 

100 minutes on the x axis. As suggested above, MD with a moving 

average is applied; this evidently points out the instant of energy 

fluctuation. 
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Figure 2-6 Results of incipient anomaly detection  
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Sub‐surface crack 

Spall initiation 

Spall propagation 

Extended spall & failure 

Figure 2-7 Stages of rolling contact fatigue and 
degradation  
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2.5. Fault Diagnosis 

 

This section describes the process of bearing fault diagnosis. 

Diagnosis is used to determine which component is in an abnormal 

state, among the inner race, outer race, and ball components. Fault 

diagnosis also enables determination of any sudden failure that 

occurs due to a slip between the axis and the bearing. However, this 

is not meaningful, because sudden failure is not predictable. Slip 

failure is an accident. It is impossible to plan for repair or exchange 

that is needed based on an accident in an industrial field. 

The research described in this thesis focuses on three main parts 

of a bearing: the outer race, the inner race, and the ball of the bearing. 

They are the primary parts of a bearing, parts that are found in almost 

every bearing. The cage is excluded for two reasons. First, the health 

of the cage is usually dependent on the ball. When a cage is faulty, it 

mostly occurs with and is caused by a faulty ball. Health features of 

a cage are extracted from a characteristic frequency that is shared 

with the ball features. Second, cage faults are an unusual situation. A 

cage is typically only in a faulty state when slip or axis distortion 

occurs. 

Using the same dataset as in Section 2.4, the data is processed 

in an algorithmic flow. The diagnostic HI plot shows the health indices 

for inner race, outer race, and ball. The diagnostic result of each part 

shows bar-shaped results that indicate how healthy (or faulty) each 

index indicates. The inner race index shows the most dramatic 
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increase in both of the plots; this is the same result as was observed 

with the disassembly of the bearing after the acceleration test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Fault diagnosis plot for inner race, outer 
race, and ball 
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Figure 2-9 Results of Fault diagnosis 
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2.6. Failure Prognosis 

 

Bearing prognosis has been researched using various methods. 

In the research described in this thesis, bearing prognosis study 

mainly focused on the trend projection model with selected 

prognostic features. This section focuses on two suggestions: trend 

projection using an asymptotic model as the Sigmoid model, and a 

threshold decision methodology based on the ratio of the diagnosed 

point and the failure point. 

 

2.6.1 Background 

 
Many previous researchers(5), (6) have studied conventional 

methods to predict Remaining Useful Life(RUL). There exist pros 

and cons of each data-driven prognostic model.  

First, the Particle Filtering (PF) method does not require large 

amounts of historical failure data and is able to generate probabilistic 

results. However, it requires significant resources for higher 

dimensions and needs to define an analytic model. Another 

conventional method, exponential projection using an Artificial Neural 

Network (ANN), enables estimation of the actual failure time, instead 

of providing a condition index at future time steps. ANN has a longer 

prediction horizon; however, it assumes that all bearing degradation 

follows an exponential pattern and requires training on ANN for each 

historical dataset. Regression analysis and fuzzy logic do not provide 

time to failure (TTF) or probability of failure, although they 
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emphasize the most recent condition information.  

Based on the disadvantages described above, in this research, 

the trend projection model was selected to predict the RUL of 

bearings. Trend projection has the advantage of easy calculation, 

which is highly desirable for real-time RUL calculation. Additionally, 

trend projection is a better approach for unsupervised RUL prediction, 

since it does not require a large amount of training data.  

 

2.6.2 Trend Projection 

 

Conventional research has primarily focused on the use of 

exponential or linear models to predict life, primarily based on the 

Root Mean Square (RMS) value. However, some previous 

researchers have shown that certain features, such as entropy 

features or spectral flatness, do not follow an exponential trend(6), (8). 

In this research, an asymptotic model is suggested. Unlike an 

exponential model, the asymptotic model has a static range that 

converges to a certain asymptotic value. The model suggested in this 

paper is a sigmoid model, as defined below.  

 

ሺ݁ݎݑݐܽ݁ܨሻ ൌ ቆࢇ
૚

൫࢈ ൅ ࢉ ∗ ሻ൯࢚ࢊሺെ࢖࢞ࢋ
െ

૚ 

࢈ ൅ ࢉ
ቇ 

 

This model converges to an asymptotic line, which means it has 

an obvious static range. Consequently, when a feature’s tendency 

decreases, that component can be regarded as faulty. This conclusion 
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is reasonable because the projection does not fit the tendency before 

the actual failure. There are other asymptotic or semi-asymptotic 

models, such as the inverse exponential model and the bi-

exponential model. The following section outlines the advantage of 

the sigmoid model over these other models. In trend projection, the 

nonlinear least square is calculated to find the curve using the 

bisquare weights method. 

 

2.6.3 Threshold Decision 

 

This research suggests a ratio-based thresholding methodology. 

First, a dataset from a bearing of interest is needed to derive the 

relevant ratio. The ratio of a to b is calculated, where a is an average 

of the last 100 points immediately before failure and b is a diagnosed 

point health feature value from the fault diagnosis section. 

Afterwards, b' can be found; b' is a diagnostic result of the test 

dataset. Next, the value aᇱ ൌ b′ ൈ
௔

௕
 is found, which is decided as the 

failure threshold. If there is no intersection point between the fitted 

curve and the threshold, the RUL value remains as the NaN at the 

point. The procedure is depicted in Figure 2-10. 

 The curve fit is compared between the suggested sigmoid model, 

the inverse exponential model, and the bi-exponential model. The 

Root Mean Squared Error (RMSE) is calculated to indicate the 

performance of each model. As indicated in the table and graphs, the 

suggested sigmoid model shows the least error among the three 
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models. The linear model was ignored because it does not make 

sense with the suggestions in this research. In other words, linear 

model is unable to reflect feature trend of prognostic features, as well 

as the fact that a bearing does not degrade infinitely. In the graphs, 

the outer feature and the inner feature trends are compared with the 

true RUL line. If the feature RUL prediction curve shows a tendency 

of -1 gradient, it indicates that the RUL is predicted with great 

accuracy.  In the graphs, the outer feature RUL curve seems to show 

better performance of the -1 gradient. This is because the training 

data used for the decision of the ratio threshold (TBS#2-1) has an 

outer race fault. Thus, the calculated threshold is highly dependent 

on the bearing’s outer race characteristic frequency. Although outer 

race features are dominating, the inner race also follows the trend of 

failure, which makes it reasonable to predict the RUL by applying 

outer race fault data (TBS #2-1) to inner race fault data (TBS#2-

2). 
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Table 2-1 Errors for each trend projection model 

Model Curve Equation RMSE 

Sigmoid ܽ ቆ
1

൫ܾ ൅ ܿ ∙ ሻ൯ݐሺെ݀݌ݔ݁
െ

1 

ܾ ൅ ܿ
ቇ 56.06 

Inv-exp ܽ െ ܾ ∙ expሺെܿݐሻ 57.98 

Bi-exp ܽ݁݌ݔሺܾݐሻ ൅  ሻ 118.07ݐሺ݀݌ݔ݁ܿ
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Figure 2-10 Ratio-based threshold decision method 
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Sigmoid model RUL curve 

Figure 2-11 Sigmoid model RUL prediction result 
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Bi-exponential model RUL curve 
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Figure 2-12 Bi-exponential model RUL prediction result 
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Inv-exp model RUL curve 
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Figure 2-13 Inverse exponential model RUL prediction result 
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Chapter 3. Case Study 1: Schaeffler Bearing Data 

 

3.1. Data Description 

 

Life endurance test data from Schaeffler Korea was collected 

from a deep-groove ball bearing. The specifications of the ball 

bearing are listed in the table. Additionally, four datasets were 

collected from the testbed; three pre-tests and one validation test. 

Among pre-tests, one stopped due to a sudden problem that was 

caused by slip between the axis and the inner race. Another one had 

a power failure (blackout) problem. Therefore, in this research one 

pre-test and one validation test were applied to test the suggested 

diagnostic and prognostic techniques.  

The sampling number was 10240 Hz and the interval between 

samplings was 60 seconds. For faster calculation, data points for 

every 100 points were selected, which indicates that the interval 

between data points is 100 minutes. In other words, 1 time unit means 

100 minutes. 

Table 3-1 Schaeffler bearing test specification 

Item Specification 

Bearing designation Deep groove 6204 

Equivalent load (%) 45% of dynamic load rating 

Rotating speed 3,982 RPM 

Lubrication Oil 
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Table 3-2 Schaeffler bearing experiment description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category 

Pre-test Validation test 

TBS #2-1 TBS #2-2 

Fault mode Outer spall Inner spall 

Total lifetime 66 days 46 days 

Early detection -30 days -16 days 

Etc. Sudden fault Gradual fault 
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Figure 3-1 Life endurance tester and bearing spalls 
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3.2. Prognostic Result 

 

A full-time RUL curve is generated in the time domain, which 

means it only uses data collected before the moment. It shows the 

RUL during the whole life of the bearing. Before the diagnostic result 

is achieved, the RUL is calculated with fating fatigue life L10, based 

on the International Standard Organization’s, ISO 281. According to 

ISO 281, ܮଵ଴ ൌ
ଵ଴ల

଺଴௡
ቀ஼
௉
ቁ
ଷ
, showing the fating fatigue of life to be 1240.3 

hours, which means the 744.1639 time unit. 

The feature trend was projected using the sigmoid model. Since 

the sigmoid model is a revised version of the exponential model, 

sufficient data is needed to fit the curve equation. Thus, a curve 

fitting preparation range is required. The algorithm predicts the RUL 

based on the fating fatigue life in this range. To specify the region, 

the RUL curve is divided into two regions: the RUL prediction curve 

without PHM and the RUL prediction curve calculated based on PHM 

techniques. 
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Curve fitting 

Preparation range 

Figure 3-2 Full-time RUL curve with fating fatigue life ࡸ૚૙ 
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Chapter 4. Case Study 2: SNU Bearing Testbed Data 

 

4.1. Data Description 

 

To verify the RUL prediction method proposed in this research, 

the suggested method was applied to bearing data gathered from the 

testbed of Seoul National University’s System Reliability and Health 

Monitoring laboratory. This Seoul National University Bearing Data 

(SNU data) is based on experiments with NSK angular contact ball 

bearing 7202A with a rotating speed of 1457 RPM. The experiment 

proceeded through three stages, with input axial loads of 0.1, 0.35, 

0.1 MPa, respectively. Meanwhile, an input radial load of 0.1 MPa is 

applied. 

The number of samples for the experiment was 100,000, and 

the sampling rate was 10,000 Hz; this indicates a sampling time of 10 

seconds. The interval between samplings is 15 seconds. For faster 

calculation, data from every 20th point is selected; this indicates an 

interval between data points of 300 seconds. 
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Figure 4-1 SNU testbed for small bearings 
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Table 4-1 Schaeffler bearing test specification 

Item Specification 

Data name Normal #12, 13, 14, 17 

Bearing designation Angular Contact 7202A 

3-stage axial load 0.1, 0.35, 0.1 MPa 

Radial load 0.1 MPa 

Rotating speed 1457 RPM 

Lubrication Rolling bearing grease 

Sampling rate/number 10,000Hz / 100,000 

Interval 15 sec(sampling) ൈ 20 (points) 

 

 

4.2. Prognostic Result 

The dataset is comprised of three stages; however, only the 

third stage dataset was utilized because previous two stages 

represent the normal stage and the stage of degrading from normal 

to abnormal, respectively. In this case, a RUL curve with a bandpass-

filtered RMS feature was derived to check the overall prognostic 

ability. This approach is meaningful, under the assumption of an 

undiagnosed situation. Two predictions were set: one is learning 

Normal #12 data and test Normal #17 data(Figure 4-3, 4-4, 4-5, 

4-6); the other is learning Normal #13 data and test Normal #14 

data(Figure 4-7, 4-8, 4-9, 4-10). 
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Figure 4-2 SNU bearing test sequence 



 ４１

 

 

 

 

 

 

 

 

R
U
L

Figure 4-3 RUL prediction result with inner race feature and 
bandpassed RMS feature 
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Figure 4-4 Inner race feature trend and projected curves 
of Normal #17 with threshold from Normal #12 data 
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Figure 4-5 Outer race feature trend and projected curves 
of Normal #17 with threshold from Normal #12 data 
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Figure 4-6 Bandpass-filtered RMS feature trend and 
projected curves of Normal #17 with threshold from 

Normal #12 data 
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Figure 4-7 RUL prediction result with inner race feature and 
bandpassed RMS feature (Normal #13, 14) 
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Figure 4-8 Inner race feature trend and projected curves 
of Normal #14 with threshold from Normal #13 data 
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Figure 4-9 Outer race feature trend and projected curves 
of Normal #14 with threshold from Normal #13 data 
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Figure 4-10 Bandpass-filtered RMS feature trend and 
projected curves of Normal #14 with threshold from 

Normal #13 data 
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Chapter 5. Conclusion 

 

5.1. Conclusions and Contributions 

 

Incipient anomaly detection, fault detection, and failure prognosis 

are studied in this research for the overall life of a bearing. To enable 

real-time monitoring and obtain relevant results, decisions about 

incipient fault, fault, and failure were decided using Mahalanobis 

Distance (MD). Moreover, a threshold decision methodology was 

suggested using the ratio of normal and abnormal signals. As a result, 

the prediction of overall bearing life was calculated for every data 

point. 

As described in research objectives, industrial fields require 

full-time and real-time diagnosis and prognosis. However, prior 

research has focused on the comparison between normal and failure 

data using whole-life data; these prior approaches are not suitable 

for real-time diagnosis and prognosis. This paper solves the problem 

of separation between academic researchers and industrial fields and 

finally generates a full-time RUL prediction curve using PHM 

techniques and the fating fatigue life Lଵ଴ value from the International 

Standard Organization. 

In addition, the research outlined in this thesis suggests an 

asymptotic model for trend projection of the feature trend as a 

substitute for the currently popular exponential model. The 

disadvantage of the exponential model is that features extracted from 
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the frequency domain do not follow an exponential tendency. 

Although the trend reasonably ascends, the exponential model does 

not appropriately reflect the static tendency of a bearing’s 

characteristic frequency features. 

The contributions of this paper are mainly concentrated in two 

areas. One contribution is the suggested threshold decision 

methodology. The other is the asymptotic line, which is suggested 

for trend projection of features for prognosis to generate an RUL 

prediction curve. This approach is suggested to replace the 

conventional exponential or linear model. 

 

5.2. Future Work 

 

Future work should explore the Extended Kalman Filter or 

Particle Filter method with fitted trend projection curve as an analytic 

model for prognosis features. In future research, a broad variation of 

prognostic features near failure will also be considered by relating 

the aspect with Cook’s distance. Likewise, future work should be 

pursued to further develop a fitted curve convergence value 

threshold method to suggest a more general threshold decision 

methodology.  

Finally, in future work, additional experiments will be conducted 

with the SNU bearing testbed in a full-time, one stage condition. 

Here, another threshold decision method will be developed based on 

the convergence value of the asymptotic model. 
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국문 초록 

 

    베어링은 회전체 기계 시스템에서 핵심적인 부품이다. 따라서 

베어링 결함의 선 감지와 더불어 건전성 상태의 예측은 베어링 전체 

수명을 통틀어 중요한 요소이다. 회전체 요소 베어링의 고장은 회전 

기계 시스템 뿐만 아니라 많은 기계 시스템 전체의 고장을 일으키는 

매우 주요한 요인이다. 이러한 고장은 경제적 및 안전의 측면에서 

위험하다. 

특히 산업 현장에서는 업무 효율을 극대화하기 위하여 기계의 

미작동 시간(downtime)을 최소화 하는 것이 매우 중요하다. 이는 PHM 

기술(Prognostics and Health Management) 따라서 현장에서는 

회전체가 작동하는 동안에 실시간으로 기계의 상태를 모니터링하고 

앞으로의 수명을 예측하는 것이 더 큰 중요성을 갖게 된다. 게다가 

건전성 상태는 반드시 미래의 데이터 없이 현 상태까지 축적된 데이터만 

가지고 산출되어야 한다. 

    따라서, 베어링을 포함하는 기계 시스템의 모니터링 시스템은 

데이터 기반의 실시간 알고리즘을 지향해야 한다. 이를 반영한 본 

연구의 목적은 다음과 같다. 첫째, 전주기적 건전성 모니터링, 둘째, 

일반적 볼 베어링에서의 고장 기준 정의 방식, 셋째, 비감독 상태에서의 

실시간 수명 예측이다. 

    베어링의 건전성 상태를 분류하여 고장 선감지, 결함 및 고장을 

정의하기 위하여 본 연구에서는 Mahalanobis Distance를 적용하였다. 

또한 수명 예측의 경우, 많은 이전의 연구들이 가지고 있는 문제점들을 

파악하고 연구 목표에 맞는 알고리즘과 모델을 제시하였다. 예를 들어, 

Particle Filter의 경우 미리 정의된 analytic model이 존재해야 한다는 
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치명적 단점을 가지고 있다. 이는 실제 현장과의 연결성에서 부족한 

방식이다. 이러한 문제를 해결하기 위하여, 점근성(asymptotic)의 

모델을 제시하였으며 더불어 고장 기준 정의 방식을 제시하였다. 이를 

실데이터에 적용하여 전주기 실시간 수명 예측을 수행하였다. 

     본 연구를 설명하기 위하여, 논문은 다음과 같이 작성되었다. 

연구의 동기 및 목표가 먼저 설명된 뒤 전체 PHM 순서도를 포함하는 

제시된 방법론을 설명한다. 다음으로 이 방법론을 토대로 베어링의 

수명예측 방식을 실데이터에 적용한 결과를 설명하였다. 마지막으로 본 

연구에 이어질 연구에 대해 설명되어 있다. 

    논문의 연구 내용은 크게 두 가지의 의미를 갖는다. 첫번째로 

논문에서 제안하고 있는 베어링 고장 기준 정의와 분류 방식은 비감독 

상태에서의 고장 기준을 제시하고 있으며 이를 서울대학교 

테스트베드에서 수집된 데이터를 가지고 검증하였다.  둘째로 일반적인 

지수 모델(exponential model)과 달리 점근성 모델을 제시함으로써 

고장의 기준 및 회귀 모델에 대한 패러다임을 제시하였다. 

 

주요어:  고장 선감지, 진단 및 예측, 고장 기준 정의, 수렴성 모델 

 

학번:       2016-20712 
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